High-Efficiency Removal of Cr(VI) from Wastewater by Mg-Loaded Biochars: Adsorption Process and Removal Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Biochars
2.2. Characterization of the Biochars
2.3. Batch Adsorption Experiments
2.4. Experiment Testing Regeneration Performance
3. Results and Discussion
3.1. Physical Characteristics
3.2. Possible Mechanisms for Cr(VI) Adsorption onto the Biochars
3.2.1. FTIR
3.2.2. SEM/EDS
3.2.3. XRD
3.3. Effect of the Solution pH
3.4. Adsorption Study
3.4.1. Adsorption Kinetics Study
3.4.2. Adsorption Isotherm Study
3.5. Cyclic Performance of Mg-Loaded Biochars
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fan, Z.; Zhang, Q.; Gao, B.; Li, M.; Liu, C.; Qiu, Y. Removal of hexavalent chromium by biochar supported nZVI composite: Batch and fixed-bed column evaluations, mechanisms, and secondary contamination prevention. Chemosphere 2019, 217, 85–94. [Google Scholar] [CrossRef]
- Pechova, A.; Pavlata, L. Chromium as an essential nutrient: A review. Vet. Med. 2007, 52, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Liu, C.; Zhang, C.; Deng, R.; Wang, R.; Xue, W.; Luo, H.; Zeng, G.; Zhang, Q.; Guo, X. Cr(VI) removal from aqueous solution using biochar modified with Mg/Al-layered double hydroxide intercalated with ethylenediaminetetraacetic acid. Bioresour. Technol. 2019, 276, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Gu, L.; Liu, X.; Zhang, X.; Cao, L.; Hu, X. Sorption behavior of Cr(VI) on pineapple-peel-derived biochar and the influence of coexisting pyrene. Int. Biodeterior. Biodegrad. 2016, 111, 78–84. [Google Scholar] [CrossRef]
- Ren, L.; Dong, J.; Chi, Z.; Huang, H. Reduced graphene oxide-nano zero value iron (rGO-nZVI) micro-electrolysis accelerating Cr(VI) removal in aquifer. J. Environ. Sci. 2018, 73, 96–106. [Google Scholar] [CrossRef]
- Campos, A.F.C.; de Oliveira, H.A.L.; da Silva, F.N.; da Silva, F.G.; Coppola, P.; Aquino, R.; Mezzi, A.; Depeyrot, J. Core-shell bimagnetic nanoadsorbents for hexavalent chromium removal from aqueous solutions. J. Hazard. Mater. 2019, 362, 82–91. [Google Scholar] [CrossRef]
- Chao, H.P.; Wang, Y.C.; Tran, H.N. Removal of hexavalent chromium from groundwater by Mg/Al-layered double hydroxides using characteristics of in-situ synthesis. Environ. Pollut. 2018, 243, 620–629. [Google Scholar] [CrossRef]
- Godinho, D.; Dias, D.; Bernardo, M.; Lapa, N.; Fonseca, I.; Lopes, H.; Pinto, F. Adding value to gasification and co-pyrolysis chars as removal agents of Cr3+. J. Hazard. Mater. 2017, 321, 173–182. [Google Scholar] [CrossRef]
- Du, X.D.; Yi, X.H.; Wang, P.; Zheng, W.; Deng, J.; Wang, C.C. Robust photocatalytic reduction of Cr(VI) on UiO-66-NH2(Zr/Hf) metal-organic framework membrane under sunlight irradiation. Chem. Eng. J. 2019, 356, 393–399. [Google Scholar] [CrossRef]
- Li, D.; Li, J.; Jin, Q.; Ren, Z.; Sun, Y.; Zhang, R.; Zhai, Y.; Liu, Y. Photocatalytic reduction of Cr (VI) on nano-sized red phosphorus under visible light irradiation. J. Colloid Interface Sci. 2019, 537, 256–261. [Google Scholar] [CrossRef]
- Kong, Q.; Wei, J.; Hu, Y.; Wei, C. Fabrication of terminal amino hyperbranched polymer modified graphene oxide and its prominent adsorption performance towards Cr(VI). J. Hazard. Mater. 2019, 363, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Zhang, Y.; Cheng, G.; Wang, Y.; Chen, R. Simultaneous removal of As(V)/Cr(VI) and acid orange 7 (AO7) by nanosized ordered magnetic mesoporous Fe-Ce bimetal oxides: Behavior and mechanism. Chemosphere 2019, 218, 1002–1013. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, C.; Li, Z.; Yu, G.; Wang, Y. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge. Ecotoxicol. Environ. Saf. 2019, 168, 45–52. [Google Scholar] [CrossRef]
- Yang, X.; Ng, W.; Wong, B.S.E.; Baeg, G.H.; Wang, C.H.; Ok, Y.S. Characterization and ecotoxicological investigation of biochar produced via slow pyrolysis: Effect of feedstock composition and pyrolysis conditions. J. Hazard. Mater. 2019, 365, 178–185. [Google Scholar] [CrossRef]
- Ocampo-Perez, R.; Padilla-Ortega, E.; Medellin-Castillo, N.A.; Coronado-Oyarvide, P.; Aguilar-Madera, C.G.; Segovia-Sandoval, S.J.; Flores-Ramírez, R.; Parra-Marfil, A. Synthesis of biochar from chili seeds and its application to remove ibuprofen from water. Equilibrium and 3D modelling. Sci. Total Environ. 2019, 655, 1397–1408. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Li, A.Y.; Deng, H.; Ye, C.H.; Wu, Y.Q.; Linmu, Y.D.; Hang, H.L. Characteristics of nitrogen and phosphorus adsorption by Mg-loaded biochar from different feedstocks. Bioresour. Technol. 2019, 276, 183–189. [Google Scholar] [CrossRef]
- Shi, S.; Yang, J.; Liang, S.; Li, M.; Gan, Q.; Xiao, K.; Hu, J. Enhanced Cr(VI) removal from acidic solutions using biochar modified by Fe3O4@SiO2-NH2 particles. Sci. Total. Environ. 2018, 628, 499–508. [Google Scholar] [CrossRef]
- Xiao, R.; Wang, J.J.; Li, R.; Park, J.; Meng, Y.; Zhou, B.; Pensky, S.; Zhang, Z. Enhanced sorption of hexavalent chromium [Cr(VI)] from aqueous solutions by diluted sulfuric acid-assisted MgO-coated biochar composite. Chemosphere 2018, 208, 408–416. [Google Scholar] [CrossRef]
- Zhang, S.; Lyu, H.; Tang, J.; Song, B.; Zhen, M.; Liu, X. A novel biochar supported CMC stabilized nano zero-valent iron composite for hexavalent chromium removal from water. Chemosphere 2019, 217, 686–694. [Google Scholar] [CrossRef]
- Mian, M.M.; Liu, G.; Yousaf, B.; Fu, B.; Ullah, H.; Ali, M.U.; Abbas, Q.; Mujtaba Munir, M.A.; Ruijia, L. Simultaneous functionalization and magnetization of biochar via NH3 ambiance pyrolysis for efficient removal of Cr(VI). Chemosphere 2018, 208, 712–721. [Google Scholar] [CrossRef]
- Liu, Y.; Sohi, S.P.; Liu, S.; Guan, J.; Zhou, J.; Chen, J. Adsorption and reductive degradation of Cr(VI) and TCE by a simply synthesized zero valent iron magnetic biochar. J. Environ. Manag. 2019, 235, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Xu, X.; Phan, T.; Hu, X.; Nie, G. High adsorption performance for As(III) and As(V) onto novel aluminum-enriched biochar derived from abandoned Tetra Paks. Chemosphere 2018, 208, 800–807. [Google Scholar] [CrossRef] [PubMed]
- An, Q.; Li, X.Q.; Nan, H.Y.; Yu, Y.; Jiang, J.N. The potential adsorption mechanism of the biochars with different modification processes to Cr(VI). Environ. Sci. Pollut. Res. 2018, 25, 31346–31357. [Google Scholar] [CrossRef]
- Wu, B.; Peng, D.; Hou, S.; Tang, B.; Wang, C.; Xu, H. Dynamic study of Cr(VI) removal performance and mechanism from water using multilayer material coated nanoscale zerovalent iron. Environ. Pollut. 2018, 240, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhang, T.; Ren, H.; Kruse, A.; Cui, R. Polyethylene imine modified hydrochar adsorption for chromium (VI) and nickel (II) removal from aqueous solution. Bioresour. Technol. 2018, 247, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Yin, Y.; Tan, Z.; Wang, B.; Guo, X.; Li, X.; Liu, J. Enhanced removal of Cr(VI) by biochar with Fe as electron shuttles. J. Environ. Sci. 2019, 78, 109–117. [Google Scholar] [CrossRef]
- Choudhary, B.; Paul, D.; Singh, A.; Gupta, T. Removal of hexavalent chromium upon interaction with biochar under acidic conditions: Mechanistic insights and application. Environ. Sci. Pollut. Res. 2017, 24, 16786–16797. [Google Scholar] [CrossRef]
- Abdel-Fattah, T.M.; Mahmoud, M.E.; Ahmed, S.B.; Huff, M.D.; Lee, J.W.; Kumar, S. Biochar from woody biomass for removing metal contaminants and carbon sequestration. J. Ind. Eng. Chem. 2015, 22, 103–109. [Google Scholar] [CrossRef]
- Pan, J.J.; Jiang, J.; Xu, R.k. Removal of Cr(VI) from aqueous solutions by Na2SO3/FeSO4 combined with peanut straw biochar. Chemosphere 2014, 101, 71–76. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, I.K.M.; Tsang, D.C.W.; Cao, X.; Lin, D.; Wang, L.; Graham, N.J.D.; Alessi, D.S.; Komárek, M.; Ok, Y.S.; et al. Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater. Environ. Int. 2019, 124, 521–532. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, W.J.; Zhang, N.; Li, Y.S.; Jiang, H.; Sheng, G.P. Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution. Bioresour. Technol. 2014, 169, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zheng, H.; Zhang, F.; Zeng, R.J.; Xing, B. Iron-carbon composite from carbonization of iron-crosslinked sodium alginate for Cr(VI) removal. Chem. Eng. J. 2019, 362, 21–29. [Google Scholar] [CrossRef]
- Li, C.; Zhang, L.; Gao, Y.; Li, A. Facile synthesis of nano ZnO/ZnS modified biochar by directly pyrolyzing of zinc contaminated corn stover for Pb(II), Cu(II) and Cr(VI) removals. Waste Manag. 2018, 79, 625–637. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, S.; Zhang, H.; Wang, X. Removal behaviors and mechanisms of hexavalent chromium from aqueous solution by cephalosporin residue and derived chars. Bioresour. Technol. 2017, 238, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.; Tian, Z.; Ling, J.; Luo, W.; Wei, Z.; Li, S.; Jing, C.; Wei, W. Highly efficient adsorption of Cr(VI) from aqueous solution by Fe3+ impregnated biochar. J. Dispers. Sci. Technol. 2017, 38, 815–825. [Google Scholar]
- Ping, Y.; Guo, D.; Chen, Z.; Cui, B.; Bo, X.; Liu, S.; Hu, M. Removal of Cr(VI) from aqueous solution using magnetic biochar synthesized by a single step method. J. Dispers. Sci. Technol. 2016, 38, 1665–1674. [Google Scholar]
Index | BSB | CSB | FSB | MSB | TSB | CFSB | |
---|---|---|---|---|---|---|---|
pH | 7.21 | 6.68 | 7.88 | 8.44 | 7.53 | 7.21 | |
pHPZC Biochar magnesium content (g/kg) | 10.31 | 10.54 | 8.92 | 9.38 | 10.11 | 9.77 | |
before | 190.62 | 113.21 | 75.09 | 65.95 | 181.95 | 98.20 | |
BET (m2/g) | before | 16.6839 | 10.3278 | 2.5272 | 9.3057 | 5.4411 | 4.3860 |
after | 36.3582 | 32.1380 | 27.6502 | 57.1085 | 33.6400 | 53.9261 | |
Total pore volume (cm3/g) | before | 0.0267 | 0.0406 | 0.0037 | 0.0263 | 0.0098 | 0.0114 |
after | 0.0900 | 0.0579 | 0.0408 | 0.0706 | 0.0446 | 0.0775 | |
Average aperture (nm) | before | 15.99 | 15.71 | 7.41 | 13.01 | 9.60 | 10.47 |
after | 9.91 | 7.22 | 5.91 | 4.95 | 5.31 | 5.76 | |
Before adsorption | ① (mmol/g) | 1.1789 | 1.1181 | 0.7037 | 1.0300 | 1.1069 | 0.8729 |
② (mmol/g) | 1.1238 | 1.1216 | 1.1241 | 1.1168 | 1.1240 | 1.1192 | |
After adsorption | ① (mmol/g) | 0.8523 | 0.8523 | 0.5193 | 0.6738 | 0.5688 | 0.4607 |
② (mmol/g) | 1.1189 | 1.0565 | 1.0325 | 0.7457 | 1.0565 | 1.0085 | |
Mass composition | C (%) | 34.66 | 47.13 | 64.53 | 48.98 | 44.73 | 34.73 |
H (%) | 4.81 | 7.81 | 3.31 | 2.96 | 1.86 | 1.86 | |
N (%) | 0.85 | 0.66 | 0.14 | 1.42 | 1.69 | 1.69 | |
O (%) | 20.31 | 22.41 | 26.05 | 23.48 | 21.22 | 20.89 |
Samples | Pseudo First-order Kinetics | Pseudo Second-order Kinetics | Intra-particle Diffusion | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Qe (mg/g) | K1 (1/min) | R2 | Qe (mg/g) | K2 (g/mg·min) | R2 | C1 (mg/g) | Kd1 (mg/(g·min0.5) | R2 | C2 (mg/g) | Kd2 (mg/(g·min0.5) | R2 | Qt① (mg/g) | ||
CFSB | Cr(VI) | 11.91 | 0.0109 | 0.9324 | 19.53 | 0.0038 | 0.9936 | 11.54 | 2.30 | 0.9745 | 12.05 | 5.16 | 0.9683 | 20.24 |
FSB | Cr(VI) | 15.94 | 0.0040 | 0.8612 | 16.16 | 0.0042 | 0.9933 | 4.37 | 0.65 | 0.9345 | 7.91 | 0.53 | 0.9469 | 16.14 |
TSB | Cr(VI) | 24.55 | 0.01148 | 0.9179 | 47.39 | 0.0021 | 0.9961 | 18.0.1 | 2.46 | 0.9864 | 33.91 | 3.89 | 0.9710 | 31.80 |
MSB | Cr(VI) | 30.78 | 0.0174 | 0.8920 | 38.17 | 0.0015 | 0.9262 | 1.98 | 0.83 | 0.9701 | 7.12 | 1.71 | 0.9010 | 37.58 |
CSB | Cr(VI) | 38.59 | 0.1730 | 0.8715 | 73.53 | 0.0055 | 0.9940 | 8.44 | 3.78 | 0.9960 | 9.67 | 6.81 | 0.9940 | 68.34 |
BSB | Cr(VI) | 38.90 | 0.0148 | 0.9497 | 111.11 | 0.0015 | 0.9984 | 61.37 | 3.48 | 0.9601 | 81.52 | 1.94 | 0.9342 | 110.20 |
Samples | Langmuir | Freundlich | |||||||
---|---|---|---|---|---|---|---|---|---|
T/K | Qm (mg/g) | KL (L/mg) | R2 | RL | 1/n | KF (g/(mg·h)) | R2 | ||
CSB | Cr(VI) | 293 | 27.85 | 0.37 | 0.9910 | 0.0513–0.8438 | 0.5087 | 1.59 | 0.9415 |
303 | 66.67 | 0.86 | 0.9908 | 0.0227–0.6993 | 0.4104 | 17.82 | 0.9786 | ||
313 | 78.13 | 1.06 | 0.9836 | 0.0185–0.6535 | 0.3881 | 22.18 | 0.9343 | ||
FSB | Cr(VI) | 293 | 11.68 | 0.08 | 0.9950 | 0.2000–0.9615 | 0.6482 | 1.43 | 0.9214 |
303 | 15.77 | 0.11 | 0.9812 | 0.1538–0.9748 | 0.6204 | 1.61 | 0.9607 | ||
313 | 22.03 | 0.50 | 0.9951 | 0.0385–0.8123 | 0.3967 | 6.12 | 0.9648 | ||
BSB | Cr(VI) | 293 | 96.15 | 2.04 | 0.9936 | 0.0097–0.4950 | 0.5104 | 3.70 | 0.9276 |
303 | 114.94 | 2.86 | 0.9955 | 0.0069–0.4115 | 0.4498 | 4.33 | 0.8635 | ||
313 | 125.00 | 3.70 | 0.9394 | 0.0054–0.3509 | 0.3680 | 4.39 | 0.8021 | ||
CFSB | Cr(VI) | 293 | 19.84 | 0.10 | 0.8465 | 0.1667–0.9524 | 0.7503 | 1.75 | 0.7869 |
303 | 22.57 | 0.22 | 0.9854 | 0.0833–0.9009 | 0.5118 | 3.87 | 0.9382 | ||
313 | 25.84 | 0.75 | 0.9935 | 0.0259–0.7220 | 0.2774 | 10.03 | 0.9539 | ||
MSB | Cr(VI) | 293 | 15.22 | 0.18 | 0.9855 | 0.1000–0.9174 | 0.5084 | 2.54 | 0.9114 |
303 | 31.65 | 0.58 | 0.9935 | 0.0333–0.7752 | 0.3972 | 9.04 | 0.9781 | ||
313 | 47.18 | 0.68 | 0.9933 | 0.0286–0.7463 | 0.2026 | 20.61 | 0.9497 | ||
TSB | Cr(VI) | 293 | 45.25 | 0.15 | 0.9798 | 0.1176–0.9302 | 0.6882 | 5.04 | 0.9352 |
303 | 52.36 | 0.32 | 0.9986 | 0.0588–0.3472 | 0.6111 | 9.22 | 0.9192 | ||
313 | 63.29 | 1.05 | 0.9960 | 0.0187–0.6557 | 0.4930 | 19.83 | 0.8086 |
Biochars | ΔG0 (KJ/mol) | ΔH0 (KJ/mol) | ΔS0 (J/(mol·K)) | ||
---|---|---|---|---|---|
293 K | 303 K | 313 K | |||
CSB | −31.23 | −34.42 | −36.10 | 40.28 | 244.86 |
FSB | −27.50 | −29.24 | −34.15 | 69.24 | 328.51 |
BSB | −35.39 | −37.45 | −39.36 | 22.90 | 199.04 |
CFSB | −28.05 | −30.99 | −35.20 | 76.79 | 357.12 |
MSB | −29.48 | −33.43 | −34.95 | 51.11 | 276.32 |
TSB | −29.03 | −31.93 | −36.08 | 73.75 | 350.13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, A.; Deng, H.; Jiang, Y.; Ye, C. High-Efficiency Removal of Cr(VI) from Wastewater by Mg-Loaded Biochars: Adsorption Process and Removal Mechanism. Materials 2020, 13, 947. https://doi.org/10.3390/ma13040947
Li A, Deng H, Jiang Y, Ye C. High-Efficiency Removal of Cr(VI) from Wastewater by Mg-Loaded Biochars: Adsorption Process and Removal Mechanism. Materials. 2020; 13(4):947. https://doi.org/10.3390/ma13040947
Chicago/Turabian StyleLi, Anyu, Hua Deng, Yanhong Jiang, and Chenghui Ye. 2020. "High-Efficiency Removal of Cr(VI) from Wastewater by Mg-Loaded Biochars: Adsorption Process and Removal Mechanism" Materials 13, no. 4: 947. https://doi.org/10.3390/ma13040947
APA StyleLi, A., Deng, H., Jiang, Y., & Ye, C. (2020). High-Efficiency Removal of Cr(VI) from Wastewater by Mg-Loaded Biochars: Adsorption Process and Removal Mechanism. Materials, 13(4), 947. https://doi.org/10.3390/ma13040947