The Influence of Sewage Sludge Content and Sintering Temperature on Selected Properties of Lightweight Expanded Clay Aggregate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experiment Parameters According to the Rotatable Plan
2.3. The Conditions of Forming and Sintering Procedures
2.4. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Durdević, D.; Trstenjak, M.; Hulenić, I. Sewage sludge thermal treatment technology selection by utilizing the analytical hierarchy process. Water 2020, 12, 1255. [Google Scholar] [CrossRef]
- Eurostat. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 12 April 2021).
- Fytili, D.; Zabaniotou, A. Utilization of sewage sludge in EU application of old and new methods—A review. Renew Sustain. Energy Rev. 2008, 12, 116–140. [Google Scholar] [CrossRef]
- Andreoli, C.V.; Von Sperling, M.; Fernandes, F. Sludge Treatment and Disposal; IWA Publishing: London, UK, 2007; pp. 4–30. [Google Scholar]
- Latosińska, J. Risk assessment of soil contamination with heavy metals from sewage sludge and ash after its incineration. Desalin. Water Treat 2020, 199, 297–306. [Google Scholar] [CrossRef]
- Latosińska, J.; Kowalik, R.; Gawdzik, J. Risk Assessment of soil contamination with heavy metals from municipal sewage sludge. Appl. Sci. 2021, 11, 548. [Google Scholar] [CrossRef]
- Urra, J.; Alkorta, I.; Mijangos, I.; Epelde, L.; Garbisu, C. Application of sewage sludge to agricultural soil increases the abundance of antibiotic resistance genes without altering the composition of prokaryotic communities. Sci. Total Environ. 2019, 10, 1410–1420. [Google Scholar] [CrossRef] [PubMed]
- Sing, R.P.; Agrawal, M. Potential benefits and risks of land application of sewage sludge. Waste Manag. 2008, 28, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Commission of the European Communities. Council Directive 86/278/EEC of 4 July 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture, Offic. J. Eur. Commun. 1986, 181, 0006–0012. [Google Scholar]
- Directive, E.C. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. Off. J. Eur. Union L. 2008, 312, 3–30. [Google Scholar]
- Directive, C. Council Decision 2003/33/EC of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC. Off. J. Eur. Communities L. 2003, 11, 27–49. [Google Scholar]
- Durdević, D.; Blecich, P.; Jurić, Ž. Energy recovery from sewage sludge: The case study of Croatia. Energies 2019, 12, 1927. [Google Scholar] [CrossRef] [Green Version]
- Rashad, A.M. Lightweight expanded clay aggregate as a building material—An overview. Constr. Build. Mater. 2018, 170, 757–775. [Google Scholar] [CrossRef]
- Zheng, W.; He, D.; Li, H.; Wang, F.; Yang, Y.; Zhang, J. The preparation and properties of a shell structure ceramsite. Materials 2020, 13, 1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, J.; Keiser, L.; Golias, M.; Weiss, J. Absorption and desorption properties of fine lightweight aggregate for application to internally cured concrete mixtures. Cem. Concr. Comp. 2011, 33, 1001–1008. [Google Scholar] [CrossRef]
- Ozguven, A.; Gunduz, L. Examination of effective parameters for the production of expanded clay aggregate. Cem. Concr. Comp. 2012, 34, 781–787. [Google Scholar] [CrossRef]
- Boudaghpour, S.; Hashemi, S. A study on light expanded clay aggregate (LECA) in a geotechnical view and its application on greenhouse and greenroof cultivation. Int. J. Geol. 2008, 4, 59–63. [Google Scholar]
- Caldeira, L.; Maranha das Neves, E. Mechanical characterization of lightweight expanded clay aggregate materials for modeling their geotechnical behavior. J. Mater. Civ. Eng. 2015, 27, 04015027. [Google Scholar] [CrossRef]
- Eikebrokk, B.; Saltnes, T. Removal of natural organic matter (NOM) using different coagulants and lightweight expanded clay aggregate filters. Water Sci. Technol. Water Supply 2001, 2, 131–140. [Google Scholar] [CrossRef]
- Galos, K.; Wyszomirski, P. Thermal Treatment of Loamy Raw Materials, Polish Raw Materials, Rocky Raw Materials. Loamy Raw Materials; Ney, R., Ed.; Mineral and Energy Economy Research Institute Polish Academy of Science: Cracow, Poland, 2004; pp. 307–326. [Google Scholar]
- Nakouzi, S.; Mielewski, D.; Ball, J.C.; Kim, B.R.; Salemeen, I.T.; Bauer, D.; Narula, C.K. A novel approach to paint sludge recycling: Reclaiming of paint sludge components as ceramic composites and their applications in reinforcement of metals and polymers. J. Mater. Res. 1998, 13, 53–60. [Google Scholar] [CrossRef]
- Franus, M.; Franus, W.; Latosińska, J.; Wójcik, R. Use spent of glauconite in lightweight aggregate production. Bol. Soc. Esp. Ceram. V 2011, 50, 193–200. [Google Scholar] [CrossRef]
- Han, Y.; Cao, Y.; Wang, H.; Xu, Y.; Liu, R.; Xu, Y.; Zhang, Y.; Yang, X. Lightweight aggregate obtained from municipal solid waste incineration bottom ash sludge (MSWI–BAS) and its characteristics affected by single factor of sintering mechanism. J. Air Waste Manag. Assoc. 2020, 70, 180–192. [Google Scholar] [CrossRef]
- Narattha, C.; Chaipanich, A. Phase characterizations, physical properties and strength of environment-friendly cold-bonded fly ash lightweight aggregates. J. Clean. Prod. 2018, 171, 1094–1100. [Google Scholar] [CrossRef]
- Saikia, N.J.; Sengupta, P.; Gogoi, P.K.; Borthakur, P.C. Physico–chemical and cementitious properties of sludge from oil field effluent treatment plant. Cem. Concr. Res. 2001, 31, 1221–1225. [Google Scholar] [CrossRef]
- Tataranni, P.; Besemer, G.M.; Bortolotti, V.; Sangiorgi, C. Preliminary research on the physical and mechanical properties of alternative lightweight aggregates produced by alkali-activation of waste powders. Materials 2018, 11, 1255. [Google Scholar] [CrossRef] [Green Version]
- Latosińska, J.; Żygadło, M. Effect of sewage sludge addition on porosity of lightweight expanded clay aggregate (Leca) and level of heavy metals leaching from ceramic matrix. Environ. Prot. Eng. 2009, 35, 189–196. [Google Scholar]
- Latosińska, J.; Żygadło, M. The application of sewage sludge as an expanding agent in the production of lightweight expanded clay aggregate mass. Environ. Technol. 2011, 32, 1471–1478. [Google Scholar] [CrossRef] [PubMed]
- Korol, J.; Głodniok, M.; Hejna, A.; Pawlik, T.; Chmielnicki, B.; Bondaruk, J. Manufacturing of lightweight aggregates as an auspicious method of sewage sludge utilization. Materials 2020, 13, 5635. [Google Scholar] [CrossRef]
- Rattanachan, S.; Lorprayoon, C. Korat clays as raw materials for lightweight aggregates. Sci. Asia 2005, 31, 277–281. [Google Scholar] [CrossRef]
- Chandra, S.; Berntsson, L. Lightweight Aggregate Concrete: Science, Technology and Applications; William Andrew Publishing: Norwich, NY, USA, 2002; pp. 27–29. [Google Scholar]
- Mańczak, K. Technique of Planning the Experiment; WNT: Warsaw, Poland, 1976; pp. 150–277. [Google Scholar]
- PN–91/C–04540/05. Tests for pH value, acidity and alkalinity. In Determination of pH Value, the Acidity and the Mineral and General Alkalinity in Municipal Sewage Sludge; Polish Committee for Standardization: Warsaw, Poland, 1991. [Google Scholar]
- PN–EN 12880. Characteristics of sewage sludge. In Determination of Dry Residue and Water Content; Polish Committee for Standardization: Warsaw, Poland, 2004. [Google Scholar]
- PN–EN 12879. Characterization of sludges. In Determination of the Loss of Ignition of Dry Mass; Polish Committee for Standardization: Warsaw, Poland, 2000. [Google Scholar]
- PN–C–04537–14. Water and wastewater. Test on the content of phosphorous compounds. In Determination of Total Phosphorous in Sewage Sludge; Polish Committee for Standardization: Warsaw, Poland, 1998. [Google Scholar]
- PN–EN13342. Characteristics of sewage sludge. In Determination of Kjeldahl Nitrogen; Polish Committee for Standardization: Warsaw, Poland, 2002. [Google Scholar]
- PN–EN13346. Characteristics of sewage sludge. In Determination of Trace Chemical Elements and Phosphorous–Methods of the Extraction with Aqua Regia; Polish Committee for Standardization: Warsaw, Poland, 2002. [Google Scholar]
- PN–77/B–06714/18. Mineral aggregate. Test. In Water Absorption Determination; Polish Committee for Standardization: Warsaw, Poland, 1997. [Google Scholar]
- Kowalenko, W.; Mojsiejenko, J.; Roszak, W. Artificial Lightweight Aggregate, Production and Application; Arkady: Warsaw, Poland, 1972; pp. 120–283. [Google Scholar]
- Mojsiejenko, J. Pliocene and Oligocene Loam as Raw Materials for the Production of Lightweight Expanded Clay Aggregate; Geological Institute: Warsaw, Poland, 1970; pp. 145–245. [Google Scholar]
- Riley, C.M. Relation of chemical properties to the bloating of clays. J. Am. Ceram. Soc. 1951, 34, 121–128. [Google Scholar] [CrossRef]
- Piasecki, J. Structure of Grains of Lightweight Expanded Clay Aggregate a Model Approach; Scientific Works of Szczecin University of Technology, Institute of Civil Engineering: Szczecin, Poland, 1992; pp. 69–77. [Google Scholar]
- Osiecka, E. Selected Issues on the Technology of Mineral Construction Composite Materials; Warsaw University of Technology: Warsaw, Poland, 2000; pp. 98–184. [Google Scholar]
- de’Gennaro, R.; Cappelletti, P.; Cerri, G.; de’Gennar, M.; Dondi, M.; Langella, A. Zeolitic tuffs as raw materials for lightweight aggregates. Appl. Clay Sci. 2004, 25, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Wilfert, P.; Dugulan, A.I.; Goubitz, K.; Korving, L.; Witkamp, G.J.; van Loosdrecht, M. Vivianite as the main phosphate mineral in digested sewage sludge and its role for phosphate recovery. Water Res. 2018, 144, 312–321. [Google Scholar] [CrossRef]
- Wilfert, P.; Mandalidis, A.; Dugulan, A.I.; Goubitz, K.; Korving, L.; Temmink, H.; Witkamp, G.J.; van Loosdrecht, M.C.M. Vivianite as an important iron phosphate precipitate in sewage treatment plants. Water Res. 2016, 104, 449–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valls, S.; Yagüe, A.; Vázquez, E.; Mariscal, C. Physical and mechanical properties of concrete with added dry sludge from a sewage treatment plant. Cem. Concr. Res. 2004, 34, 2203–2208. [Google Scholar] [CrossRef]
- Liew, A.G.; Idris, A.; Samad, A.A.; Noor, M.J.M.M.; Baki, A.M. Incorporation of sewage sludge in clay brick and its characterization. Waste Manag. Res. 2004, 22, 226–233. [Google Scholar] [CrossRef]
- Ramlogan, M.V.; Rouff, A.A. An investigation of the thermal behavior of magnesium ammonium phosphate hexahydrate. J. Anal. Calorim. 2016, 123, 145–152. [Google Scholar] [CrossRef]
- Frost, R.L.; Weier, M.L.; Marten, W.; Kloprogge, J.T.; Ding, Z. Dehydration of synthetic and natural vivianite. Thermochim. Acta 2003, 401, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Pampuch, R. Ceramic materials. In The Overview of the Science on the Inorganic–Nonmetallic Materials; PWN: Warsaw, Poland, 1988; pp. 123–298. [Google Scholar]
- Nkansah, M.A.; Christy, A.A.; Barth, T.; Francis, G.W. The use of lightweight expanded clay aggregate (LECA) as sorbent for PAFs removal from water. J. Hazard. Mater. 2012, 217–218, 360–365. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yu, G.; Xie, S.; Pan, L.; Li, C.; You, F.; Wang, Y. Immobilization of heavy metals in ceramsite produced from sewage sludge biochar. Sci. Total Environ. 2018, 628–629, 131–140. [Google Scholar] [CrossRef]
Oxide | SiO2 | Al2O3 | Fe2O3 | Na2O | K2O | MgO | TiO2 | CaO | Mn2O3 | SO3 | BaO | P2O5 | Cr2O3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Clay | 65.74 | 15.22 | 4.54 | 0.17 | 1.75 | 1.18 | 0.85 | 0.70 | 0.02 | 0.01 | 0.019 | 0.04 | 0.02 |
Component | Q | C | D | V | Di | L | K | I | F | Mtm | G |
---|---|---|---|---|---|---|---|---|---|---|---|
Clay | 37.9 | - | - | - | - | 21.4 | 20.9 | 11.2 | 7.5 | 0.3 | 0.8 |
Sewage Sludge | 37.0 | 25.2 | 22.3 | 9.8 | 5.7 | - | - | - | - | - |
pH | Water Content % | Dry Mass, % d.m. | Organic Substances, % d.m. | Mineral Substances, % d.m. | Pgeneral % d.m. | Ngeneral % d.m. | Ca mg·kg−1 d.m. | |||
---|---|---|---|---|---|---|---|---|---|---|
8.20 | 80.4 | 19.6 | 58.3 | 41.7 | 2.4 | 3.1 | 3065.0 | |||
Metals, mg·kg−1 d.m. | ||||||||||
Pb | Cd | Hg | Cr | Cu | Zn | Fe | Mg | Mn | Na | K |
16.7 | 1.0 | 0.03 | 61.6 | 9.1 | 838.0 | 1073.3 | 1849.1 | 102.3 | 212.8 | 750.9 |
Components | S1 * | S2 * | S3 * | S4 * | S5 * | S6 * | S7 * | S8 * | S9 * | S10 * |
---|---|---|---|---|---|---|---|---|---|---|
Quartz | 51.4 | 52.0 | 59.4 | 67.0 | 73.0 | 64.1 | 58.0 | 53.2 | 64.9 | 64.3 |
Mullite | 30.7 | 25.2 | 22.1 | 20.9 | 19.9 | 20.4 | 23.8 | 32.1 | 27.4 | 27.6 |
Hematite | 2.0 | 6.8 | 8.9 | 3.3 | 1.4 | 0.7 | 1.4 | 1.1 | 2.1 | 2.2 |
Cristobalite | 13.4 | 12.5 | 2.7 | 2.2 | 1.3 | 0.9 | 13.1 | 11.5 | 2.3 | 2.5 |
Tridymite | 1.9 | 1.3 | 2.2 | 1.9 | 1.8 | 1.8 | 1.4 | 1.7 | 2.3 | 2.5 |
Plagioclase | 0.8 | 1.2 | 1.3 | 1.3 | 0.9 | 0.6 | - | 0.4 | 1.0 | 1.0 |
Whitlockite | - | - | 3.4 | 3.4 | 1.7 | - | - | - | - | - |
Spinel | - | - | - | - | - | 11.5 | 2.3 | - | - | - |
Sample | Specific Density, g·cm−3 | Apparent Density, g·cm−3 | Closed Porosity, % | Total Porosity, % | Total Volume of Pores, cm3·g−1 | Water Absorption, % |
---|---|---|---|---|---|---|
S1 | 2.65256 ± 0.01100 | 1.06784 ± 0.10675 | 6.35394 ± 1.16434 | 59.7508 ± 3.9428 | 0.56726 ± 0.09742 | 13.22 ± 1.12 |
S2 | 2.68818 ± 0.01912 | 1.24884 ± 0.04168 | 8.78424 ± 0.78057 | 53.5416 ± 1.5176 | 0.42934 ± 0.02589 | 11.68 ± 0.69 |
S3 | 2.72156 ± 0.006946 | 1.45206 ± 0.13281 | 6.65904 ± 0.47699 | 46.7108 ± 4.9416 | 0.32572 ± 0.06208 | 12.88 ± 0.86 |
S4 | 2.70182 ± 0.00335 | 1.64276 ± 0.01107 | 5.8717 ± 0.34249 | 39.1964 ± 0.4019 | 0.23856 ± 0.00405 | 13.60 ± 1.50 |
S5 | 2.67886 ± 0.01394 | 1.67188 ± 0.02028 | 5.72246 ± 0.38199 | 37.5898 ± 0.5501 | 0.22468 ± 0.00607 | 12.02 ± 0.48 |
S6 | 2.68284 ± 0.01404 | 1.42768 ± 0.03774 | 7.00168 ± 0.33496 | 46.7808 ± 1.4701 | 0.32802 ± 0.01892 | 12.50 ± 1.04 |
S7 | 2.68918 ± 0.02028 | 1.74602 ± 0.27044 | 7.07420 ± 1.06224 | 35.0640 ± 10.1908 | 0.21026 ± 0.07740 | 2.20 ± 0.71 |
S8 | 2.63116 ± 0.00449 | 1.02612 ± 0.03303 | 7.61958 ± 0.21512 | 60.9998 ± 1.2469 | 0.5952 ± 0.03194 | 12.68 ± 1.17 |
S9 | 2.70062 ± 0.00993 | 1.46924 ± 0.02088 | 6.93252 ± 0.27298 | 45.5948 ± 0.8041 | 0.3104 ± 0.00991 | 11.20 ± 1.88 |
S10 | 2.71372 ± 0.00800 | 1.39032 ± 0.14738 | 7.43658 ± 0.78397 | 48.7664 ± 5.4594 | 0.35812 ± 0.08802 | 12.24 ± 1.34 |
Dependent Variable (yi) | Regression Model | Coefficient of Multiple Correlation |
---|---|---|
specific density | y = 2.70341 + 0.02153x1 − 0.01812x2 − 0.04341x22 | R = 0.9 |
apparent density | y = 1.41428 − 0.29165x2 | R = 0.8 |
closed porosity | y = 6.94559 + 07.8199x2 | R = 0.6 |
total porosity | y = 47.39952 + 10.59057x2 | R = 0.8 |
total volume of pores | y = 0.35876 + 0.16662x2 | R = 0.8 |
water absorption | y = 12.95868 + 2.68808x1 − 3.84228x22 | R = 0.7 |
Physical Properties | Specific Density | Apparent Density | Closed Porosity | Total Porosity | Total Volume of Pores | Water Absorption |
---|---|---|---|---|---|---|
Specific density | 1.0000 | |||||
Apparent density | 0.6162 | 1.0000 | ||||
Closed porosity | −0.0819 | −0.4612 | 1.0000 | |||
Total porosity | −0.5811 | −0.9990 | 0.4699 | 1.0000 | ||
Total volume of pores | −0.6957 | −0.9885 | 0.4138 | 0.9832 | 1.0000 | |
Water absorption | −0.0734 | −0.4855 | −0.1482 | 0.4978 | 0.4096 | 1.0000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latosińska, J.; Żygadło, M.; Czapik, P. The Influence of Sewage Sludge Content and Sintering Temperature on Selected Properties of Lightweight Expanded Clay Aggregate. Materials 2021, 14, 3363. https://doi.org/10.3390/ma14123363
Latosińska J, Żygadło M, Czapik P. The Influence of Sewage Sludge Content and Sintering Temperature on Selected Properties of Lightweight Expanded Clay Aggregate. Materials. 2021; 14(12):3363. https://doi.org/10.3390/ma14123363
Chicago/Turabian StyleLatosińska, Jolanta, Maria Żygadło, and Przemysław Czapik. 2021. "The Influence of Sewage Sludge Content and Sintering Temperature on Selected Properties of Lightweight Expanded Clay Aggregate" Materials 14, no. 12: 3363. https://doi.org/10.3390/ma14123363
APA StyleLatosińska, J., Żygadło, M., & Czapik, P. (2021). The Influence of Sewage Sludge Content and Sintering Temperature on Selected Properties of Lightweight Expanded Clay Aggregate. Materials, 14(12), 3363. https://doi.org/10.3390/ma14123363