Emission Enhancement of Cu-Doped InP Quantum Dots through Double Shelling Scheme
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of InP:Cu and InP:Cu/ZnSe/ZnS QDs
2.2. Preparation of ZnMgO Nanoparticles (NPs)
2.3. Fabrication of QLEDs
2.4. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, Y.; Chen, O.; Angerhofer, A.; Cao, Y.C. On Doping CdS/ZnS Core/Shell Nanocrystals with Mn. J. Am. Chem. Soc. 2008, 130, 15649–15661. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Holloway, P.H. Electroluminescence from Hybrid Conjugated Polymer-CdS:Mn/ZnS Core/Shell Nanocrystals Devices. J. Phys. Chem. B 2003, 107, 9705–9710. [Google Scholar] [CrossRef]
- White, M.A.; Weaver, A.L.; Beaulac, R.; Gamelin, D.R. Electrochemically Controlled Auger Quenching of Mn2+ Photoluminescence in Doped Semiconductor Nanocrystals. ACS Nano 2011, 5, 4158–4168. [Google Scholar] [CrossRef] [PubMed]
- Norris, D.J.; Yao, N.; Charnock, F.T.; Kennedy, T.A. High-Quality Manganese-Doped ZnSe Nanocrystals. Nano Lett. 2001, 1, 3–7. [Google Scholar] [CrossRef]
- Pradhan, N.; Peng, X. Efficient and Color-Tunable Mn-Doped ZnSe Nanocrystal Emitters: Control of Optical Performance via Greener Synthetic Chemistry. J. Am. Chem. Soc. 2007, 129, 3339–3347. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, N.; Battaglia, D.M.; Liu, Y.; Peng, X. Efficient, Stable, Small, and Water-Soluble Doped ZnSe Nanocrystal Emitters as Non-Cadmium Biomedical Labels. Nano Lett. 2007, 7, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Vlaskin, V.A.; Janssen, N.; Rijssel, J.V.; Beaulac, R.; Gamelin, D.R. Tunable Dual Emission in Doped Semiconductor Nanocrystals. Nano Lett. 2010, 10, 3670–3674. [Google Scholar] [CrossRef]
- Rath, A.K.; Bhaumik, S.; Pal, A.J. Mn-Doped Nanocrystals in Light-Emitting Diodes: Energy-Transfer to Obtain Electroluminescence from Quantum Dots. Appl. Phys. Lett. 2010, 97, 113502. [Google Scholar] [CrossRef]
- Zheng, J.; Gao, F.; Wei, G.; Yang, W. Enhanced Photoluminescence of Water-Soluble Mn-Doped ZnS Quantum Dots by Thiol Ligand Exchange. Chem. Phys. Lett. 2012, 519–520, 73–77. [Google Scholar] [CrossRef]
- Pradhan, N.; Goorskey, D.; Thessing, J.; Peng, X. An Alternative of CdSe Nanocrystal Emitters: Pure and Tunable Impurity Emissions in ZnSe Nanocrystals. J. Am. Chem. Soc. 2005, 127, 17586–17587. [Google Scholar] [CrossRef]
- Stouwdam, J.W.; Janssen, R.A.J. Electroluminescent Cu-Doped CdS Quantum Dots. Adv. Mater. 2009, 21, 2916–2920. [Google Scholar] [CrossRef]
- Srivastava, B.B.; Jana, S.; Pradhan, N. Doping Cu in Semiconductor Nanocrystals: Some Old and Some New Physical Insights. J. Am. Chem. Soc. 2011, 133, 1007–1015. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Huang, L.; Li, S.; Pan, D. Aqueous Synthesis of Glutathione-Capped Cu+ and Ag+-Doped ZnxCd1-xS Quantum Dots with Full Color Emission. J. Mater. Chem. C 2013, 1, 751–756. [Google Scholar] [CrossRef]
- Liu, M.; Yao, W.; Li, C.; Wu, Z.; Li, L. Tuning Emission and Stokes Shift of CdS Quantum Dots via Copper and Indium Co-Doping. RSC Adv. 2015, 5, 628–634. [Google Scholar] [CrossRef]
- Knowles, K.E.; Hartstein, K.H.; Kilburn, T.B.; Marchioro, A.; Nelson, H.D.; Whitham, P.J.; Gamelin, D.R. Luminescent Colloidal Semiconductor Nanocrystals Containing Copper: Synthesis, Photophysics, and Applications. Chem. Rev. 2016, 116, 10820–10851. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.; Lee, W.; Bang, G.; Lee, W.J.; Park, Y.; Kwon, Y.; Jung, Y.; Kim, S.; Bang, J. Synthesis of Far-Red- and Near-Infrared-Emitting Cu-doped InP/ZnS (Core/Shell) Quantum Dots with Controlled Doping Steps and Their Surface Functionalization for Bioconjugation. Nanoscale 2019, 11, 10463–10471. [Google Scholar] [CrossRef] [PubMed]
- Mei, S.; Wei, X.; Yang, D.; Su, D.; Yang, W.; Zhang, G.; Hu, Z.; Yang, B.; Dai, H.; Xie, F.; et al. Color-Tunable Optical Properties of Cadmium-Free Transition Metal Ions Doped InP/ZnS Quantum Dots. J. Lumin. 2019, 212, 264–270. [Google Scholar] [CrossRef]
- Xie, R.; Peng, X. Synthesis of Cu-Doped InP Nanocrystals (D-Dots) with ZnSe Diffusion Barrier as Efficient and Color-Tunable NIR Emitters. J. Am. Chem. Soc. 2009, 131, 10645–10651. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, D.; Li, D.; Huang, K.; Zhang, Y.; Shi, Z.; Xie, R.; Han, M.Y.; Wang, Y.; Yang, W. Dual Emissive Cu:InP/ZnS/InP/ZnS Nanocrystals: Single-Source “Greener” Emitters with Flexibly Tunable Emission from Visible to Near-Infrared and Their Application in White Light-Emitting Diodes. Chem. Mater. 2015, 27, 1405–1411. [Google Scholar] [CrossRef]
- Park, J.P.; Lee, J.J.; Kim, S.W. Highly Luminescent InP/GaP/ZnS QDs Emitting in the Entire Color Range via a Heating Up Process. Sci. Rep. 2016, 6, 30094. [Google Scholar] [CrossRef]
- Ramasamy, P.; Kim, N.; Kang, Y.S.; Ramirez, O.; Lee, J.S. Tunable, Bright, and Narrow-Band Luminescence from Colloidal Indium Phosphide Quantum Dots. Chem. Mater. 2017, 29, 6893–6899. [Google Scholar] [CrossRef]
- Kim, Y.; Ham, S.; Jang, H.; Min, J.H.; Chung, H.; Lee, J.; Kim, D.; Jang, E. Bright and Uniform Green Light Emitting InP/ZnSe/ZnS Quantum Dots for Wide Color Gamut Displays. ACS Appl. Nano Mater. 2019, 2, 1496–1504. [Google Scholar] [CrossRef]
- Li, Y.; Hou, X.; Dai, X.; Yao, Z.; Lv, L.; Jin, Y.; Peng, X. Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence. J. Am. Chem. Soc. 2019, 141, 6448–6452. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Hu, N.; Zeng, Z.; Lin, Q.; Zhang, F.; Tang, A.; Jia, Y.; Li, L.S.; Shen, H.; Teng, F.; et al. High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots. Adv. Opt. Mater. 2019, 7, 1801602. [Google Scholar] [CrossRef]
- Cao, F.; Wang, S.; Wang, F.; Wu, Q.; Zhao, D.; Yang, X. A Layer-by-Layer Growth Strategy for Large-Size InP/ZnSe/ZnS Core-Shell Quantum Dots Enabling High-Efficiency Light-Emitting Diodes. Chem. Mater. 2018, 30, 8002–8007. [Google Scholar] [CrossRef]
- Xiang, C.; Koo, W.; Chen, S.; So, F.; Liu, X.; Kong, X.; Wang, Y. Solution Processed Multilayer Cadmium-Free Blue/Violet Emitting Quantum Dots Light Emitting Diodes. Appl. Phys. Lett. 2012, 101, 053303. [Google Scholar] [CrossRef]
- Wang, A.; Shen, H.; Zang, S.; Lin, Q.; Wang, H.; Qian, L.; Niu, J.; Li, L.S. Bright, Efficient, and Color-Stable Violet ZnSe-Based Quantum Dot Light-Emitting Diodes. Nanoscale 2015, 7, 2951–2959. [Google Scholar] [CrossRef]
- Kim, J.H.; Yang, H. High-Efficiency Cu―In―S Quantum-Dot-Light-Emitting Device Exceeding 7%. Chem. Mater. 2016, 28, 6329–6335. [Google Scholar] [CrossRef]
- Chen, B.; Pradhan, N.; Zhong, H. From Large-Scale Synthesis to Lighting Device Applications of Ternary I―III―VI Semiconductor Nanocrystals: Inspiring Greener Material Emitters. J. Phys. Chem. Lett. 2018, 9, 435–445. [Google Scholar] [CrossRef]
- Koh, S.; Eom, T.; Kim, W.D.; Lee, K.; Lee, D.; Lee, Y.K.; Kim, H.; Bae, W.K.; Lee, D.C. Zinc-Phosphorus Complex Working as an Atomic Valve for Colloidal Growth of Monodisperse Indium Phosphide Quantum Dots. Chem. Mater. 2017, 29, 6346–6355. [Google Scholar] [CrossRef]
- Song, W.S.; Lee, H.S.; Lee, J.C.; Jang, D.S.; Choi, Y.; Choi, M.; Yang, H. Amine-Derived Synthetic Approach to Color-Tunable InP/ZnS Quantum Dots with High Fluorescent Qualities. J. Nanpart. Res. 2013, 15, 1750. [Google Scholar] [CrossRef]
- Yang, W.; He, G.; Mei, S.; Zhu, J.; Zhang, W.; Chen, Q.; Zhang, G.; Guo, R. Controllable Synthesis of Dual Emissive Ag:InP/ZnS Quantum Dots with High Fluorescence Quantum Yield. Appl. Surf. Sci. 2017, 423, 686–694. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, D.; Leck, K.S.; Tan, S.T.; Tang, Y.X.; Zhao, J.; Demir, H.V.; Sun, X.W. Full Visible Range Covering InP/ZnS Nanocrystals with High Photometric Performance and Their Application to White Quantum Dot Light-Emitting Diodes. Adv. Mater. 2012, 24, 4180–4185. [Google Scholar] [CrossRef] [PubMed]
- Mutlugun, E.; Hernandez-Martinez, P.L.; Eroglu, C.; Coskun, Y.; Erdem, T.; Sharma, V.K.; Unal, E.; Panda, S.K.; Hickey, S.G.; Gaponik, N.; et al. Large-Area (over 50 cm × 50 cm) Freestanding Films of Colloidal InP/ZnS Quantum Dots. Nano. Lett. 2012, 12, 3986–3993. [Google Scholar] [CrossRef] [PubMed]
- Tessier, M.D.; Dupont, D.; Nolf, K.D.; Roo, J.D.; Hens, Z. Economic and Size-Tunable Synthesis of InP/ZnE (E = S, Se) Colloidal Quantum Dots. Chem. Mater. 2015, 27, 4893–4898. [Google Scholar] [CrossRef]
- Cho, E.; Kim, T.; Choi, S.M.; Jang, H.; Min, K.; Jang, E. Optical Characteristics of the Surface Defects in InP Colloidal Quantum Dots for Highly Efficient Light-Emitting Applications. ACS Appl. Nano Mater. 2018, 1, 7106–7114. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-J.; Jo, J.-H.; Yoon, S.-Y.; Jo, D.-Y.; Kim, H.-S.; Park, B.; Yang, H. Emission Enhancement of Cu-Doped InP Quantum Dots through Double Shelling Scheme. Materials 2019, 12, 2267. https://doi.org/10.3390/ma12142267
Kim H-J, Jo J-H, Yoon S-Y, Jo D-Y, Kim H-S, Park B, Yang H. Emission Enhancement of Cu-Doped InP Quantum Dots through Double Shelling Scheme. Materials. 2019; 12(14):2267. https://doi.org/10.3390/ma12142267
Chicago/Turabian StyleKim, Hwi-Jae, Jung-Ho Jo, Suk-Young Yoon, Dae-Yeon Jo, Hyun-Sik Kim, Byoungnam Park, and Heesun Yang. 2019. "Emission Enhancement of Cu-Doped InP Quantum Dots through Double Shelling Scheme" Materials 12, no. 14: 2267. https://doi.org/10.3390/ma12142267