Comparison of Gold Nanoparticles Deposition Methods and Their Influence on Electrochemical and Adsorption Properties of Titanium Dioxide Nanotubes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Titanium Dioxide Nanotubes Preparation
2.3. Thermal Modification of Titanium Dioxide Nanotubes
2.4. Modification of TNTs with Gold Nanoparticles
2.4.1. Physical Adsorption Methods (PA)
Direct Adsorption
Soaking at High Temperature
2.4.2. Electrodeposition Methods
Cyclic Voltammetry Method (CV)
Chronoamperometry Method (CA)
2.5. Deposition of BSA onto AuNPs/TNTs
2.6. Characteristics of Morphology, Chemical and Phase Composition of TNTs and AuNPs/TNTs
2.7. Electrochemical Measurements
3. Results
3.1. Characterization of TNTs before and after Micro Gold Layer Deposition
3.2. Characterization of TNTs after Gold Nanoparticle Deposition Using Physical Adsorption Methods
3.3. Characterization of AuNPs/TNTs after AuNPs Deposition Using Cyclic Voltammetry Method
3.4. Characterization of AuNPs/TNTs after Gold Nanoparticles Deposition Using Chronoamperometry Method
3.5. Comparison of the Impact of CV and CA Methods of AuNPs Deposition on the TNTs Characteristics and Protein Adsorption
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Arkusz, K.; Krasicka-Cydzik, E. The effect of phosphates and fluorides, included in TiO2 nanotube layers, on the performance of hydrogen peroxide detection. Arch. Metall. Mater. 2018, 63, 765–772. [Google Scholar]
- Arkusz, K.; Paradowska, E.; Nycz, M.; Krasicka-Cydzik, E. Influence of thermal modification and morphology of TiO2 nanotubes on their electrochemical properties for biosensors applications. J. Nanosci. Nanotechnol. 2018, 18, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Indira, K.; Kamachi, M.U.; Rajendran, N. In vitro bioactivity and corrosion resistance of Zr incorporated TiO2 nanotube arrays for orthopaedic applications. Appl. Surf. Sci. 2014, 316, 264–275. [Google Scholar] [CrossRef]
- Zwilling, V.; Darque-Ceretti, E.; Boutry-Forveille, A.; David, D.; Perrin, M.Y.; Aucouturier, M. Structure and physicochemistry of anodic oxide films on titanium and TA6 V alloy. Surf. Interface Anal. 1999, 27, 629–637. [Google Scholar] [CrossRef]
- Hartmann, P.; Lee, D.K.; Smarsly, B.M.; Janek, J. Mesoporous TiO2: Comparison of classical sol–gel and nanoparticle based photoelectrodes for the water splitting reaction. ACS Nano 2010, 4, 3147–3154. [Google Scholar] [CrossRef] [PubMed]
- Arkusz, K.; Nycz, M.; Paradowska, E. Electrochemical Evaluation of the Compact and Nanotubular Oxide Layer Destruction under Ex Vivo Ti6Al4V ELI Transpedicular Screw Implantation. Materials 2020, 13, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nycz, M.; Paradowska, E.; Arkusz, K.; Pijanowska, D.G. Influence of geometry and annealing temperature in argon atmosphere of TiO2 nanotubes on their electrochemical properties. Acta Bioeng Biomech. 2020, 22, 165–177. [Google Scholar] [CrossRef]
- Varghese, O.K.; Gong, D.; Paulose, M.; Dickey, E. Crystallization and High-Temperature Structural Stability of Titanium Oxide Nanotube Arrays. J. Mater. Res. 2008, 18, 156–165. [Google Scholar] [CrossRef]
- Peng, L.; Mendelsohn, A.D.; LaTempa, T.J.; Yoriya, S.; Grimes, C.A.; Desai, T.A. Long-Term Small Molecule and Protein Elution from TiO2 Nanotubes. Nano Lett. 2009, 9, 1932–1936. [Google Scholar] [CrossRef]
- Goodarzi, S.; Moztarzadeh, M. Titanium dioxide nanotube arrays: A novel approach into periodontal tissue regeneration on the surface of titanium implants. Adv. Mater. Lett. 2016, 7, 209–215. [Google Scholar] [CrossRef]
- Cai, W.; Xu, Q.; Zhao, X.N.; Zhu, J.H.; Chen, H.Y. Porous Gold-Nanoparticle–CaCO3 Hybrid Material: Preparation, Characterization, and Application for Horseradish Peroxidase Assembly and Direct Electrochemistry. Chem. Mater. 2006, 18, 279–284. [Google Scholar] [CrossRef]
- Yu, A.M.; Liang, Z.J.; Cho, J.H.; Caruso, F. Nanostructured Electrochemical Sensor Based on Dense Gold Nanoparticle Films. Nano Lett. 2003, 3, 1203–1207. [Google Scholar] [CrossRef]
- Templeton, A.C.; Wuelfing, W.P.; Murray, R.W. Monolayer-protected cluster molecules. Acc. Chem. Res. 2000, 33, 27–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macak, J.M.; Schmidt-Stein, F.; Schmuki, P. Efficient oxygen reduction on layers of ordered TiO2 nanotubes loaded with Au nanoparticles. Electrochem. Commun. 2007, 9, 1783–1787. [Google Scholar] [CrossRef]
- Elmoula, M.A.; Panaitescu, E.; Phan, M.; Yin, D.; Richter, C.; Lewis, L.H.; Menon, L. Controlled attachment of gold nanoparticles on ordered titania nanotube arrays. J. Mat. Chem. 2009, 19, 4483–4487. [Google Scholar] [CrossRef]
- Hosseini, M.G.; Faraji, M.; Momeni, M.M.; Ershad, S. An innovative electrochemical approach for voltammetric determination of levodopa using gold nanoparticles doped on titanium dioxide nanotubes. Microchim. Acta 2011, 172, 103–108. [Google Scholar] [CrossRef]
- Hosseini, M.G.; Mome, M. Gold particles supported on self-organized nanotubular TiO2 matrix as highly active catalysts for electrochemical oxidation of glucose. J. Solid State Electrochem. 2010, 14, 1109–1115. [Google Scholar] [CrossRef]
- Huang, Q.; Gao, T.; Niu, F.; Chen, D.; Chen, Z.; Qin, L.; Sun, X.; Huang, Y.; Shu, K. Preparation and enhanced visible-light driver photocatalytic properties of Au-loaded TiO2 nanotube arrays. Superlattices Microst. 2014, 75, 890–900. [Google Scholar] [CrossRef]
- Lianghsen, H.; Fong, C.C.; Zhang, X.; Chan, L.L.; Lam, P.K.S.; Chu, P.K.; Wong, K.; Yang, M. Au Nanoparticles decorated TiO2 nanotube arrays as a recyclable sensor for photoenhanced electrochemical detection of bisphenol A. Environ. Sci. Technol. 2016, 50, 4430–4438. [Google Scholar]
- Babu, T.G.S.; Varadarajan, D.; Murugan, G.; Ramachandran, T.; Nair, B.G. Gold nanoparticle–polypyrrole composite modified TiO2 nanotube array electrode for the amperometric sensing of ascorbic acid. J. Appl. Electrochem. 2012, 42, 427–434. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, C.; Gao, J.; Ma, W. Fabrication and characterization of gold nanoparticle-loadedTiO2 nanotube arrays for medical implants. J. Mater. Sci. Mater Med. 2016, 27–31. [Google Scholar] [CrossRef]
- Paradowska, E.; Arkusz, K.; Pijanowska, D.G. The Influence of the Parameters of a Gold Nanoparticle Deposition Method on Titanium Dioxide Nanotubes, Their Electrochemical Response, and Protein Adsorption. Biosensors 2019, 9, 138. [Google Scholar] [CrossRef] [Green Version]
- Alhazmi, H.A. FT-IR Spectroscopy for the Identification of Binding Sites and Measurements of the Binding Interactions of Important Metal Ions with Bovine Serum Albumin. Sci. Pharm. 2019, 87, 5. [Google Scholar] [CrossRef] [Green Version]
- Kopac, T.; Bozgeyik, K.; Flahaut, E. Adsorption and interactions of the bovine serum albumin-double walled carbon nanotube system. J. Mol. Liq. 2018, 252, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Mor, G.K.; Varghese, O.K.; Paulose, M.; Mukherjee, N.; Grimes, C.A. Fabrication of tapered, conical-shaped titania nanotubes. J. Mater. Res. 2003, 11, 2588–2593. [Google Scholar] [CrossRef]
- Albu, S.P.; Tsuchiya, H.; Fujimoto, S.; Schmuki, P. TiO2 nanotubes—Annealing effects on detailed morphology and structure. Eur. J. Inorg. Chem. 2010, 27, 4351–4356. [Google Scholar] [CrossRef]
- Al-Swayih, A. Electrochemical characterization of titanium oxide nanotubes fabricated by anodizing in three kinds of electrolytes. Life Sci. J. 2014, 11, 52–59. [Google Scholar]
- Beamson, G.; Briggs, D. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database. J. Chem. Educ. 1993, 1, 70. [Google Scholar]
- Zhang, Y.G.; Li, J.L.; Yu, Y. Photoelectrocatalytic activity of highly ordered TiO2 nanotube arrays electrode for azo dye degradation. Environ. Sci. Technol. 2007, 41, 6264–6269. [Google Scholar] [CrossRef]
- Rowena, Y.; Siva, K.; Jiaqin, L.; Hark, H.T. Exploiting defects in TiO2 inverse opal for enhanced photoelectrochemical water splitting. Optics Express 2019, 27, 761–773. [Google Scholar]
- Mahmud, A.; Habiballah, A. Synthesis and morphological characterization of gold nanoparticles (AuNPs) supported on anodized titanium oxide (TiO2) nanotubes. Mat. Sci. Forum 2015, 819, 405–410. [Google Scholar]
- Yu, J.; Rance, G.A.; Khlobystov, A.N. Electrostatic interactions for directed assembly of nanostructured materials: Composites of titanium dioxide nanotubes with gold nanoparticles. J. Mat. Chem. 2009, 19, 8928–8935. [Google Scholar] [CrossRef]
- Daniel, M. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.Q.; Qiu, J.; Zhang, F.Q. In-vitro corrosion study of different TiO2 nanotube layers on titanium in solution with serum protein. Coll. Surf. B Biointerfaces 2011, 84, 400–405. [Google Scholar] [CrossRef]
- Monetta, T.; Acquesta, A.; Carangelo, A.; Bellucci, F. TiO2 Nanotubes on Ti Dental Implant. Part 2: EIS Characterization in Hank’s Solution. Metals 2017, 7, 220. [Google Scholar] [CrossRef] [Green Version]
- Vlasova, I.M.; Saletsky, A.M. Study of the denaturation of human serum albumin by sodium dodecyl sulfate using the intrinsic fluorescence of albumin. J. App. Spectrosc. 2009, 76, 536–541. [Google Scholar] [CrossRef]
- Yang, L.; Luo, S.; Su, F.; Xiao, Y.; Chen, Y.; Cai, Q. Carbon-nanotube guiding oriented growth of gold shrubs on TiO2 nanotube arrays. J. Phys. Chem. C 2010, 114, 7694–7699. [Google Scholar] [CrossRef]
- Lockman, Z.; Sreekantan, S.; Ismail, S.; Schmidt-Mende, L.; MacManus-Driscoll, J.L. Influence of Anodisation Voltage on the Dimension of Titania Nanotubes. J. Alloys Compd. 2009, 503, 359–364. [Google Scholar] [CrossRef] [Green Version]
- Radnik, J.; Mohr, C.; Claus, P. On the origin of binding energy shifts of core levels of supported gold nanoparticles and dependence of pretreatment and material synthesis. Phys. Chem. Chem. Phys. 2003, 5, 172–177. [Google Scholar] [CrossRef]
- Brewer, S.H.; Glomm, W.; Johnson, M.; Knag, M.K. Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 2005, 21, 9303–9307. [Google Scholar] [CrossRef]
- Saab, M.; Ahmar, E.; Estephan, E. Biosensing using a simple resistor: The effect of functionalization on sensing devices. J. Sens. 2019, 1–8. [Google Scholar] [CrossRef]
TNT Arrays | Element | C | O | Ti | Au | |||
---|---|---|---|---|---|---|---|---|
Compound | C–C | C–O | O–C=O | MeOx (Lattice) | MeOx (Defective) | TiO2 | Au0 | |
Before annealing | TNTs | 15.8 | 4.9 | 1.2 | 39.2 | 10.6 | 21.3 | 0.0 |
After annealing | TNTs | 16.8 | 4.2 | 1.5 | 47.1 | 8.8 | 21.7 | 0.0 |
Au/TNTs | 22.4 | 6.0 | 5.0 | 12.0 | 20.5 | 0.0 | 28.5 |
Samples | TNTs | 0.1 mM AuNPs /TNTs | 1 mM AuNPs /TNTs | 5 mM AuNPs /TNTs | 10 mM AuNPs /TNTs | Au/TNTs |
---|---|---|---|---|---|---|
AuNPs diameter (nm) | - | 20.3 ± 2.9 | 26.6 ± 4.8 | 99.4 ± 42.4 | 182.3 ± 51.7 | - |
OCP (mV) vs. Ag/AgCl | −47 ± 7.2 | 25 ± 8.6 | 51 ± 2.6 | 93 ± 1.6 | 110 ± 10.8 | 148 ± 23.1 |
Electrical Parameters | TNTs | 0.1 mM AuNPs/ TNTs | 1 mM AuNPs/ TNTs | 5 mM AuNPs/ TNTs | 10 mM AuNPs/ TNTs | Au/TNTs |
---|---|---|---|---|---|---|
Rs (Ω) | 25.1 | 8.59 | 13.45 | 20.10 | 24.01 | 38.2 |
R1 × 103 (Ω) | 6.15 | 4.55 | 7.12 | 16.15 | 21.11 | 4.81 |
C1 × 10−3 (F) | 9.61 | 2.66 | 2.08 | 4.12 | 6.52 | 3.55 |
N1 | 0.97 | 0.98 | 0.98 | 0.96 | 0.96 | 0.91 |
τ = R1C1 (s) | 49.01 | 12.10 | 14.81 | 66.54 | 137.64 | 17.08 |
R2 × 103 (Ω) | 42.10 | 33.70 | 39.91 | 53.01 | 56.01 | 37.02 |
C2 × 10−4 (F) | 2.11 | 4.72 | 4.14 | 3.21 | 3.25 | 1.51 |
N2 | 0.95 | 0.98 | 0.98 | 0.96 | 0.93 | 0.81 |
Χ2 | 0.0073 | 0.0069 | 0.0065 | 0.0044 | 0.0075 | 0.0095 |
Sample | TNTs | 60 s AuNPs/TNTs | 120 s AuNPs/TNTs | 180 s AuNPs/TNTs | 240 s AuNPs/TNTs |
---|---|---|---|---|---|
Height of TNTs (nm) | 1000 ± 10.0 | 980 ± 23.1 | 920 ± 7.1 | 907 ± 5.8 | 823 ± 15.3 |
AuNPs diameter (nm) | – | 36.7 ± 5.9 | 32.9 ± 5.5 | 33.6 ± 3.0 | 36.7 ± 5.6 |
Au (wt%) | – | 1.39 ± 0.19 | 1.48 ± 0.20 | 1.69 ± 0.14 | 2.33 ± 0.30 |
OCP (mV) vs. Ag/AgCl | −47 ± 7.2 | −38.7 ± 3.2 | −17.0 ± 2.6 | −7.5 ± 1.1 | −11.1 ± 6.6 |
Electrical Parameters | TNTs | 60 s AuNPs/TNTs | 120 s AuNPs/TNTs | 180 s AuNPs/TNTs | 240 s AuNPs/TNTs |
---|---|---|---|---|---|
Rs (Ω) | 25.1 | 22.8 | 31.2 | 33.2 | 33.6 |
R1 × 103 (Ω) | 5.2 | 4.7 | 5.4 | 5.6 | 5.8 |
C1 × 10−3 (F) | 9.61 | 3.11 | 0.89 | 0.85 | 0.74 |
N1 | 0.97 | 0.97 | 0.96 | 0.96 | 0.96 |
τ = R1C1 (s) | 49.01 | 14.62 | 4.81 | 4.76 | 4.29 |
R2 × 103 (Ω) | 42.1 | 37.9 | 55.1 | 59.5 | 61.2 |
C2 × 10−4 (F) | 2.11 | 4.30 | 3.12 | 2.92 | 2.88 |
N2 | 0.95 | 0.96 | 0.95 | 0.95 | 0.95 |
Χ2 | 0.0073 | 0.099 | 0.085 | 0.084 | 0.082 |
Samples | Height of TNTs (nm) | Diameter of AuNPs (nm) | OCP (mV) vs. Ag/AgCl |
---|---|---|---|
60 s AuNPs/TNTs 1 mM HAuCl4 | 980 ± 23.1 | 36.7 ± 5.9 | −38.7 ± 3.2 |
60 s AuNPs/TNTs 10 mM HAuCl4 | 763 ± 75.1 | 76.0 ± 3.0 | 63 ± 12.8 |
Samples | Rs (Ω) | R1 (Ω) | C1 (F) | N1 | τ = R1C1 (s) | R2 (Ω) | C2 (F) | N2 | Χ2 |
---|---|---|---|---|---|---|---|---|---|
60 s AuNPs/TNTs 1 mM HAuCl4 | 22.8 | 4.7 × 103 | 3.11 × 10−3 | 0.97 | 14.62 | 37.9 × 103 | 4.30 × 10−4 | 0.96 | 0.099 |
60 s AuNPs/TNTs 10 mM HAuCl4 | 38.1 | 6.1 × 103 | 0.61 × 10−3 | 0.96 | 3.71 | 62.33 × 103 | 2.71 × 10−4 | 0.95 | 0.089 |
Element | C | O | Ti | Au | |||
---|---|---|---|---|---|---|---|
Compound | C–C | C–O | O–C=O | MeOx (Lattice) | MeOx (Defective) | TiO2 | Au |
40 AuNPs/TNTs | 19.1 | 0.8 | 1.4 | 43.6 | 8.0 | 21.0 | 6.1 |
60 s AuNPs/TNTs | 18.9 | 1.4 | 1.6 | 43.4 | 8.8 | 21.4 | 4.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paradowska, E.; Arkusz, K.; Pijanowska, D.G. Comparison of Gold Nanoparticles Deposition Methods and Their Influence on Electrochemical and Adsorption Properties of Titanium Dioxide Nanotubes. Materials 2020, 13, 4269. https://doi.org/10.3390/ma13194269
Paradowska E, Arkusz K, Pijanowska DG. Comparison of Gold Nanoparticles Deposition Methods and Their Influence on Electrochemical and Adsorption Properties of Titanium Dioxide Nanotubes. Materials. 2020; 13(19):4269. https://doi.org/10.3390/ma13194269
Chicago/Turabian StyleParadowska, Ewa, Katarzyna Arkusz, and Dorota G. Pijanowska. 2020. "Comparison of Gold Nanoparticles Deposition Methods and Their Influence on Electrochemical and Adsorption Properties of Titanium Dioxide Nanotubes" Materials 13, no. 19: 4269. https://doi.org/10.3390/ma13194269
APA StyleParadowska, E., Arkusz, K., & Pijanowska, D. G. (2020). Comparison of Gold Nanoparticles Deposition Methods and Their Influence on Electrochemical and Adsorption Properties of Titanium Dioxide Nanotubes. Materials, 13(19), 4269. https://doi.org/10.3390/ma13194269