Monitoring Ion Track Formation Using In Situ RBS/c, ToF-ERDA, and HR-PIXE
Abstract
:1. Introduction
2. Experiments and Results
2.1. Materials
2.2. Monitoring Ion Track Production by In Situ RBS/c
2.3. Evaluating Ion Track Stoichiometry by In Situ ToF-ERDA
2.4. Observing First Stages of Ion Track Formation Using In Situ HR-PIXE
3. Discussion
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Itoh, N.; Duffy, D.M.; Khakshouri, S.; Stoneham, A.M. Making tracks: Electronic excitation roles in forming swift heavy ion tracks. J. Phys. Condens. Matter 2009, 21, 474205. [Google Scholar] [CrossRef] [PubMed]
- Aumayer, F.; Facsko, S.; El-Said, A.S.; Trautmann, C.; Schleberger, M. Single ion induced surface nanostructures—A comparison between slow highly charged and swift heavy ions. J. Phys. Condens. Matter 2011, 23, 393001. [Google Scholar] [CrossRef] [PubMed]
- Toulemonde, M.; Assmann, W.; Dufour, C.; Meftah, A.; Trautmann, C. Nanometric transformation of the matter by short and intense electronic excitation—Experimental data versus inelastic thermal spike model. Nucl. Instrum. Methods Phys. Res. Sect. B 2012, 277, 28–39. [Google Scholar] [CrossRef]
- Agulló-López, F.; Climent-Font, A.; Muñoz-Martín, Á.; Olivares, J.; Zucchiatti, A. Ion beam modification of dielectric materials in the electronic excitation regime: Cumulative and exciton models. Prog. Mater. Sci. 2016, 76, 1–58. [Google Scholar] [CrossRef]
- Klaumünzer, S. Thermal Spike Models for Ion Track Physics: A Critical Examination. Matematisk-Fysiske Meddelelser 2006, 52, 293–328. [Google Scholar]
- Szenes, G. Comparison of two thermal spike models for ion–solid interaction. Nucl. Instrum. Methods Phys. Res. Sect. B 2011, 269, 174–179. [Google Scholar] [CrossRef]
- Toulemonde, M.; Benyagoub, A.; Trautmann, C.; Khalfaoui, N.; Boccanfuso, M.; Dufour, C.; Gourbilleau, F.; Grob, J.J.; Stoquert, J.P.; Constantini, J.M.; et al. Dense and nanometric electronic excitations induced by swift heavy ions in an ionic CaF2 crystal: Evidence for two thresholds of damage creation. Phys. Rev. B 2012, 85, 054112. [Google Scholar] [CrossRef]
- Karlušić, M.; Jakšić, M. Thermal spike analysis of highly charged ion tracks. Nucl. Instrum. Methods Phys. Res. Sect. B 2012, 280, 103–110. [Google Scholar] [CrossRef]
- Szenes, G. Coulomb explosion at low and high ion velocities. Nucl. Instrum. Methods Phys. Res. Sect. B 2013, 298, 76–80. [Google Scholar] [CrossRef]
- Karlušić, M.; Ghica, C.; Negrea, R.F.; Siketić, Z.; Jakšić, M.; Schleberger, M.; Fazinić, S. On the threshold for ion track formation in CaF2. New J. Phys. 2017, 19, 023023. [Google Scholar] [CrossRef]
- Toulemonde, M.; Trautmann, C.; Balanzat, E.; Hjort, K.; Weidinger, A. Track formation and fabrication of nanostructures with MeV-ion beams. Nucl. Instrum. Methods Phys. Res. Sect. B 2004, 216, 1–8. [Google Scholar] [CrossRef]
- Toulemonde, M.; Surdutovich, E.; Solov’yov, A.V. Temperature and pressure spikes in ion-beam cancer therapy. Phys. Rev. E 2009, 80, 031913. [Google Scholar] [CrossRef] [PubMed]
- Buljan, M.; Karlušić, M.; Bogdanović-Radović, I.; Jakšić, M.; Salamon, K.; Bernstorff, S.; Radić, N. Determination of ion track radii in amorphous matrices via formation of nano-clusters by ion-beam irradiation. Appl. Phys. Lett. 2012, 101, 103112. [Google Scholar] [CrossRef]
- Bogdanović-Radović, I.; Buljan, M.; Karlušić, M.; Skukan, N.; Božičević, I.; Jakšić, M.; Radić, N.; Dražić, G.; Bernstorff, S. Conditions for formation of germanium quantum dots in amorphous matrices by MeV ions: Comparison with standard thermal annealing. Phys. Rev. B 2012, 86, 165316. [Google Scholar] [CrossRef]
- Karlušić, M.; Jakšić, M.; Buljan, M.; Sancho-Parramon, J.; Bogdanović-Radović, I.; Radić, N.; Bernstorff, S. Materials modification using ions with energies below 1 MeV/u. Nucl. Instrum. Methods Phys. Res. Sect. B 2013, 317, 143–148. [Google Scholar] [CrossRef]
- Bogdanović Radović, I.; Buljan, M.; Karlušić, M.; Jerčinović, M.; Dražić, G.; Bernstorff, S.; Boettger, R. Modification of semiconductor or metal nanoparticle lattices in amorphous alumina by MeV heavy ions. New J. Phys. 2016, 18, 093032. [Google Scholar] [CrossRef]
- Karlušić, M.; Akcöltekin, S.; Osmani, O.; Monnet, I.; Lebius, H.; Jakšić, M.; Schleberger, M. Energy threshold for the creation of nanodots on SrTiO3 by swift heavy ions. New J. Phys. 2010, 12, 043009. [Google Scholar] [CrossRef]
- Karlušić, M.; Kozubek, R.; Lebius, H.; Ban-d’Etat, B.; Wilhelm, R.A.; Buljan, M.; Siketić, Z.; Scholz, F.; Meisch, T.; Jakšić, M.; et al. Response of GaN to energetic ion irradiation: Conditions for ion track formation. J. Phys. D Appl. Phys. 2015, 48, 325304. [Google Scholar] [CrossRef]
- Ochedowski, O.; Lehtinen, O.; Kaiser, U.; Turchanin, A.; Ban-d’Etat, B.; Lebius, H.; Karlušić, M.; Jakšić, M.; Schleberger, M. Nanostructuring graphene by dense electronic excitation. Nanotechnology 2015, 26, 465302. [Google Scholar] [CrossRef] [PubMed]
- Karlušić, M.; Bernstorff, S.; Siketić, Z.; Šantić, B.; Bogdanović-Radović, I.; Jakšić, M.; Schleberger, M.; Buljan, M. Formation of swift heavy ion tracks on a rutile TiO2 (001) surface. J. Appl. Crystallogr. 2016, 49, 1704–1712. [Google Scholar] [CrossRef] [PubMed]
- Vázques, H.; Åhlgren, E.H.; Ochedowski, O.; Leino, A.A.; Mirzayev, R.; Kozubek, R.; Lebius, H.; Karlušić, M.; Jakšić, M.; Krasheninnikov, A.V.; et al. Creating nanoporous graphene with swift heavy ions. Carbon 2017, 114, 511–518. [Google Scholar] [CrossRef]
- Karlušić, M.; Jakšić, M.; Lebius, H.; Ban-d’Etat, B.; Wilhelm, R.A.; Heller, R.; Schleberger, M. Swift heavy ion track formation in SrTiO3 and TiO2 under random, channeling and near-channeling conditions. J. Phys. D 2017, 50, 205302. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The stopping and range of ions in matterc (2010). Nucl. Instrum. Methods Phys. Res. Sect. B 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Siketić, Z.; Bogdanović-Radović, I.; Jakšić, M.; Popović Hadžija, M.; Hadžija, M. Submicron mass spectrometry imaging of single cells by combined use of mega electron volt time-of-flight secondary ion mass spectrometry and scanning transmission ion microscopy. Appl. Phys. Lett. 2015, 107, 093702. [Google Scholar] [CrossRef]
- Smith, R.W.; Karlušić, M.; Jakšić, M. Single ion hit detection set-up for the Zagreb ion microprobe. Nucl. Instrum. Methods Phys. Res. Sect. B 2012, 277, 140–144. [Google Scholar] [CrossRef]
- Varašanec, M.; Bogdanović-Radović, I.; Pastuović, Ž.; Jakšić, M. Creation of microstructures using heavy ion beam lithography. Nucl. Instrum. Methods Phys. Res. Sect. B 2011, 269, 2413–2416. [Google Scholar] [CrossRef]
- Meftah, A.; Brisard, F.; Costantini, J.M.; Dooryhee, E.; Hage-Ali, M.; Hervieu, M.; Stoquert, J.P.; Studer, F.; Toulemonde, M. Track formation in SiO2 quartz and the thermal-spike mechanism. Phys. Rev. B 1994, 49, 12457. [Google Scholar] [CrossRef]
- Peña-Rodríguez, O.; Manzano-Santamaría, J.; Rivera, A.; García, G.; Olivares, J.; Agulló-López, F. Kinetics of amorphization induced by swift heavy ions in α-quartz. J. Nucl. Mater. 2012, 430, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Ramos, S.M.M.; Canut, B.; Ambri, M.; Bonardi, N.; Pitval, M.; Bernas, H.; Chaumont, J. Defect creation in LiNbO3 irradiated by medium masses ions in the electronic stopping power regime. Radiat. Eff. Defects Solids 1998, 143, 299–309. [Google Scholar] [CrossRef]
- Toulemonde, M.; Ramos, S.M.M.; Bernas, H.; Clerc, C.; Canut, B.; Cahumont, J.; Trautmann, C. MeV gold irradiation induced damage in α-quartz. Nucl. Instrum. Methods Phys. Res. Sect. B 2001, 178, 331–336. [Google Scholar] [CrossRef]
- Rivera, A.; Crespillo, M.L.; Olivares, J.; Sanz, R.; Jensen, J.; Agulló-López, F. On the exciton model for ion-beam damage: The example of TiO2. Nucl. Instrum. Methods Phys. Res. Sect. B 2010, 268, 3122–3126. [Google Scholar] [CrossRef]
- Kimura, K.; Sharma, S.; Popov, A. Fast electron–hole plasma luminescence from track-cores in heavy-ion irradiated wide-band-gap crystals. Nucl. Instrum. Methods Phys. Res. Sect. B 2002, 191, 48–53. [Google Scholar] [CrossRef]
- Gardés, E.; Balanzat, E.; Ban-d’Etat, B.; Cassimi, A.; Durantel, F.; Grygiel, C.; Madi, T.; Monnet, I.; Ramillon, J.M.; Ropars, F.; et al. SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence—Application to luminescence degradation of a fast plastic scintillator. Nucl. Instrum. Methods Phys. Res. Sect. B 2013, 297, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Marković, N.; Siketić, Z.; Cosic, D.; Jung, H.K.; Han, W.-T.; Jakšić, M. Ion beam induced luminescence (IBIL) system for imaging of radiation induced changes in materials. Nucl. Instrum. Methods Phys. Res. Sect. B 2015, 343, 167–172. [Google Scholar] [CrossRef]
- Crespillo, M.L.; Graham, J.T.; Zhang, Y.; Weber, W.J. In-situ luminescence monitoring of ion-induced damage evolution in SiO2 and Al2O3. J. Lumin. 2016, 172, 208–2018. [Google Scholar] [CrossRef]
- Grygiel, C.; Lebius, H.; Bouffard, S.; Quentin, A.; Ramillon, J.M.; Madi, T.; Guillous, S.; Been, T.; Guinement, P.; Lelièvre, D.; et al. Online in situ X-ray diffraction setup for structural modification studies during swift heavy ion irradiation. Rev. Sci. Instrum. 2012, 83, 013902. [Google Scholar] [CrossRef] [PubMed]
- Meinerzhagen, F.; Breuer, L.; Bukowska, H.; Bender, M.; Severin, D.; Herder, M.; Lebius, H.; Schleberger, M.; Wucher, A. A new setup for the investigation of swift heavy ion induced particle emission and surface modifications. Rev. Sci. Instrum. 2016, 87, 013903. [Google Scholar] [CrossRef] [PubMed]
- Dedera, S.; Burchard, M.; Glasmacher, U.A.; Schöppner, N.; Trautmann, C.; Severin, D.; Romanenko, A.; Hubert, C. On-line Raman spectroscopy of calcite and malachite during irradiation with swift heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. B 2015, 365, 564–568. [Google Scholar] [CrossRef]
- Miro, S.; Bordas, E.; Thomé, L.; Constantini, J.-M.; Leprȇtre, F.; Trocellier, P.; Serruys, Y.; Beck, L.; Gosset, D.; Verlet, R.; et al. Monitoring of the microstructure of ion-irradiated nuclear ceramics by in situ Raman spectroscopy. J. Raman Spectrosc. 2015, 47, 476–485. [Google Scholar] [CrossRef]
- Kalfaoui, N.; Görlich, M.; Müller, C.; Schleberger, M.; Lebius, H. Latent tracks in CaF2 studied with atomic force microscopy in air and in vacuum. Nucl. Instrum. Methods Phys. Res. Sect. B 2006, 245, 246–249. [Google Scholar] [CrossRef]
- Gruber, E.; Salou, P.; Bergen, L.; El Kharrazi, M.; Lattouf, E.; Grygiel, C.; Wang, Y.; Benyagoub, A.; Levavasseur, D.; Rangama, J.; et al. Swift heavy ion irradiation of CaF2—From grooves to hillocks in a single ion track. J. Phys. Condens. Matter 2016, 28, 405001. [Google Scholar] [CrossRef] [PubMed]
- Osmani, O.; Alzaher, I.; Peters, T.; Ban-d’Etat, B.; Cassimi, A.; Lebius, H.; Monnet, I.; Medvedev, N.; Rethfeld, B.; Schleberger, M. Damage in crystalline silicon by swift heavy ion irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B 2012, 282, 43–47. [Google Scholar] [CrossRef]
- Ochedowski, O.; Akcöltekin, S.; Ban-d’Etat, B.; Lebius, H.; Schleberger, M. Detecting swift heavy ion irradiation effects with graphene. Nucl. Instrum. Methods Phys. Res. Sect. B 2013, 314, 18–20. [Google Scholar] [CrossRef]
- Madauß, L.; Ochedowski, O.; Lebius, H.; Ban-d’Etat, B.; Naylor, C.H.; Johnson, A.T.C.; Kotakoski, J.; Schleberger, M. Defect engineering of single- and few-layer MoS2 by swift heavy ion irradiation. 2D Mater. 2017, 4, 015034. [Google Scholar] [CrossRef]
- Zeng, J.; Liu, J.; Yao, H.J.; Zhai, P.F.; Zhang, S.X.; Guo, H.; Hu, P.P.; Duan, J.L.; Mo, D.; Hou, M.D.; et al. Comparative study of irradiation effects in graphite and graphene induced by swift heavy ions and highly charged ions. Carbon 2016, 100, 16–26. [Google Scholar] [CrossRef]
- Madauß, L.; Schumacher, J.; Ghosh, M.; Ochedowski, O.; Meyer, J.; Lebius, H.; Ban-d’Etat, B.; Toimil-Molares, M.E.; Trautmann, C.; Lammertink, R.G.H.; et al. Fabrication of nanoporous graphene/polymer composite membranes. Nanoscale 2017, 9, 10487–10493. [Google Scholar] [CrossRef] [PubMed]
- Jakšić, M.; Bogdanović-Radović, I.; Bogovac, M.; Desnica, V.; Fazinić, S.; Karlušić, M.; Medunić, Z.; Muto, H.; Pastuović, Ž.; Siketić, Z.; et al. New capabilities of the Zagreb ion microbeam system. Nucl. Instrum. Methods Phys. Res. Sect. B 2007, 260, 114–118. [Google Scholar] [CrossRef]
- Garcia, G.; Tormo-Márquez, V.; Preda, I.; Peña-Rodríguez, O.; Olivares, J. Structural damage on single-crystal diamond by swift heavy ion irradiation. Diam. Relat. Mater. 2015, 58, 226–229. [Google Scholar] [CrossRef]
- Toulemonde, M.; Balanzat, E.; Bouffard, S.; Grob, J.J.; Hage-Ali, M.; Stoquert, J.P. Damage induced by high electronic stopping power in SiO2 quartz. Nucl. Instrum. Methods Phys. Res. Sect. B 1990, 46, 64–68. [Google Scholar] [CrossRef]
- Steinbach, T.; Schrempel, F.; Gischkat, T.; Wesch, W. Influence of ion energy and ion species on ion channeling in LiNbO3. Phys. Rev. B 2008, 78, 184106. [Google Scholar] [CrossRef]
- Siketić, Z.; Bogdanović-Radović, I.; Jakšić, M. Development of a time-of-flight spectrometer at the Ruder Bošković Institute in Zagreb. Nucl. Instrum. Methods Phys. Res. Sect. B 2008, 266, 1328–1332. [Google Scholar] [CrossRef]
- Siketić, Z.; Bogdanović-Radović, I.; Jakšić, M.; Skukan, N. Time of Flight Elastic Recoil Detection Analysis with a position sensitive detector. Rev. Sci. Instrum. 2010, 81, 033305. [Google Scholar] [CrossRef] [PubMed]
- Arstila, K.; Julin, J.; Laitinen, M.I.; Aalto, J.; Konu, T.; Kärkkäinen, S.; Rahkonen, S.; Raunio, M.; Itkonen, J.; Santanen, J.P.; et al. Potku—New analysis software for heavy ion elastic recoil detection analysis. Nucl. Instrum. Methods Phys. Res. Sect. B 2014, 331, 34–41. [Google Scholar] [CrossRef]
- Horcas, I.; Fernandez, R.; Gomez-Rodriguez, J.M.; Colchero, J.; Baro, A.M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705. [Google Scholar] [CrossRef] [PubMed]
- Fazinić, S.; Božičević-Mihalić, I.; Tadić, T.; Cosic, D.; Jakšić, M.; Mudronja, D. Wavelength dispersive μPIXE setup for the ion microprobe. Nucl. Instrum. Methods Phys. Res. Sect. B 2015, 363, 61–65. [Google Scholar] [CrossRef]
- Božičević-Mihalić, I.; Fazinić, S.; Tadić, T.; Cosic, D.; Jakšić, M. Study of ion beam induced chemical effects in silicon with a downsized high resolution X-ray spectrometer for use with focused ion beams. J. Anal. At. Spectrom. 2016, 31, 2293. [Google Scholar] [CrossRef]
- Vėgh, J. Design principles of the wxEWA spectrum evaluation program for the photoelectron spectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. A 2006, 557, 639–647. [Google Scholar] [CrossRef]
- Rzadkiewicz, J.; Rosmej, O.; Blazevic, A.; Efremov, V.P.; Gojska, A.; Hoffmann, D.H.H.; Korostiy, S.; Polasik, M.; Słabkowska, K.; Volkov, A.E. Studies of the Kα X-ray spectra of low-density SiO2 aerogel induced by Ca projectiles for different penetration depths. High Energy Density Phys. 2007, 3, 233–236. [Google Scholar] [CrossRef]
- Rzadkiewicz, J.; Gojska, A.; Rosmej, O.; Polasik, M.; Słabkowska, K. Interpretation of the Si Kα X-ray spectra accompanying the stopping of swift Ca ions in low-density SiO2 aerogel. Phys. Rev. A 2010, 82, 012703. [Google Scholar] [CrossRef]
- Jensen, J.; Dunlop, A.; Della-Negra, S. Tracks induced in CaF2 by MeV cluster irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B 1998, 141, 753–762. [Google Scholar] [CrossRef]
- Jensen, J.; Dunlop, A.; Della-Negra, S. Microscopic observations of metallic inclusions generated along the path of MeV clusters in CaF2. Nucl. Instrum. Methods Phys. Res. Sect. B 1998, 146, 399–404. [Google Scholar] [CrossRef]
- Avasthi, D.K.; Assmann, W. ERDA with swift heavy ions for materials characterization. Curr. Sci. 2001, 80, 1532–1541. [Google Scholar]
- Arnoldbik, W.M.; Zeijlmans van Emmichoven, P.A.; Habraken, F.H.P.M. Electronic Sputtering of Silicon Suboxide Films by Swift Heavy Ions. Phys. Rev. Lett. 2005, 94, 245504. [Google Scholar] [CrossRef]
- Jensen, J.; Martin, D.; Surpi, A.; Kubart, T. ERD analysis and modification of TiO2 thin films with heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. B 2010, 268, 1893–1898. [Google Scholar] [CrossRef]
- Toulemonde, M.; Assmann, W.; Trautmann, C. Electronic sputtering of vitreous SiO2: Experimental and modeling results. Nucl. Instrum. Methods Phys. Res. B 2016, 379, 2–8. [Google Scholar] [CrossRef]
Sample | Atomic Concentration (%) | Density (g/cm3) | Analyzed Depth (nm) | Depth Resolution (nm) |
---|---|---|---|---|
quartz SiO2 | O: (67 ± 4) Si: (32 ± 2) | 2.65 | ~10 | ~2.5 |
amorphous SiO2 | O: (67 ± 4) Si: (32 ± 2) | 2.2 | ~12 | ~3 |
muscovite mica | H: (2.6 ± 0.2) C: (1.6 ± 0.1) O: (58 ± 3) Na: (0.67 ± 0.06) Mg: (0.86 ± 0.07) Al: (16 ± 1) Si: (14 ± 1) K: (4.6 ± 0.3) Fe: (1.3 ± 0.1) | 2.82 | ~10 | ~2.5 |
SrTiO3 | O: (60 ± 3) Ti: (21 ± 1) Sr: (19 ± 2) | 5.1 | ~3.8 | ~1.4 |
Ion Beam | L0 | L1 | L2 | L3 | L4 | L5 |
---|---|---|---|---|---|---|
6 MeV O3+ | 1.68 ± 0.12 | 13.21 ± 0.41 | 32.65 ± 0.72 | 31.17 ± 0.75 | 16.4 ± 0.3 | 4.90 ± 0.29 |
12 MeV O4+ | 1.56 ± 0.11 | 11.44 ± 0.27 | 30.41 ± 0.56 | 30.26 ± 0.39 | 18.45 ± 0.29 | 7.89 ± 0.19 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karlušić, M.; Fazinić, S.; Siketić, Z.; Tadić, T.; Cosic, D.D.; Božičević-Mihalić, I.; Zamboni, I.; Jakšić, M.; Schleberger, M. Monitoring Ion Track Formation Using In Situ RBS/c, ToF-ERDA, and HR-PIXE. Materials 2017, 10, 1041. https://doi.org/10.3390/ma10091041
Karlušić M, Fazinić S, Siketić Z, Tadić T, Cosic DD, Božičević-Mihalić I, Zamboni I, Jakšić M, Schleberger M. Monitoring Ion Track Formation Using In Situ RBS/c, ToF-ERDA, and HR-PIXE. Materials. 2017; 10(9):1041. https://doi.org/10.3390/ma10091041
Chicago/Turabian StyleKarlušić, Marko, Stjepko Fazinić, Zdravko Siketić, Tonči Tadić, Donny Domagoj Cosic, Iva Božičević-Mihalić, Ivana Zamboni, Milko Jakšić, and Marika Schleberger. 2017. "Monitoring Ion Track Formation Using In Situ RBS/c, ToF-ERDA, and HR-PIXE" Materials 10, no. 9: 1041. https://doi.org/10.3390/ma10091041
APA StyleKarlušić, M., Fazinić, S., Siketić, Z., Tadić, T., Cosic, D. D., Božičević-Mihalić, I., Zamboni, I., Jakšić, M., & Schleberger, M. (2017). Monitoring Ion Track Formation Using In Situ RBS/c, ToF-ERDA, and HR-PIXE. Materials, 10(9), 1041. https://doi.org/10.3390/ma10091041