The Stability of Hydroxyapatite/Poly-L-Lactide Fixation for Unilateral Angle Fracture of the Mandible Assessed Using a Finite Element Analysis Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Three-Dimensional Unilateral Mandibular Angle Fracture Model
2.2. Evaluation of Virtual Masticatory Loading
3. Results
3.1. Stress Distribution for the Titanium Plate and Screw System
3.2. Stress Distribution for the Mg Alloy Plate and Screw System
3.3. Stress Distribution for the PLLA Plate and Screw System
3.4. Stress Distribution for the HA-PLLA Plate and Screw System
3.5. Deformation of the Materials in Masticatory Loading
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Kim, Y.K.; Yeo, H.H.; Lim, S.C. Tissue response to titanium plates: A transmitted electron microscopic study. J. Oral Maxillofac. Surg. 1997, 55, 322–326. [Google Scholar] [CrossRef]
- Champy, M.; Lodde, J.; Schmitt, R.; Jaeger, J.H.; Muster, D. Mandibular osteosynthesis by miniature screwed plates via a buccal approach. J. Maxillofac. Surg. 1978, 6, 14–21. [Google Scholar] [CrossRef]
- Chung, I.H.; Yoo, C.K.; Lee, E.K.; Ihm, J.A.; Park, C.J.; Lim, J.S.; Hwang, K.G. Postoperative stability after sagittal split ramus osteotomies for a mandibular setback with monocortical plate fixation or bicortical screw fixation. J. Oral Maxillofac. Surg. 2008, 66, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Landes, C.; Ballon, A.; Ghanaati, S.; Tran, A.; Sader, R. Treatment of malar and midfacial fractures with osteoconductive forged unsintered hydroxyapatite and poly-L-lactide composite internal fixation devices. J. Oral Maxillofac. Surg. 2014, 72, 1328–1338. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, S.M.; Lee, B.K.; Jeon, J.H.; Kim, M.J. 3D vector analysis of mandibular condyle stability in mandibular setback surgery with bicortical bioabsorbable screw fixation. J. Craniomaxillofac. Surg. 2014, 42, e105–e110. [Google Scholar] [CrossRef]
- Kuhlmann, J.; Bartsch, I.; Willbold, E.; Schunchardt, S.; Holz, O.; Hort, N.; Höche, D.; Heineman, W.R.; Witte, F. Fast escape of hydrogen from gas cavities around corroding magnesium implants. Acta Biomater. 2013, 9, 8714–8721. [Google Scholar] [CrossRef] [Green Version]
- Kraus, T.; Fischerauer, S.F.; Hänzi, A.C.; Uggowitzer, P.J.; Löffler, J.F.; Weinberg, A.M. Magnesium alloys for temporary implants in osteosynthesis: In vivo studies of their degradation and interaction with bone. Acta Biomater. 2012, 8, 1230–1238. [Google Scholar] [CrossRef]
- Landes, C.A.; Ballon, A.; Tran, A.; Ghanaati, S.; Sader, R. Segmental stability in orthognathic surgery: Hydroxyapatite/Poly-l-lactide osteoconductive composite versus titanium miniplate osteosyntheses. J. Craniomaxillofac. Surg. 2014, 42, 930–942. [Google Scholar] [CrossRef]
- Cox, T.; Kohn, M.W.; Impelluso, T. Computerized analysis of resorbable polymer plates and screws for the rigid fixation of mandibular angle fractures. J. Oral Maxillofac. Surg. 2003, 61, 481–487. [Google Scholar] [CrossRef]
- Suzuki, T.; Kawamura, H.; Kasahara, T.; Nagasaka, H. Resorbable poly-L-lactide plates and screws for the treatment of mandibular condylar process fractures: A clinical and radiologic follow-up study. J. Oral Maxillofac. Surg. 2004, 62, 919–924. [Google Scholar] [CrossRef]
- Dorri, M.; Nasser, M.; Oliver, R. Resorbable versus titanium plates for facial fractures. Cochrane Database Syst. Rev. 2009. [Google Scholar] [CrossRef] [PubMed]
- Rameshbabu, N.; Rao, K.P.; Kumar, T.S.S. Acclerated microwave processing of nanocrystalline hydroxyapatite. J. Mater. Sci. 2005, 40, 6319–6323. [Google Scholar] [CrossRef]
- Yasunaga, T.; Matsusue, Y.; Furukawa, T.; Shikinami, Y.; Okuno, M.; Nakamura, T. Bonding behavior of ultrahigh strength unsintered hydroxyapatite particles/poly (l-lactide) composites to surface of tibial cortex in rabbits. J. Biomed. Mater. Res. 1999, 47, 412–419. [Google Scholar] [CrossRef]
- Shikinami, Y.; Matsusue, Y.; Nakamura, T. The complete process of bioresorption and bone replacement using devices made of forged composites of raw hydroxyapatite particles/poly L-lactide (Fu-HA/PLLA). Biomaterials 2005, 26, 5542–5551. [Google Scholar] [CrossRef]
- Lee, J.H.; Han, H.S.; Kim, Y.C.; Lee, J.Y.; Lee, B.K. Stability of biodegradable metal (Mg–Ca–Zn alloy) screws compared with absorbable polymer and titanium screws for sagittal split ramus osteotomy of the mandible using the finite element analysis model. J. Craniomaxillofac. Surg. 2017, 45, 1639–1646. [Google Scholar] [CrossRef]
- Maurer, P.; Holweg, S.; Knoll, W.D.; Schubert, J. Study by finite element method of the mechanical stress of selected biodegradable osteosynthesis screws in sagittal ramus osteotomy. Br. J. Oral Maxillofac. Surg. 2002, 40, 76–83. [Google Scholar] [CrossRef]
- Maurer, P.; Holweg, S.; Schubert, J. Finite-element-analysis of different screw-diameters in the sagittal split osteotomy of the mandible. J. Craniomaxillofac. Surg. 1999, 27, 365–372. [Google Scholar] [CrossRef]
- Choi, J.P.; Baek, S.H.; Choi, J.Y. Evaluation of stress distribution in resorbable screw fixation system: Three-dimensional finite element analysis of mandibular setback surgery with bilateral sagittal split ramus osteotomy. J. Craniofac. Surg. 2010, 21, 1104–1109. [Google Scholar] [CrossRef]
- Harada, K.; Watanabe, M.; Ohkura, K.; Enomoto, S. Measure of bite force and occlusal contact area before and after bilateral sagittal split ramus osteotomy of the mandible using a new pressure-sensitive device: A preliminary report. J. Oral Maxillofac. Surg. 2000, 58, 370–373. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lee, J.W.; Pang, K.M.; Kim, H.E.; Kim, S.M.; Lee, J.H. Biomechanical evaluation of magnesium-based resorbable metallic screw system in a bilateral sagittal split ramus osteotomy model using three-dimensional finite element analysis. J. Oral Maxillofac. Surg. 2014, 72, 402.e1–402.e13. [Google Scholar] [CrossRef]
- Cavuoti, S.; Matarese, G.; Isola, G.; Abdolreza, J.; Femiano, F.; Perillo, L. Combined orthodontic-surgical management of a transmigrated mandibular canine. Angle Orthod. 2016, 86, 681–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perillo, L.; Isola, G.; Esercizio, D.; Iovane, M.; Triolo, G.; Matarese, G. Differences in craniofacial characteristics in Southern Italian children from Naples: A retrospective study by cephalometric analysis. Eur. J. Paediatr. Dent. 2013, 14, 195–198. [Google Scholar] [PubMed]
- Tate, G.S.; Ellis, E., III; Throckmorton, G. Bite forces in patients treated for mandibular angle fractures: Implications for fixation recommendations. J. Oral Maxillofac. Surg. 1994, 52, 734–736. [Google Scholar] [CrossRef]
- Gerlach, K.; Schwarz, A. Bite forces in patients after treatment of mandibular angle fractures with miniplate osteosynthesis according to Champy. Int. J. Oral Maxillofac. Surg. 2002, 31, 345–348. [Google Scholar] [CrossRef]
- Ferrario, V.F.; Sforza, C.; Zanotti, G.; Tartaglia, G.M. Maximal bite forces in healthy young adults as predicted by surface electromyography. J. Dent. 2004, 32, 451–457. [Google Scholar] [CrossRef]
- Misch, C.E.; Qu, Z.; Bidez, M.W. Mechanical properties of trabecular bone in the human mandible: Implications for dental implant treatment planning and surgical placement. J. Oral Maxillofac. Surg. 1999, 57, 700–706. [Google Scholar] [CrossRef]
- Coviello, V.; Dehkhargani, S.Z.; Patini, R.; Cicconetti, A. Surgical ciliated cyst 12 years after Le Fort I maxillary advancement osteotomy: A case report and review of the literature. Oral Surg. 2017, 10, 165–170. [Google Scholar] [CrossRef]
- Haers, P.E.; Suuronen, R.; Lindqvist, C.; Sailer, H. Biodegradable polylactide plates and screws in orthognathic surgery. J. Craniomaxillofac. Surg. 1998, 26, 87–91. [Google Scholar] [CrossRef]
- Kim, D.Y.; Sung, I.Y.; Cho, Y.C.; Park, E.J.; Son, J.H. Bioabsorbable plates versus metal miniplate systems for use in endoscope-assisted open reduction and internal fixation of mandibular subcondylar fractures. J. Craniomaxillofac. Surg. 2018, 46, 413–417. [Google Scholar] [CrossRef]
- Sukegawa, S.; Kanno, T.; Shibata, A.; Takahashi, Y.; Furuki, Y. Clinical evaluation of an unsintered hydroxyapatite/poly-L-lactide osteoconductive composite device for the internal fixation of maxillomandibular fractures. Int. J. Oral Maxillofac. Surg. 2015, 44, e292. [Google Scholar] [CrossRef]
- Søballe, K. Hydroxyapatite ceramic coating for bone implant fixation: Mechanical and histological studies in dogs. Acta Orthop. Scand. Suppl. 1993, 64, 1–58. [Google Scholar] [CrossRef] [PubMed]
- Frost, H.M. From Wolff’s law to the Utah paradigm: Insights about bone physiology and its clinical applications. Anat. Rec. 2001, 262, 398–419. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.E.; Allgöwer, M.; Müller, M.E.; Schneider, R.; Willenegger, H. Manual of Internal Fixation: Techniques Recommended by the AO-ASIF Group; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
Components | Young’s Modulus (MPa) | Poisson’s Ratio |
---|---|---|
Titanium | 96,000 | 0.36 |
Magnesium-alloy | 45,000 | 0.29 |
PLLA (biodegradable) 1 | 3150 | 0.46 |
HA-PLLA 2 | 9701 | 0.317 |
Cortical bone | 15,000 | 0.33 |
Cancellous bone | 1500 | 0.3 |
Components | Cortical Bone | Cancellous Bone | Screw | Plate | ||
---|---|---|---|---|---|---|
PVMS | Tensile Stress | PVMS | Tensile Stress | PVMS | PVMS | |
Titanium | 105.41 | 110.06 | 4.85 | 6.08 | 214.71 | 414.48 |
Mg-alloy | 106.89 | 111.59 | 4.93 | 6.17 | 158.27 | 229.53 |
PLLA | 111.11 | 141.92 | 5.00 | 6.31 | 83.62 | 62.98 |
HA-PLLA | 109.08 | 114.01 | 4.99 | 6.26 | 103.10 | 82.20 |
Masticatory Loading | Titanium (mm) | Mg-Alloy (mm) | PLLA (mm) | HA-PLLA (mm) | ||||
---|---|---|---|---|---|---|---|---|
Screw | Plate | Screw | Plate | Screw | Plate | Screw | Plate | |
132 N | 0.058 | 0.061 | 0.066 | 0.069 | 0.101 | 0.112 | 0.086 | 0.092 |
200 N | 0.073 | 0.077 | 0.081 | 0.085 | 0.136 | 0.152 | 0.109 | 0.117 |
300 N | 0.086 | 0.091 | 0.096 | 0.102 | 0.18 | 0.202 | 0.136 | 0.148 |
400 N | 0.099 | 0.105 | 0.11 | 0.118 | 0.225 | 0.252 | 0.164 | 0.179 |
500 N | 0.109 | 0.116 | 0.124 | 0.133 | 0.277 | 0.307 | 0.19 | 0.208 |
600 N | 0.119 | 0.128 | 0.137 | 0.148 | 0.317 | 0.35 | 0.216 | 0.238 |
700 N | 0.131 | 0.14 | 0.151 | 0.163 | 0.373 | 0.409 | 0.243 | 0.267 |
800 N | 0.143 | 0.154 | 0.166 | 0.179 | 0.422 | 0.459 | 0.269 | 0.296 |
900 N | 0.154 | 0.166 | 0.18 | 0.195 | 0.474 | 0.512 | 0.307 | 0.336 |
1000 N | 0.166 | 0.179 | 0.194 | 0.21 | 0.525 | 0.565 | 0.323 | 0.354 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, B.; Jung, B.T.; Kim, W.H.; Lee, J.-H.; Kim, B.; Lee, J.-H. The Stability of Hydroxyapatite/Poly-L-Lactide Fixation for Unilateral Angle Fracture of the Mandible Assessed Using a Finite Element Analysis Model. Materials 2020, 13, 228. https://doi.org/10.3390/ma13010228
Park B, Jung BT, Kim WH, Lee J-H, Kim B, Lee J-H. The Stability of Hydroxyapatite/Poly-L-Lactide Fixation for Unilateral Angle Fracture of the Mandible Assessed Using a Finite Element Analysis Model. Materials. 2020; 13(1):228. https://doi.org/10.3390/ma13010228
Chicago/Turabian StylePark, Byungho, Bryan Taekyung Jung, Won Hyeon Kim, Jong-Ho Lee, Bongju Kim, and Jee-Ho Lee. 2020. "The Stability of Hydroxyapatite/Poly-L-Lactide Fixation for Unilateral Angle Fracture of the Mandible Assessed Using a Finite Element Analysis Model" Materials 13, no. 1: 228. https://doi.org/10.3390/ma13010228
APA StylePark, B., Jung, B. T., Kim, W. H., Lee, J. -H., Kim, B., & Lee, J. -H. (2020). The Stability of Hydroxyapatite/Poly-L-Lactide Fixation for Unilateral Angle Fracture of the Mandible Assessed Using a Finite Element Analysis Model. Materials, 13(1), 228. https://doi.org/10.3390/ma13010228