Loading Graphene Quantum Dots into Optical-Magneto Nanoparticles for Real-Time Tracking In Vivo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Characterization
2.2. Cell Toxicity
2.3. In Vivo Tracking
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: Globocan Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. Ca A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhao, X.; Yan, H.; Kang, F.; Li, Z.; Qiao, Y.; Li, D. A Cross-Talk Egfr/Vegfr-Targeted Bispecific Nanoprobe for Magnetic Resonance/Near-Infrared Fluorescence Imaging of Colorectal Cancer. Mrs Commun. 2018, 8, 1008–1017. [Google Scholar] [CrossRef]
- Yan, H.; Zhao, L.; Shang, W.; Liu, Z.; Xie, W.; Qiang, C.; Xiong, Z.; Zhang, R.; Li, B.; Sun, X.; et al. General Synthesis of High-Performing Magneto-Conjugated Polymer Core-Shell Nanoparticles for Multifunctional Theranostics. Nano Res. 2017, 10, 704–717. [Google Scholar] [CrossRef]
- Wang, C.; Xu, H.; Liang, C.; Liu, Y.; Li, Z.; Yang, G.; Cheng, L.; Li, Y.; Liu, Z. Iron Oxide @ Polypyrrole Nanoparticles as a Multifunctional Drug Carrier for Remotely Controlled Cancer Therapy with Snergistic Antitumor Effect. Acs Nano 2013, 7, 6782–6795. [Google Scholar] [CrossRef] [PubMed]
- Ogata, G.; Ishii, Y.; Asai, K.; Sano, Y.; Nin, F.; Yoshida, T.; Higuchi, T.; Sawamura, S.; Ota, T.; Hori, K.; et al. AMicrosensing System for the in vivo Real-Time Detection of Local Drug Kinetics. Nat. Biomed. Eng. 2017, 1, 654–666. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Wei, Z.; Song, C.; Tang, C.; Han, W.; Dong, X. Optical Nano-Agents in the Second Near-Infrared Window for Biomedical Applications. Chem. Soc. Rev. 2019, 48, 22–37. [Google Scholar] [CrossRef] [PubMed]
- Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum Dots Versus Organic Dyes as Fluorescent Labels. Nat. Methods 2008, 5, 763–775. [Google Scholar] [CrossRef]
- Wang, J.; Qiu, J. A Review of Organic Nanomaterials in Photothermal Cancer Therapy. Cancer Res. Front. 2016, 2, 67–84. [Google Scholar] [CrossRef]
- Ponomarenko, L.A.; Schedin, F.; Katsnelson, M.I.; Yang, R.; Hill, E.W.; Novoselov, K.S.; Geim, A.K. Chaotic Dirac Billiard in Graphene Quantum Dots. Science 2008, 320, 356–358. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Wu, D.; Feng, X.; Mullen, K. Bottom-Up Fabrication of Photoluminescent Graphene Quantum Dots with Uniform Morphology. J. Am. Chem. Soc. 2011, 133, 15221–15223. [Google Scholar] [CrossRef]
- Yan, Y.; Gong, J.; Chen, J.; Zeng, Z.; Huang, W.; Pu, K.; Liu, J.; Chen, P. Recent Advances on Graphene Quantum Dots: From Chemistry and Physics to Applications. Adv. Mater. 2019, 31, 1808283. [Google Scholar] [CrossRef]
- Tabish, T.A.; Scotton, C.J.; J Ferguson, D.C.; Lin, L.; der Veen, A.V.; Lowry, S.; Ali, M.; Jabeen, F.; Ali, M.; Winyard, P.G.; et al. Biocompatibility and Toxicity of Graphene Quantum Dots for Potential Application in Photodynamic Therapy. Nanomedicine 2018, 13, 1923–1937. [Google Scholar] [CrossRef] [PubMed]
- Saquib, Q.; Faisal, M.; Al-Khedhairy, A.A.; Alatar, A.A. Cellular and Molecular Toxicology of Nanoparticles; Springer: Cham, Switzerland, 2018; Volume 1048. [Google Scholar]
- Iannazzo, D.; Pistone, A.; Celesti, C.; Triolo, C.; Patané, S.; Giofré, S.; Romeo, R.; Ziccarelli, I.; Mancuso, R.; Gabriele, B.; et al. A Smart Nanovector for Cancer Targeted Drug Delivery Based on Graphene Quantum Dots. Nanomaterials 2019, 9, 282. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wei, C.; Li, Y.; Yu, D. Shining Luminescent Graphene Quantum Dots: Synthesis, Physicochemical Properties, and Biomedical Applications. Trac Trends Anal. Chem. 2019, 116, 109–121. [Google Scholar] [CrossRef]
- Şenel, B.; Demir, N.; Büyükköroğlu, G.; Yıldız, M. Graphene Quantum Dots: Synthesis, Characterization, Cell Viability, Genotoxicity for Biomedical Applications. Saudi Pharm. J. 2019. [Google Scholar] [CrossRef]
- Chen, T.; Yu, H.; Yang, N.; Wang, M.; Ding, C.; Fu, J. Graphene Quantum Dot-Capped Mesoporous Silica Nanoparticles through an Acid-Cleavable Acetal Bond for Intracellular Drug Delivery and Imaging. J. Mater. Chem. B 2014, 2, 4979. [Google Scholar] [CrossRef]
- Su, X.; Chan, C.; Shi, J.; Tsang, M.; Pan, Y.; Cheng, C.; Gerile, O.; Yang, M. A Graphene Quantum Dot@Fe3O4@SiO2 Based Nanoprobe for Drug Delivery Sensing and Dual-Modal Fluorescence and Mri Imaging in Cancer Cells. Biosens. Bioelectron. 2017, 92, 489–495. [Google Scholar] [CrossRef]
- Wang, X.; Sun, X.; Lao, J.; He, H.; Cheng, T.; Wang, M.; Wang, S.; Huang, F. Multifunctional Graphene Quantum Dots for Simultaneous Targeted Cellular Imaging and Drug Delivery. Colloids Surf. B Biointerfaces 2014, 122, 638–644. [Google Scholar] [CrossRef]
- Tian, Q.; Wang, Q.; Yao, K.X.; Teng, B.; Zhang, J.; Yang, S.; Han, Y. Multifunctional Polypyrrole@Fe3O4 Nanoparticles for Dual-Modal Imaging and In Vivo Photothermal Cancer Therapy. Small 2014, 10, 1063–1068. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Xu, T.; Liao, H.; Yao, C.; Liu, Y.; Li, Z.; Chen, Z.; Pan, D.; Sun, L.; et al. Gram-Scale Synthesis of Single-Crystalline Graphene Quantum Dots with Superior Optical Properties. Nat. Commun. 2014, 5, 5357. [Google Scholar] [CrossRef]
- Feng, W.; Zhou, X.; Nie, W.; Chen, L.; Qiu, K.; Zhang, Y.; He, C. Au/Polypyrrole@Fe3O4 Nanocomposites for Mr/Ct Dual-Modal Imaging Guided-Photothermal Therapy: An in vitro Study. ACS Appl. Mater. Inter. 2015, 7, 4354–4367. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Shang, W.; Sun, X.; Zhao, L.; Wang, J.; Xiong, Z.; Yuan, J.; Zhang, R.; Huang, Q.; Wang, K.; et al. “All-in-One” Nanoparticles for Trimodality Imaging-Guided Intracellular Photo-Magnetic Hyperthermia Therapy Under Intravenous Administration. Adv. Funct. Mater. 2018, 28, 1705710. [Google Scholar] [CrossRef]
- Yao, W.; Ni, T.; Chen, S.; Li, H.; Lu, Y. Graphene/Fe3O4@Polypyrrole Nanocomposites as a Synergistic Adsorbent for Cr(Vi) Ion Removal. Compos. Sci. Technol. 2014, 99, 15–22. [Google Scholar] [CrossRef]
- Wang, J.; Yan, H.; Liu, Z.; Wang, Z.; Gao, H.; Zhang, Z.; Wang, B.; Xu, N.; Zhang, S.; Liu, X. Langmuir–Blodgett Self-Assembly of Ultrathin Graphene Quantum Dot Films with Modulated Optical Properties. Nanoscale 2018, 10, 19612–19620. [Google Scholar] [CrossRef] [PubMed]
- Iannazzo, D.; Ziccarelli, I.; Pistone, A. Graphene Quantum Dots: Multifunctional Nanoplatforms for Anticancer Therapy. J. Mater. Chem. B 2017, 5, 6471–6489. [Google Scholar] [CrossRef]
- Bacon, M.; Bradley, S.J.; Nann, T. Graphene Quantum Dots. Part. Part. Syst. Charact. 2014, 31, 415–428. [Google Scholar] [CrossRef]
- Chong, Y.; Ma, Y.; Shen, H.; Tu, X.; Zhou, X.; Xu, J.; Dai, J.; Fan, S.; Zhang, Z. The In Vitro and In Vitro Toxicity of Graphene Quantum Dots. Biomaterials 2014, 35, 5041–5048. [Google Scholar] [CrossRef]
- Han, Z.; Shang, W.; Liang, X.; Yan, H.; Hu, M.; Peng, L.; Jiang, H.; Fang, C.; Wang, K.; Tian, J. An Innovation for Treating Orthotopic Pancreatic Cancer by Preoperative Screening and Imaging-Guided Surgery. Mol. Imaging Biol. 2019, 21, 67–77. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xu, N.; He, Y.; Wang, J.; Wang, D.; Gao, Q.; Xie, S.; Li, Y.; Zhang, R.; Cai, Q. Loading Graphene Quantum Dots into Optical-Magneto Nanoparticles for Real-Time Tracking In Vivo. Materials 2019, 12, 2191. https://doi.org/10.3390/ma12132191
Wang Y, Xu N, He Y, Wang J, Wang D, Gao Q, Xie S, Li Y, Zhang R, Cai Q. Loading Graphene Quantum Dots into Optical-Magneto Nanoparticles for Real-Time Tracking In Vivo. Materials. 2019; 12(13):2191. https://doi.org/10.3390/ma12132191
Chicago/Turabian StyleWang, Yu, Nan Xu, Yongkai He, Jingyun Wang, Dan Wang, Qin Gao, Siyu Xie, Yage Li, Ranran Zhang, and Qiang Cai. 2019. "Loading Graphene Quantum Dots into Optical-Magneto Nanoparticles for Real-Time Tracking In Vivo" Materials 12, no. 13: 2191. https://doi.org/10.3390/ma12132191
APA StyleWang, Y., Xu, N., He, Y., Wang, J., Wang, D., Gao, Q., Xie, S., Li, Y., Zhang, R., & Cai, Q. (2019). Loading Graphene Quantum Dots into Optical-Magneto Nanoparticles for Real-Time Tracking In Vivo. Materials, 12(13), 2191. https://doi.org/10.3390/ma12132191