Influence of Post-UV/Ozone Treatment of Ultrasonic-Sprayed Zirconium Oxide Dielectric Films for a Low-Temperature Oxide Thin Film Transistor
Abstract
:1. Introduction
Mechanism of UV-Ozone Irradiation
2. Materials and Methods
3. Results and Discussion
3.1. Surface Morphology and Wettability of the ZrOx Gate Dielectric Film
3.2. XPS Characterization of ZrOx Gate Dielectric Film
3.3. Electrical Characterization of ZrOx Capacitor
3.4. TFT Characterization of the Fabricated IGZO-Based Device
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Petti, L.; Münzenrieder, N.; Vogt, C.; Faber, H.; Büthe, L.; Cantarella, G.; Bottacchi, F.; Anthopoulos, T.D.; Tröster, G. Metal Oxide Semiconductor Thin-film Transistors for Flexible Electronics. Appl. Phys. Rev. 2016, 3, 021303. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.X.; Liu, A.; Shan, F.K.; Meng, Y.; Shin, B.C.; Fortunato, E.; Martins, R. High-performance fully amorphous bilayer metal-oxide thin film transistors using ultra-thin solution-processed ZrOx dielectric. Appl. Phys. Lett. 2014, 105, 113509. [Google Scholar] [CrossRef]
- Avasthi, S.; Nagamatsu, K.A.; Jhaveri, J.; McClain, W.E.; Man, G.; Kahn, A.; Schwartz, J.; Wagner, S.; Sturm, J.C. Double-heterojunction Crystalline Silicon Solar Cell Fabricated at 250 °C with 12.9% Efficiency. In Proceedings of the 2014 40th IEEE Photovoltaic Specialist Conference, Denver, CO, USA, 8–13 June 2014; p. 949. [Google Scholar]
- Korotcenkov, G. Metal Oxides for Solid-state Gas Sensors: What Determines Our Choice? Mater. Sci. Eng. B 2007, 139, 1–23. [Google Scholar] [CrossRef]
- Ielmini, D. Resistive Switching Memories Based on Metal Oxides: Mechanisms, Reliability and Scaling. Semicond. Sci. Technol. 2016, 31, 063002. [Google Scholar] [CrossRef]
- Kim, K.M.; Jeong, D.S.; Hwang, C.S. Nanofilamentary Resistive Switching in Binary Oxide System; a Review on the Present Status and Outlook. Nanotechnology 2011, 22, 254002. [Google Scholar] [CrossRef]
- Chang, C.Y.; Huang, W.K.; Wu, J.L.; Chang, Y.C.; Lee, K.T.; Chen, C.T. Room-temperature solution-processed n-doped zirconium oxide cathode buffer layer for efficient and stable organic and hybrid perovskite solar cells. Chem. Mater. 2015, 28, 242–251. [Google Scholar] [CrossRef]
- Yoon, H.J.; Bang, K.S.; Lim, J.W.; Lee, S.Y. Optical properties of zirconium oxide thin films for semi-transparent solar cell applications. J. Mater. Sci. Mater. Electron. 2016, 27, 11358–11365. [Google Scholar] [CrossRef]
- Xiao, D.; He, G.; Sun, Z.; Lv, J.; Jin, P.; Zheng, C.; Liu, M. Microstructure, optical and electrical properties of solution-derived peroxo-zirconium oxide gate dielectrics for CMOS application. Ceram. Int. 2016, 42, 759–766. [Google Scholar] [CrossRef]
- Branquinho, R.; Salgueiro, D.; Santos, L.; Barquinha, P.; Pereira, L.; Martins, R.; Fortunato, E. Aqueous Combustion Synthesis of Aluminum Oxide Thin Films and Application as Gate Dielectric in GZTO Solution-Based TFTs. ACS Appl. Mater. Interfaces 2014, 6, 19592–19599. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, A.; Liu, G.; Jiang, G.; Meng, Y.; Fortunato, E.; Martins, R.; Shan, F. Low-temperature, nontoxic water-induced high-k zirconium oxide dielectrics for low-voltage, high-performance oxide thin-film transistors. J. Mater. Chem. C 2016, 4, 10715–10721. [Google Scholar] [CrossRef]
- Park, J.H.; Yoo, Y.B.; Lee, K.H.; Jang, W.S.; Oh, J.Y.; Chae, S.S.; Baik, H.K. Low-Temperature, High-Performance Solution-Processed Thin-Film Transistors with Peroxo-Zirconium Oxide Dielectric. ACS Appl. Mater. Interfaces 2013, 5, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.G.; Dodabalapur, A. Solution-processed zinc–tin oxide thin-film transistors with low interfacial trap density and improved performance. Appl. Phys. Lett. 2010, 96, 243501. [Google Scholar] [CrossRef]
- Ha, T.J.; Dodabalapur, A. Photo stability of solution-processed low-voltage high mobility zinc-tin-oxide/ZrO2 thin-film transistors for transparent display applications. Appl. Phys. Lett. 2013, 102, 123506. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, S.; Li, A.; Ouyang, J.; Xia, G.; Zhou, J. Universal solution-processed high-k amorphous oxide dielectrics for high-performance organic thin film transistors. RSC Adv. 2014, 4, 14890–14895. [Google Scholar] [CrossRef]
- Oja Acik, I.; Mere, A.; Krunks, M.; Nisumaa, R.; Solterbeck, C.-H.; Es-Souni, M. Structural and electrical characterization of TiO2 films grown by spray pyrolysis. Thin Solid Film. 2006, 515, 674–677. [Google Scholar]
- Juma, A.; OjaAcik, I.; Oluwabi, A.T.; Mere, A.; Mikli, V.; Danilson, M.; Krunks, M. Zirconium doped TiO2 thin films deposited by chemical spray pyrolysis. App. Surf. Sci. 2016, 387, 539–545. [Google Scholar] [CrossRef]
- Oluwabi, A.T.; Juma, A.O.; Oja Acik, I.; Mere, A.; Krunks, M. Effect of Zr doping on the structural and electrical properties of spray deposited TiO2 thin film. Proc. Est. Acad. Sci. 2018, 67, 147–157. [Google Scholar] [CrossRef]
- Oluwabi, A.T.; Oja Acik, I.; Katerski, A.; Mere, A.; Krunks, M. Structural and electrical characterisation of high-k ZrO2 thin films deposited by chemical spray pyrolysis method. Thin Solid Film. 2018, 662, 129–136. [Google Scholar] [CrossRef]
- Morvillo, P.; Diana, R.; Mucci, A.; Bobeica, E.; Ricciardi, R.; Minarina, C. Influence of annealing treatments on solution-processed ZnO film deposited on ITO substrate as electron transport layer for inverted polymer solar cells. Sol. Energy Mater. Sol. Cells 2015, 141, 210–217. [Google Scholar] [CrossRef]
- Banger, K.; Yamashita, Y.; Mori, K.; Peterson, R.; Leedham, T.; Rickard, J.; Sirringhaus, H. Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process. Nat. Mater. 2011, 10, 45–50. [Google Scholar] [CrossRef]
- Rim, Y.S.; Chen, H.; Song, T.B.; Bae, S.H.; Yang, Y. Hexaaqua metal complexes for low-temperature formation of fully metal oxide thin-film transistors. Chem. Mater. 2015, 27, 5808–5812. [Google Scholar] [CrossRef]
- Jeong, W.H.; Kim, D.L.; Kim, H.J. Accelerated formation of metal oxide thin film at 200 C using oxygen supplied by a nitric acid additive and residual organic suction vacuum annealing for thin-film transistor applications. ACS Appl. Mater. Interfaces 2013, 5, 9051–9056. [Google Scholar] [CrossRef] [PubMed]
- Donga, X.; Xia, G.; Zhang, Q.; Li, L.; Gong, H.; Bi, J.; Wang, S. Room-temperature UV-ozone assisted solution process for zirconium oxide films with high dielectric properties. Ceram. Int. 2017, 43, 15205–15213. [Google Scholar] [CrossRef]
- Leppäniemi, J.; Ojanperä, K.; Kololuoma, T.; Huttunen, O.-H.; Dahl, J.; Tuominen, M.; Laukkanen, P.; Majumdar, H.; Alastalo, A. Rapid low-temperature processing of metal-oxide thin film transistors with combined far ultraviolet and thermal annealing. Appl. Phys. Lett. 2014, 105, 113514. [Google Scholar] [CrossRef]
- Wang, B.; Yu, X.; Guo, P.; Huang, W.; Zeng, L.; Zhou, N.; Chi, L.; Bedzyk, M.J.; Chang, R.P.; Marks, T.J. Solution-processed all-oxide transparent high-performance transistors fabricated by spray-combustion synthesis. Adv. Electron. Mater. 2016, 2, 1500427. [Google Scholar] [CrossRef]
- Kim, M.G.; Kanatzidis, M.G.; Facchetti, A.; Marks, T.J. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 2011, 10, 382–388. [Google Scholar] [CrossRef]
- Park, J.H.; Oh, J.Y.; Han, S.W.; Lee, T.I.; Baik, H.K. Low-temperature, solution-processed ZrO2: B thin film: A bifunctional inorganic/organic interfacial glue for flexible thin-film transistors. ACS Appl. Mater. Interfaces 2015, 7, 4494–4503. [Google Scholar] [CrossRef]
- Kim, Y.H.; Heo, J.S.; Kim, T.H.; Park, S.; Yoon, M.H.; Kim, J.; Oh, M.S.; Yi, G.R.; Noh, Y.Y.; Park, S.K. Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films. Nature 2012, 489, 128–132. [Google Scholar] [CrossRef]
- Reyna-Garcia, G.; Garcia-Hipolota, M.; Guzman-Mandoza, J.; Aguilar-Frutis, M.; Falcony, C. Electrical, optical and structural characterization of high-k dielectric ZrO2 thin films deposited by the pyrosol technique. J. Mater. Sci. Mater. Electron. 2004, 15, 439–446. [Google Scholar] [CrossRef]
- Santos, E.R.; Burini, E.C.; Wang, S.H. UV-ozone generation from modified high intensity discharge mercury vapor lamps for treatment of indium tin oxide films. Ozone Sci. Eng. 2012, 34, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Gaspar, D.; Martins, J.; Bahubalindruni, P.; Pereira, L.; Fortunato, E.; Martins, R. Planar Dual-Gate Paper/Oxide Field Effect Transistors as Universal Logic Gates. Adv. Electron. Mater. 2018, 4, 1800423. [Google Scholar] [CrossRef]
- Rudakova, A.V.; Maevskaya, M.V.; Emeline, A.V.; Bahnemann, D.W. Light-Controlled ZrO2 Surface Light-Controlled ZrO2 Surface Hydrophilicity. Sci. Rep. 2016, 6, 34285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patela, U.S.; Patel, K.H.; Chauhan, K.V.; Chawla, A.K.; Rawal, S.K. Investigation of various properties for zirconium oxide films synthesised by sputtering. Proc. Technol. 2016, 23, 336–343. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Soolaman, D.M.; Yu, H.-Z. Controlled Wetting on Electrodeposited Oxide Thin Films: From Hydrophilic to Superhydrophobic. J. Phys. Chem. C 2013, 117, 7736–7743. [Google Scholar] [CrossRef]
- Gromyko, I.; Krunks, M.; Dedova, T.; Katerski, A.; Klauson, D.; Oja Acik, I. Surface properties of sprayed and electrodeposited ZnO rod layers. Appl. Surf. Sci. 2017, 405, 521–528. [Google Scholar] [CrossRef]
- Cabillo, G.; Lillo, L.; Caro, C.; Buono-Core, G.E.; Chornik, B.; Soto, M.A. Structure and optical characterization of photochemically prepared ZrO2 thin films doped with erbium and europium. J. Non-Cryst. Solids 2008, 354, 3919–3928. [Google Scholar] [CrossRef]
- Zhang, N.L.; Song, Z.T.; Wan, Q.; Shen, Q.W.; Lin, C.L. Interfacial and microstructural properties of zirconium oxide thin films prepared directly on silicon. Appl. Surf. Sci. 2002, 202, 126–130. [Google Scholar] [CrossRef]
- Umeda, K.; Miyasako, T.; Sugiyama, A.; Tanaka, A.; Suzuki, M.; Tokumitsu, E.; Shimoda, T. Impact of UV/O3 treatment on solution-processed amorphous InGaZnO4 thin-film. J. Appl. Phys. 2013, 113, 184509. [Google Scholar] [CrossRef]
- Chun, M.; Moon, M.-J.; Park, J.; Kang, Y.-C. Physical and Chemical Investigation of Substrate Temperature Dependence of Zirconium Oxide Films on Si (100). Bull. Korean Chem. Soc. 2009, 30, 2729–2734. [Google Scholar]
- Jiazhen, S.; TaeHyun, H.; Hyun-Mo, L.; KyoungRok, K.; Masato, S.; Junghwan, K.; Hideo, H.; Jin-Seong, P. Amorphous IGZO TFT with High Mobility of ~70 cm2/(Vs) via Vertical Dimension Control Using PEALD. ACS Appl. Mater. Interfaces 2019, 11, 40300–40309. [Google Scholar]
- Islam, R.; Chen, G.; Ramesh, P.; Suh, J.; Fuchigami, N.; Lee, D.; Littau, K.A.; Weiner, K.; Collins, R.T.; Saraswat, K.C. Investigation of the changes in electronic properties of Nickel oxide due to UV/ozone treatment. Appl. Mater. Interfaces 2017, 9, 17201–17207. [Google Scholar] [CrossRef]
- Kumar, A.; Mondal, S.; Koteswara, K.S.R. Low temperature solution processed high-ZrO2 gate dielectrics fornanoelectonics. Appl. Surf. Sci. 2016, 370, 373–379. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Kim, H.; Mclntyre, P.C.; Saraswat, K.C.; Byun, J.-S. Atomic layer deposition of ZrO2 on W for metal-insulator-metal capacitor application. Appl. Phys. Lett. 2003, 82, 2874. [Google Scholar] [CrossRef]
- Fu-Chien, C. A Review on Conduction Mechanisms in Dielectric Films. Adv. Mater. Sci. Eng. 2014, 2014, 578168. [Google Scholar]
- Carlos, E.; Branquinho, R.; Kiazadeh, A.; Barquinha, P.; Martins, R.; Fortunato, E. UV-mediated photochemical treatment for low-temperature oxide based thin film transistor. Appl. Mater. Interfaces 2016, 45, 31100–31108. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Fan, H.; Zhuang, X.; Yu, J. Effect of uv/ozone treatment on polystyrene dielectric and its application on organic field-effect transistors. Nanoscale Res. Lett. 2014, 9, 479. [Google Scholar] [CrossRef] [Green Version]
Treatment Conditions | Binding Energy (eV) | Component Ratios | ||||
---|---|---|---|---|---|---|
Me-O | Vo | Me-OH | OH ads | [Vo]/[Me-O] | [Me-OH]/[Me-O] | |
UVO-0 | 530.1 | 531.3 | 532.0 | 533.4 | 0.65 | 0.94 |
UVO-30 | 530.1 | 531.3 | 532.0 | 533.3 | 0.59 | 1.04 |
UVO-60 | 530.1 | 531.3 | 531.8 | 533.2 | 0.41 | 1.10 |
UVO-120 | 530.1 | 531.4 | 532.8 | 533.2 | 0.38 | 1.22 |
Treatment Conditions | Von (V) | Ion/Ioff | Vth (V) | S (V.dec−1) | µsat. cm2 V−1S−1 | IGS at VGS = 5 V (A) |
---|---|---|---|---|---|---|
As-dep | −2.0 ± 1.0 | ~40 | – | – | ~0.02 | ~3.4 × 10−2 |
30 min | −0.3 ± 0.02 | ~1.0 × 103 | −0.12 ± 0.02 | 0.27 ± 0.02 | 2.9 ± 0.5 | ~7.4 × 10−5 |
60 min | −0.12 ± 0.1 | ~0.4 × 104 | 0.02 ± 0.01 | 0.22 ± 0.01 | 7.0 ± 0.01 | ~2.3 × 10−5 |
120 min | 0.02 ± 0.01 | ~1.0 ×104 | 0.01 ± 0.005 | 0.21 ± 0.01 | 8.4 ± 0.01 | ~3.8 × 10−7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oluwabi, A.T.; Gaspar, D.; Katerski, A.; Mere, A.; Krunks, M.; Pereira, L.; Oja Acik, I. Influence of Post-UV/Ozone Treatment of Ultrasonic-Sprayed Zirconium Oxide Dielectric Films for a Low-Temperature Oxide Thin Film Transistor. Materials 2020, 13, 6. https://doi.org/10.3390/ma13010006
Oluwabi AT, Gaspar D, Katerski A, Mere A, Krunks M, Pereira L, Oja Acik I. Influence of Post-UV/Ozone Treatment of Ultrasonic-Sprayed Zirconium Oxide Dielectric Films for a Low-Temperature Oxide Thin Film Transistor. Materials. 2020; 13(1):6. https://doi.org/10.3390/ma13010006
Chicago/Turabian StyleOluwabi, Abayomi Titilope, Diana Gaspar, Atanas Katerski, Arvo Mere, Malle Krunks, Luis Pereira, and Ilona Oja Acik. 2020. "Influence of Post-UV/Ozone Treatment of Ultrasonic-Sprayed Zirconium Oxide Dielectric Films for a Low-Temperature Oxide Thin Film Transistor" Materials 13, no. 1: 6. https://doi.org/10.3390/ma13010006