Role of Stimuli on Liquid Crystalline Defects: From Defect Engineering to Switchable Functional Materials
Abstract
1. Introduction
2. Various Stimuli
2.1. Surface Treatment
2.2. Rubbing
2.3. Geometric Confinement
2.4. Electric Field Application
2.5. Combinational Methods
3. Applications
3.1. Particle Manipulation
3.2. Switchable Electro-Optic Devices
3.3. Microlens Array
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vijayaraghavan, R.K.; Abraham, S.; Rao, D.S.; Prasad, S.K.; Das, S. Light induced generation of stable blue phase in photoresponsive diphenylbutadiene based mesogen. Chem. Commun. 2010, 46, 2796–2798. [Google Scholar] [CrossRef]
- Eelkema, R.; Pollard, M.M.; Vicario, J.; Katsonis, N.; Ramon, B.S.; Bastiaansen, C.W.; Broer, D.J.; Feringa, B.L. Nanomotor rotates microscale objects. Nature 2006, 440, 163. [Google Scholar] [CrossRef]
- Ma, L.-L.; Duan, W.; Tang, M.-J.; Chen, L.-J.; Liang, X.; Lu, Y.-Q.; Hu, W. Light-driven rotation and pitch tuning of self-organized cholesteric gratings formed in a semi-free film. Polymers 2017, 9, 295. [Google Scholar] [CrossRef]
- Gim, M.-J.; Hur, S.-T.; Park, K.-W.; Lee, M.; Choi, S.-W.; Takezoe, H. Photoisomerization-induced stable liquid crystalline cubic blue phase. Chem. Commun. 2012, 48, 9968–9970. [Google Scholar] [CrossRef]
- Schumers, J.M.; Fustin, C.A.; Gohy, J.F. Light-responsive block copolymers. Macromol. Rapid Commun. 2010, 31, 1588–1607. [Google Scholar] [CrossRef]
- Ahn, S.k.; Ware, T.H.; Lee, K.M.; Tondiglia, V.P.; White, T.J. Photoinduced topographical feature development in blueprinted azobenzene-functionalized liquid crystalline elastomers. Adv. Funct. Mater. 2016, 26, 5819–5826. [Google Scholar] [CrossRef]
- Choi, Y.-J.; Yoon, W.-J.; Kim, D.-Y.; Park, M.; Lee, Y.; Jung, D.; Kim, J.-S.; Yu, Y.-T.; Lee, C.-R.; Jeong, K.-U. Stimuli-responsive liquid crystal physical gels based on the hierarchical superstructures of benzene-1, 3, 5-tricarboxamide macrogelators. Polym. Chem. 2017, 8, 1888–1894. [Google Scholar] [CrossRef]
- Park, W.; Ha, T.; Kim, T.-T.; Zep, A.; Ahn, H.; Shin, T.J.; Sim, K.I.; Jung, T.S.; Kim, J.H.; Pociecha, D. Directed self-assembly of a helical nanofilament liquid crystal phase for use as structural color reflectors. NPG Asia Mater. 2019, 11, 1–8. [Google Scholar] [CrossRef]
- Gim, M.-J.; Beller, D.A.; Yoon, D.K. Morphogenesis of liquid crystal topological defects during the nematic-smectic: A phase transition. Nat. Commun. 2017, 8, 1–9. [Google Scholar] [CrossRef]
- Mertens, G.; Wehrspohn, R.; Kitzerow, H.-S.; Matthias, S.; Jamois, C.; Gösele, U. Tunable defect mode in a three-dimensional photonic crystal. Appl. Phys. Lett. 2005, 87, 241108. [Google Scholar] [CrossRef]
- Dhakal, S.; Solis, F.J.; de la Cruz, M.O. Nematic liquid crystals on spherical surfaces: Control of defect configurations by temperature, density, and rod shape. Phys. Rev. E 2012, 86, 011709. [Google Scholar] [CrossRef]
- Shtykov, N.; Palto, S.; Umanskii, B.; Rybakov, D.; Simdyankin, I. Director distribution in field-induced undulated structures of cholesteric liquid crystals. Liq. Cryst. 2018, 45, 1408–1414. [Google Scholar] [CrossRef]
- Sayama, S.; Yoshizawa, A. Achiral H-shaped liquid crystals exhibiting an electric-field-induced chiral nematic phase. J. Mater. Chem. C 2019, 7, 6905–6913. [Google Scholar] [CrossRef]
- Kim, M.; Serra, F. Tunable dynamic topological defect pattern formation in nematic liquid crystals. Adv. Opt. Mater. 2019, 8, 1900991. [Google Scholar] [CrossRef]
- You, R.; Choi, Y.S.; Shin, M.J.; Seo, M.K.; Yoon, D.K. Reconfigurable periodic liquid crystal defect array via modulation of electric field. Adv. Mater. Technol. 2019, 4, 1900454. [Google Scholar] [CrossRef]
- Suh, A.; Ahn, H.; Shin, T.J.; Yoon, D.K. Controllable liquid crystal defect arrays induced by an in-plane electric field and their lithographic applications. J. Mater. Chem. C 2019, 7, 1713–1719. [Google Scholar] [CrossRef]
- Gim, M.J.; Yoon, D.K. Orientation control of smectic liquid crystals via a combination method of topographic patterning and in-plane electric field application for a linearly polarized illuminator. ACS Appl. Mater. Interfaces 2016, 8, 27942–27948. [Google Scholar] [CrossRef]
- Gim, M.J.; Turlapati, S.; Debnath, S.; Rao, N.V.; Yoon, D.K. highly polarized fluorescent illumination using liquid crystal phase. ACS Appl. Mater. Interfaces 2016, 8, 3143–3149. [Google Scholar] [CrossRef]
- Challa, P.; Borshch, V.; Parri, O.; Imrie, C.; Sprunt, S.; Gleeson, J.; Lavrentovich, O.; Jakli, A. Twist-bend nematic liquid crystals in high magnetic fields. Phys. Rev. E 2014, 89, 060501. [Google Scholar] [CrossRef]
- Guillamat, P.; Ignés-Mullol, J.; Sagués, F. Control of active liquid crystals with a magnetic field. Proc. Natl. Acad. Sci. USA 2016, 113, 5498–5502. [Google Scholar] [CrossRef]
- Kimura, F.; Kimura, T.; Tamura, M.; Hirai, A.; Ikuno, M.; Horii, F. Magnetic alignment of the chiral nematic phase of a cellulose microfibril suspension. Langmuir 2005, 21, 2034–2037. [Google Scholar] [CrossRef] [PubMed]
- Barboza, R.; Bortolozzo, U.; Clerc, M.; Residori, S.; Vidal-Henriquez, E. Optical vortex induction via light–matter interaction in liquid-crystal media. Adv. Opt. Photonics 2015, 7, 635–683. [Google Scholar] [CrossRef]
- Brasselet, E. Tunable optical vortex arrays from a single nematic topological defect. Phys. Rev. Lett. 2012, 108, 087801. [Google Scholar] [CrossRef]
- Wei, B.y.; Hu, W.; Ming, Y.; Xu, F.; Rubin, S.; Wang, J.G.; Chigrinov, V.; Lu, Y.Q. Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals. Adv. Mater. 2014, 26, 1590–1595. [Google Scholar] [CrossRef] [PubMed]
- Crawford, G.P.; Eakin, J.N.; Radcliffe, M.D.; Callan-Jones, A.; Pelcovits, R.A. Liquid-crystal diffraction gratings using polarization holography alignment techniques. J. Appl. Phys. 2005, 98, 123102. [Google Scholar] [CrossRef]
- Ryabchun, A.; Bobrovsky, A.; Stumpe, J.; Shibaev, V. Rotatable diffraction gratings based on cholesteric liquid crystals with phototunable helix pitch. Adv. Opt. Mater. 2015, 3, 1273–1279. [Google Scholar] [CrossRef]
- Sun, J.; Srivastava, A.K.; Wang, L.; Chigrinov, V.G.; Kwok, H.S. Optically tunable and rewritable diffraction grating with photoaligned liquid crystals. Opt. Lett. 2013, 38, 2342–2344. [Google Scholar] [CrossRef]
- Yoon, D.K.; Choi, M.C.; Kim, Y.H.; Kim, M.W.; Lavrentovich, O.D.; Jung, H.-T. Internal structure visualization and lithographic use of periodic toroidal holes in liquid crystals. Nat. Mater. 2007, 6, 866–870. [Google Scholar] [CrossRef]
- Kim, D.S.; Honglawan, A.; Kim, K.; Kim, M.H.; Jeong, S.; Yang, S.; Yoon, D.K. Fabrication of periodic nanoparticle clusters using a soft lithographic template. J. Mater. Chem. C 2015, 3, 4598–4602. [Google Scholar] [CrossRef]
- Jeong, H.S.; Kim, Y.H.; Lee, J.S.; Kim, J.H.; Srinivasarao, M.; Jung, H.T. Chiral nematic fluids as masks for lithography. Adv. Mater. 2012, 24, 381–384. [Google Scholar] [CrossRef]
- Yoshida, H.; Asakura, K.; Fukuda, J.; Ozaki, M. Three-dimensional positioning and control of colloidal objects utilizing engineered liquid crystalline defect networks. Nat. Commun. 2015, 6, 1–8. [Google Scholar] [CrossRef]
- Ohzono, T.; Fukuda, J. Zigzag line defects and manipulation of colloids in a nematic liquid crystal in micro-wrinkle grooves. Nat. Commun. 2012, 3, 701. [Google Scholar] [CrossRef]
- Shin, M.J.; Gim, M.J.; Yoon, D.K. Directed self-assembly of topological defects of liquid crystals. Langmuir 2018, 34, 2551–2556. [Google Scholar] [CrossRef]
- Kim, D.S.; Cha, Y.J.; Gim, M.-J.; Yoon, D.K. Fast fabrication of sub-200-nm nanogrooves using liquid crystal material. ACS Appl. Mater. Interfaces 2016, 8, 11851–11856. [Google Scholar] [CrossRef]
- Preusse, R.S.; George, E.R.; Aghvami, S.A.; Otchy, T.M.; Gharbi, M.A. Hierarchical assembly of smectic liquid crystal defects at undulated interfaces. Soft Matter 2020. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S.; Shin, T.J.; Cha, Y.J.; Korblova, E.; Walba, D.M.; Clark, N.A.; Lee, S.B.; Yoon, D.K. Alignment of helical nanofilaments on the surfaces of various self-assembled monolayers. Soft Matter 2013, 9, 6185–6191. [Google Scholar] [CrossRef]
- Bramble, J.; Evans, S.; Henderson, J.; Atherton, T.; Smith, N. Observations of focal conic domains in smectic liquid crystals aligned on patterned self-assembled monolayers. Liq. Cryst. 2007, 34, 1137–1143. [Google Scholar] [CrossRef]
- Lavrentovich, O. Filling of space by flexible smectic layers. Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 1987, 151, 417–424. [Google Scholar] [CrossRef]
- Kleman, M.; Lavrentovich, O.D. Liquids with conics. Liq. Cryst. 2009, 36, 1085–1099. [Google Scholar] [CrossRef]
- Arafune, R.; Sakamoto, K.; Ushioda, S. Correlation between the pretilt angle of liquid crystal and the inclination angle of the polyimide backbone structure. Appl. Phys. Lett. 1997, 71, 2755–2757. [Google Scholar] [CrossRef]
- Seo, D.S.; Kobayashi, S.; Nishikawa, M. Study of the pretilt angle for 5CB on rubbed polyimide films containing trifluoromethyl moiety and analysis of the surface atomic concentration of F/C(%) with an electron spectroscope for chemical analysis. Appl. Phys. Lett. 1992, 61, 2392–2394. [Google Scholar] [CrossRef]
- Van Aerle, N.; Barmentlo, M.; Hollering, R. Effect of rubbing on the molecular orientation within polyimide orienting layers of liquid-crystal displays. J. Appl. Phys. 1993, 74, 3111–3120. [Google Scholar] [CrossRef]
- Uchida, T.; Hirano, M.; Sakai, H. Director orientation of a ferroelectric liquid crystal on substrates with rubbing treatment: The effect of surface anchoring strength. Liq. Cryst. 1989, 5, 1127–1137. [Google Scholar] [CrossRef]
- Ok, J.M.; Kim, Y.H.; Jeong, H.S.; Yoo, H.-W.; Kim, J.H.; Srinivasarao, M.; Jung, H.-T. Control of periodic defect arrays of 8CB (4′-n-octyl-4-cyano-biphenyl) liquid crystals by multi-directional rubbing. Soft Matter 2013, 9, 10135. [Google Scholar] [CrossRef]
- Wu, S.B.; Ma, L.L.; Chen, P.; Cao, H.M.; Ge, S.J.; Yuan, R.; Hu, W.; Lu, Y.Q. Smectic defect engineering enabled by programmable photoalignment. Adv. Opt. Mater. 2020. [Google Scholar] [CrossRef]
- Ma, L.L.; Tang, M.J.; Hu, W.; Cui, Z.Q.; Ge, S.J.; Chen, P.; Chen, L.J.; Qian, H.; Chi, L.F.; Lu, Y.Q. Smectic layer origami via preprogrammed photo-alignment. Adv. Mater. 2017, 29, 1606671. [Google Scholar] [CrossRef]
- Chigrinov, V.; Sun, J.; Wang, X. Photoaligning and photopatterning: New LC technology. Crystals 2020, 10, 323. [Google Scholar] [CrossRef]
- Shteyner, E.A.; Srivastava, A.K.; Chigrinov, V.G.; Kwok, H.-S.; Afanasyev, A.D. Submicron-scale liquid crystal photo-alignment. Soft Matter 2013, 9, 5160–5165. [Google Scholar] [CrossRef]
- Yaroshchuk, O.; Reznikov, Y. Photoalignment of liquid crystals: Basics and current trends. J. Mater. Chem. 2012, 22, 286–300. [Google Scholar] [CrossRef]
- Choi, M.C.; Pfohl, T.; Wen, Z.; Li, Y.; Kim, M.W.; Israelachvili, J.N.; Safinya, C.R. Ordered patterns of liquid crystal toroidal defects by microchannel confinement. Proc. Natl. Acad. Sci. USA 2004, 101, 17340–17344. [Google Scholar] [CrossRef]
- Kim, Y.H.; Yoon, D.K.; Jeong, H.S.; Lavrentovich, O.D.; Jung, H.T. Smectic liquid crystal defects for self-assembling of building blocks and their lithographic applications. Adv. Funct. Mater. 2011, 21, 610–627. [Google Scholar] [CrossRef]
- Shojaei-Zadeh, S.; Anna, S.L. Role of surface anchoring and geometric confinement on focal conic textures in smectic-A liquid crystals. Langmuir 2006, 22, 9986–9993. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, Y.H.; Jeong, H.S.; Youn, E.K.; Jung, H.-T. Highly ordered defect arrays of 8CB (4′-n-octyl-4-cyano-biphenyl) liquid crystal via template-assisted self-assembly. J. Mater. Chem. 2011, 21, 18381. [Google Scholar] [CrossRef]
- Kim, Y.H.; Yoon, D.K.; Choi, M.-C.; Jeong, H.S.; Kim, M.W.; Lavrentovich, O.D.; Jung, H.-T. Confined self-assembly of toric focal conic domains (the effects of confined geometry on the feature size of toric focal conic domains). Langmuir 2009, 25, 1685–1691. [Google Scholar] [CrossRef]
- Kim, Y.H.; Yoon, D.K.; Jung, H.-T. Recent advances in the fabrication of nanotemplates from supramolecular self-organization. J. Mater. Chem. 2009, 19, 9091–9102. [Google Scholar] [CrossRef]
- Darmon, A.; Benzaquen, M.; Čopar, S.; Dauchot, O.; Lopez-Leon, T. Topological defects in cholesteric liquid crystal shells. Soft Matter 2016, 12, 9280–9288. [Google Scholar] [CrossRef]
- Guo, Y.; Afghah, S.; Xiang, J.; Lavrentovich, O.D.; Selinger, R.L.; Wei, Q.-H. Cholesteric liquid crystals in rectangular microchannels: Skyrmions and stripes. Soft Matter 2016, 12, 6312–6320. [Google Scholar] [CrossRef]
- Całus, S.; Busch, M.; Kityk, A.V.; Piecek, W.; Huber, P. Chiral phases of a confined cholesteric liquid crystal: Anchoring-dependent helical and smectic self-assembly in nanochannels. J. Phys. Chem. C 2016, 120, 11727–11738. [Google Scholar] [CrossRef]
- Xia, Y.; Serra, F.; Kamien, R.D.; Stebe, K.J.; Yang, S. Direct mapping of local director field of nematic liquid crystals at the nanoscale. Proc. Natl. Acad. Sci. USA 2015, 112, 15291–15296. [Google Scholar] [CrossRef]
- Gim, M.-J.; Kim, H.; Chen, D.; Shen, Y.; Yi, Y.; Korblova, E.; Walba, D.M.; Clark, N.A.; Yoon, D.K. Airflow-aligned helical nanofilament (B4) phase in topographic confinement. Sci. Rep. 2016, 6, 29111. [Google Scholar] [CrossRef]
- Kim, Y.H.; Gim, M.-J.; Jung, H.-T.; Yoon, D.K. Periodic arrays of liquid crystalline torons in microchannels. RSC Adv. 2015, 5, 19279–19283. [Google Scholar] [CrossRef]
- Tran, L.; Lavrentovich, M.O.; Beller, D.A.; Li, N.; Stebe, K.J.; Kamien, R.D. Lassoing saddle splay and the geometrical control of topological defects. Proc. Natl. Acad. Sci. USA 2016, 113, 7106–7111. [Google Scholar] [CrossRef]
- Kim, D.S.; Čopar, S.; Tkalec, U.; Yoon, D.K. Mosaics of topological defects in micropatterned liquid crystal textures. Sci. Adv. 2018, 4, eaau8064. [Google Scholar] [CrossRef]
- Agha, H.; Bahr, C. Nematic line defects in microfluidic channels: Wedge, twist and zigzag disclinations. Soft Matter 2018, 14, 653–664. [Google Scholar] [CrossRef]
- Yoon, D.K.; Deb, R.; Chen, D.; Körblova, E.; Shao, R.; Ishikawa, K.; Rao, N.V.; Walba, D.M.; Smalyukh, I.I.; Clark, N.A. Organization of the polarization splay modulated smectic liquid crystal phase by topographic confinement. Proc. Natl. Acad. Sci. USA 2010, 107, 21311–21315. [Google Scholar] [CrossRef]
- Madhusudana, N.; Pratibha, R.J.M.C.; Crystals, L. Elasticity and orientational order in some cyanobiphenyls: Part IV. Reanalysis of the data. Mol. Cryst. Liq. Cryst. 1982, 89, 249–257. [Google Scholar] [CrossRef]
- Xia, Y.; DeBenedictis, A.A.; Kim, D.S.; Chen, S.; Kim, S.-U.; Cleaver, D.J.; Atherton, T.J.; Yang, S. Programming emergent symmetries with saddle-splay elasticity. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef]
- Sørensen, B.E. A revised Michel-Lévy interference colour chart based on first-principles calculations. Eur. J. Mineral. 2012, 25, 5–10. [Google Scholar] [CrossRef]
- Wen, C.-H.; Wu, S.-T. Dielectric heating effects of dual-frequency liquid crystals. Appl. Phys. Lett. 2005, 86, 231104. [Google Scholar] [CrossRef]
- Schadt, M. Dielectric heating and relaxations in smectic a liquid crystals. Phys. Lett. A 1981, 81, 355–358. [Google Scholar] [CrossRef]
- Sasaki, Y.; Jampani, V.; Tanaka, C.; Sakurai, N.; Sakane, S.; Le, K.V.; Araoka, F.; Orihara, H. Large-scale self-organization of reconfigurable topological defect networks in nematic liquid crystals. Nat. Commun. 2016, 7, 1–13. [Google Scholar] [CrossRef]
- Pommella, A.; Caserta, S.; Guido, S. Dynamic flow behaviour of surfactant vesicles under shear flow: Role of a multilamellar microstructure. Soft Matter 2013, 9, 7545–7552. [Google Scholar] [CrossRef]
- Meyer, R.B. Piezoelectric effects in liquid crystals. Phys. Rev. Lett. 1969, 22, 918. [Google Scholar] [CrossRef]
- Xu, D.; Chen, Y.; Liu, Y.; Wu, S.-T. Refraction effect in an in-plane-switching blue phase liquid crystal cell. Opt. Express 2013, 21, 24721–24735. [Google Scholar] [CrossRef]
- Ok, J.M.; Kim, Y.H.; Lee, T.Y.; Yoo, H.-W.; Kwon, K.; Jung, W.-B.; Kim, S.-H.; Jung, H.-T. Controlling smectic liquid crystal defect patterns by physical stamping-assisted domain separation and their use as templates for quantum dot cluster arrays. Langmuir 2016, 32, 13418–13426. [Google Scholar] [CrossRef]
- Coursault, D.; Grand, J.; Zappone, B.; Ayeb, H.; Lévi, G.; Félidj, N.; Lacaze, E. Linear self-assembly of nanoparticles within liquid crystal defect arrays. Adv. Mater. 2012, 24, 1461–1465. [Google Scholar] [CrossRef]
- Mundoor, H.; Cruz-Colón, E.M.; Park, S.; Liu, Q.; Smalyukh, I.I.; Van De Lagemaat, J. Control of quantum dot emission by colloidal plasmonic pyramids in a liquid crystal. Opt. Express 2020, 28, 5459–5469. [Google Scholar] [CrossRef]
- Mundoor, H.; Sheetah, G.H.; Park, S.; Ackerman, P.J.; Smalyukh, I.I.; van de Lagemaat, J. Tuning and switching a plasmonic quantum dot “sandwich” in a nematic line defect. ACS Nano 2018, 12, 2580–2590. [Google Scholar] [CrossRef]
- Kim, D.S.; Honglawan, A.; Yang, S.; Yoon, D.K. Arrangement and SERS Applications of Nanoparticle Clusters Using Liquid Crystalline Template. ACS Appl. Mater. Interfaces 2017, 9, 7787–7792. [Google Scholar] [CrossRef]
- Pancharatnam, S. Generalized theory of interference and its applications. Proc. Indian Acad. Sci. Sect. A 1956, 44, 398–417. [Google Scholar] [CrossRef]
- Brasselet, E.; Murazawa, N.; Misawa, H.; Juodkazis, S. Optical vortices from liquid crystal droplets. Phys. Rev. Lett. 2009, 103, 103903. [Google Scholar] [CrossRef]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.; Woerdman, J. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185. [Google Scholar] [CrossRef]
- Loussert, C.; Kushnir, K.; Brasselet, E. Q-plates micro-arrays for parallel processing of the photon orbital angular momentum. Appl. Phys. Lett. 2014, 105, 121108. [Google Scholar] [CrossRef]
- Marrucci, L.; Manzo, C.; Paparo, D. Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation. Appl. Phys. Lett. 2006, 88, 221102. [Google Scholar] [CrossRef]
- Carroll, T. Liquid-Crystal Diffraction Grating. J. Appl. Phys. 1972, 43, 767–770. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, Y.H.; Jeong, H.S.; Srinivasarao, M.; Hudson, S.D.; Jung, H.-T. Thermally responsive microlens arrays fabricated with the use of defect arrays in a smectic liquid crystal. RSC Adv. 2012, 2, 6729. [Google Scholar] [CrossRef]
- Kato, T.; Uchida, J.; Ichikawa, T.; Sakamoto, T. Functional liquid crystals towards the next generation of materials. Angew. Chem. Int. Ed. Engl. 2018, 57, 4355–4371. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, M.; Kelly, S.M. Liquid crystals for charge transport, luminescence, and photonics. Adv. Mater. 2003, 15, 1135–1146. [Google Scholar] [CrossRef]
- Mirri, G.; Jampani, V.S.R.; Cordoyiannis, G.; Umek, P.; Kouwer, P.H.; Muševič, I. Stabilisation of 2D colloidal assemblies by polymerisation of liquid crystalline matrices for photonic applications. Soft Matter 2014, 10, 5797–5803. [Google Scholar] [CrossRef]
- Bukusoglu, E.; Bedolla Pantoja, M.; Mushenheim, P.C.; Wang, X.; Abbott, N.L. Design of responsive and active (soft) materials using liquid crystals. Annu. Rev. Chem. Biomol. Eng. 2016, 7, 163–196. [Google Scholar] [CrossRef]
- Barboza, R.; Bortolozzo, U.; Assanto, G.; Vidal-Henriquez, E.; Clerc, M.G.; Residori, S. Harnessing optical vortex lattices in nematic liquid crystals. Phys. Rev. Lett. 2013, 111, 093902. [Google Scholar] [CrossRef] [PubMed]
- Serra, F.; Gharbi, M.A.; Luo, Y.; Liu, I.B.; Bade, N.D.; Kamien, R.D.; Yang, S.; Stebe, K.J. Curvature-driven, one-step assembly of reconfigurable smectic liquid crystal “compound eye” lenses. Adv. Opt. Mater. 2015, 3, 287–1292. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, M.J.; Yoon, D.K. Role of Stimuli on Liquid Crystalline Defects: From Defect Engineering to Switchable Functional Materials. Materials 2020, 13, 5466. https://doi.org/10.3390/ma13235466
Shin MJ, Yoon DK. Role of Stimuli on Liquid Crystalline Defects: From Defect Engineering to Switchable Functional Materials. Materials. 2020; 13(23):5466. https://doi.org/10.3390/ma13235466
Chicago/Turabian StyleShin, Min Jeong, and Dong Ki Yoon. 2020. "Role of Stimuli on Liquid Crystalline Defects: From Defect Engineering to Switchable Functional Materials" Materials 13, no. 23: 5466. https://doi.org/10.3390/ma13235466
APA StyleShin, M. J., & Yoon, D. K. (2020). Role of Stimuli on Liquid Crystalline Defects: From Defect Engineering to Switchable Functional Materials. Materials, 13(23), 5466. https://doi.org/10.3390/ma13235466