Influences of Dispersions’ Shapes and Processing in Magnetic Field on Thermal Conductibility of PDMS–Fe3O4 Composites
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katz, E. Synthesis, Properties and Applications of Magnetic Nanoparticles and Nanowires—A Brief Introduction. Magnetochemistry 2019, 5, 61. [Google Scholar] [CrossRef] [Green Version]
- Lage, T.; Rodrigues, R.O.; Catarino, S.; Gallo, J.; Bañobre-López, M.; Minas, G. Graphene-Based Magnetic Nanoparticles for Theranostics: An Overview for Their Potential in Clinical Application. Nanomaterials 2021, 11, 1073. [Google Scholar] [CrossRef] [PubMed]
- Suvith, V.S.; Devu, V.S.; Philip, D. Facile synthesis of SnO2/NiO nano-composites: Structural, magnetic and catalytic properties. Ceram. Int. 2020, 46, 786–794. [Google Scholar] [CrossRef]
- Köwitsch, I.; Mehring, M. Coatings of magnetic composites of iron oxide and carbon nitride for photocatalytic water Purification. RSC Adv. 2021, 11, 14053–14062. [Google Scholar] [CrossRef]
- Kumar, D.; Moharana, A.; Kumar, A. Current trends in spinel based modified polymer composite materials for electromagnetic shielding. Mater. Today Chem. 2020, 17, 100346:1–100346:21. [Google Scholar] [CrossRef]
- Denver, H.; Heiman, T.; Martin, E.; Gupta, A.; Borca-Tasciuc, D.A. Fabrication of polydimethylsiloxane composites with nickel nanoparticle and nanowire fillers and study of their mechanical and magnetic properties. J. Appl. Phys. 2009, 106, 64909:1–64909:5. [Google Scholar] [CrossRef]
- Antonel, P.S.; Jorge, G.; Perez, O.E.; Butera, A.; Leyva, A.G.; Negri, R.M. Magnetic and elastic properties of CoFe2O4—polydimethylsiloxane magnetically oriented elastomer nanocomposites. Macromol. Rapid Commun 2011, 110, 43920:1–43920:8. [Google Scholar]
- Sotebier, C.; Michel, A. Jerome Fresnais Polydimethylsiloxane (PDMS) Coating onto Magnetic nanoparticle induced by attractive electrostatic interaction. Appl. Sci. 2012, 2, 485–495. [Google Scholar] [CrossRef] [Green Version]
- Said, M.M.; Yunas, J.; Pawinanto, R.E.; Majlis, B.Y.; Bais, B. PDMS based electromagnetic actuator membrane with embedded magnetic particles in polymer composite. Sens. Actuators A Phys. 2016, 245, 85–96. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Truong, T.Q. A fully polymeric micropump with piezoelectricactuator. Sens. Actuators B Chem. 2004, 97, 139–145. [Google Scholar] [CrossRef]
- De Bhailıs, D.; Murray, C.; Duffy, M.; Alderman, J.; Kelly, G. Modelling andanalysis of a magnetic microactuator. Sens. Actuators 2000, 81, 285–289. [Google Scholar] [CrossRef]
- Pawinanto, R.E.; Yunas, J.; Majlis, B.Y.; Bais, B.; Said, M.M. Fabricationand testing of electromagnetic MEMS microactuator utilizing PCB basedplanar microcoil. ARPN J. Eng. Appl. Sci. 2015, 10, 8399–8403. [Google Scholar]
- Jang, H.; Yoon, H.; Ko, Y.; Choi, J.; Lee, S.S.; Jeon, I.; Kim, J.H.; Kim, H. Enhanced performance in capacitive force sensors using carbon nanotube/polydimethylsiloxane nanocomposites with high dielectric properties. Nanoscale 2016, 8, 5667–5675. [Google Scholar] [CrossRef] [PubMed]
- Dickey, M.D. Stretchable and Soft Electronics using Liquid Metals. Adv. Mater. 2017, 29, 1606425. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.K.; Popielarz, R. Polymer Composites with High Dielectric Constant. Ferroelectrics 2002, 275, 1. [Google Scholar] [CrossRef]
- Kontos, G.A.; Soulintzis, A.L.; Karahaliou, P.K.; Psarras, G.C.; Georga, S.N.; Krontiras, C.A.; Pisanias, M.N. Electrical relaxation dynamics in TiO2—polymer matrix composites. Polym. Lett. 2007, 1, 781. [Google Scholar] [CrossRef] [Green Version]
- Psarras, G.C.; Gatos, K.G.; Karahaliou, P.K.; Georga, S.N.; Krontiras, C.A.; Karger-Kocsis, J. Relaxation Phenomena in Rubber/Layered Silicate Nanocomposites. Polym. Lett. 2007, 1, 837. [Google Scholar] [CrossRef]
- Sadovnikov, A.V.; Odintsov, S.A.; Beginin, E.N.; Grachev, A.A.; Gubanov, V.A.; Sheshukova, S.E.; Sharaevskii, Y.P.; Nikitov, S.A. Nonlinear Spin Wave Effects in the System of Lateral Magnonic Structures. JETP Lett. 2018, 107, 25–29. [Google Scholar] [CrossRef]
- Sadovnikov, A.V.; Grachev, A.A.; Gubanov, V.A.; Odintsov, S.A.; Martyshkin, A.A.; Sheshukova, S.E.; Sharaevskii, Y.P.; Nikitov, S.A. Spin-wave intermodal coupling in the interconnection of magnonic units. Appl. Phys. Lett. 2018, 112, 142402:1–142402:5. [Google Scholar] [CrossRef]
- Sadovnikov, A.V.; Bublikov, K.V.; Beginin, E.N.; Nikitov, S.A. The Electrodynamic Characteristics of a Finite_Width Metal/Dielectric/Ferroelectric/Dielectric/Metal Layer Structure. J. Commun. Technol. Electron. 2014, 59, 914–919. [Google Scholar] [CrossRef]
- Siegel, A.C.; Phillips, S.T.; Dickey, M.D.; Lu, N.; Suo, Z.; Whitesides, G.M. Foldable printed circuit boards on paper substrates. Adv. Funct. Mater. 2010, 20, 28–35. [Google Scholar] [CrossRef]
- Kong, Y.L.; Gupta, M.K.; Johnson, B.N.; McAlpinem, M.C. 3D printed bionic nanodevices. Nano Today 2016, 11, 330–350. [Google Scholar] [CrossRef] [Green Version]
- Compton, B.G.; Lewis, J.A. 3D-printing of lightweight cellular composites. Adv. Mater. 2014, 26, 5930–5935. [Google Scholar] [CrossRef] [PubMed]
- Collino, R.R.; Ray, T.R.; Fleming, R.C.; Sasaki, C.H.; Haj-Haririd, H.; Begleyab, M.R. Acoustic field controlled patterning and assembly of anisotropic particles. Extreme Mech. Lett. 2015, 5, 37–46. [Google Scholar] [CrossRef]
- Levy, R.; Shaheen, U.; Cesbron, Y.; See, V. Gold nanoparticles delivery in mammalian live cells: A critical review. Nano Rev. 2010, 1, 4889. [Google Scholar] [CrossRef]
- Lin, M.M.; Kim, H.H.; Kim, H.; Muhammed, M.; Kim, D.K. Iron oxide-based nanomagnets in nanomedicine: Fabrication and applications. Nano Rev. 2010, 1, 4883. [Google Scholar]
- Yang, Y.-M.; Tsai, H.-H.; Hsu, T.-H.; Su, Y.-C. Magnetic shaping of ferrite-PDMS composite and its application in magnetic carrier targeting. Transducers 2009, 21–25. [Google Scholar]
- Driscoll, C.F.; Morris, R.M.; Senyei, A.E.; Widder, K.J.; Heller, G.S. Magnetic Targeting of Microspheres in Blood Flow. Microvasc. Res. 1984, 27, 353–369. [Google Scholar] [CrossRef]
- Carlson, J.D.; Jolly, M.R. MR fluid, foam and elastomer devices. Mechatronics 2000, 10, 555. [Google Scholar] [CrossRef]
- Górecki, K.; Ptak, P.; Torzewicz, T.; Janicki, M. Influence of a Thermal Pad on Selected Parameters of Power LEDs. Energies 2020, 13, 3732. [Google Scholar] [CrossRef]
- Sim, L.C.; Ramanan, S.R.; Ismail, H.; Seetharamu, K.N.; Goh, T.J. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochim. Acta 2005, 430, 155–165. [Google Scholar] [CrossRef]
- Geng, J.; Men, Y.; Liu, C.; Ge, X.; Yuan, C. Preparation of rGO@Fe3O4 nanocomposite and its application to enhance the thermal conductivity of epoxy resin. RSC Adv. 2021, 11, 16592–16599. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, J.; Li, Q.; Xia, D.-H.; Deng, Y.; Zhang, Y.; Qin, Z. Preparation and Thermal Conductivity of Epoxy Resin/Graphene-Fe3O4 Composites. Materials 2021, 14, 2013. [Google Scholar] [CrossRef]
- Shayganpour, A.; Clausi, M.; Bayer, I.S. Flexible hematite (α-Fe2O3)-graphene nanoplatelet (GnP) hybrids with high thermal conductivity. Appl. Phys. Lett. 2020, 118, 091903:1–091903:6. [Google Scholar]
- Kuncser, V.; Chipara, D.; Martirosyan, K.S.; Schinteie, G.A.; Ibrahim, E.; Chipara, M. Magnetic properties and thermal stability of polyvinylidene fluoride—Fe2O3 nanocomposites. J. Mater. Res. 2020, 35, 132–140. [Google Scholar] [CrossRef]
- Do, J.Y.; Son, N.; Shin, J.; Chava, R.K.; Joo, S.; Kang, M. n-Eicosane-Fe3O4@SiO2@Cu microcapsule phase change material and its improved thermal conductivity and heat transfer performance. Mater. Des. 2021, 198, 109357:11–109357:15. [Google Scholar] [CrossRef]
- Flaifel, M.H. An Approach Towards Optimization Appraisal of Thermal Conductivity of Magnetic Thermoplastic Elastomeric Nanocomposites Using Response Surface Methodology. Polymers 2020, 12, 2030. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, Y.; Alam, M.M.; Chen, P.; Xia, R.; Wu, B.; Qian, J. Enhanced thermal conductivity of nanocomposites with MOF-derived encapsulated magnetic oriented carbon nanotube-grafted graphene polyhedral. RSC Adv. 2020, 10, 3357–3365. [Google Scholar] [CrossRef] [Green Version]
- Ozaytekin, I.; Oflaz, K. Synthesis and characterization of high-temperature resistant and thermally conductive magnetic PBI/Fe3O4 nanofibers. HIGH Perform. Polym. 2020, 32, 1031–1042. [Google Scholar] [CrossRef]
- Jin, Z.; Liang, F.; Lu, W.; Dai, J.; Meng, S.; Lin, Z. Effect of Particle Sizes of Nickel Powder on Thermal Conductivity of Epoxy Resin-Based Composites under Magnetic Alignment. Polymers 2019, 11, 1990. [Google Scholar] [CrossRef] [Green Version]
- Moolgard, K.; Smeltzer, W.W. Thermal conductivity of Magnetite and Hematite. J. Appl. Phys. 1971, 42, 3644–3647. [Google Scholar] [CrossRef]
- Westrum, E.F.; Gronvold, F. Magnetite (Fe3O4) heat capacity and thermodynamic properties from 5 to 350 K, low-temperature transition. J. Chem. Thermodyn. 1969, 1, 543–557. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Zhang, C.; Liu, S.; Tang, Y.; Yin, Y. Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. Appl. Phys. Lett. 2006, 89, 023123. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stancu, V.; Galatanu, A.; Enculescu, M.; Onea, M.; Popescu, B.; Palade, P.; Aradoaie, M.; Ciobanu, R.; Pintilie, L. Influences of Dispersions’ Shapes and Processing in Magnetic Field on Thermal Conductibility of PDMS–Fe3O4 Composites. Materials 2021, 14, 3696. https://doi.org/10.3390/ma14133696
Stancu V, Galatanu A, Enculescu M, Onea M, Popescu B, Palade P, Aradoaie M, Ciobanu R, Pintilie L. Influences of Dispersions’ Shapes and Processing in Magnetic Field on Thermal Conductibility of PDMS–Fe3O4 Composites. Materials. 2021; 14(13):3696. https://doi.org/10.3390/ma14133696
Chicago/Turabian StyleStancu, V., A. Galatanu, M. Enculescu, M. Onea, B. Popescu, P. Palade, M. Aradoaie, R. Ciobanu, and L. Pintilie. 2021. "Influences of Dispersions’ Shapes and Processing in Magnetic Field on Thermal Conductibility of PDMS–Fe3O4 Composites" Materials 14, no. 13: 3696. https://doi.org/10.3390/ma14133696
APA StyleStancu, V., Galatanu, A., Enculescu, M., Onea, M., Popescu, B., Palade, P., Aradoaie, M., Ciobanu, R., & Pintilie, L. (2021). Influences of Dispersions’ Shapes and Processing in Magnetic Field on Thermal Conductibility of PDMS–Fe3O4 Composites. Materials, 14(13), 3696. https://doi.org/10.3390/ma14133696