Development and Experimental Validation of Real Fluid Models for CFD Calculation of ORC and Steam Turbine Flows
Abstract
:1. Introduction
2. Mathematical Model
2.1. Flow Solver
2.2. Equations of State
2.3. Determination of Constants of the Benedict–Webb–Rubin Equation of State
2.4. Method of Interpolation–Analytical Representation of Thermodynamic Functions
3. Comparison of Computational Results and Experimental Data
3.1. Low-Pressure Cylinder of 360 MW Steam Turbine
3.2. Radial ORC Turbine with HFE7100 Working Fluid
3.3. Axial ORC Turbine with R227ea Working Fluid
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
a [m/s] | sonic speed |
Cp [J/(kg×K)] | isobaric heat capacity |
Cv [J/(kg×K)] | isochoric heat capacity |
f [J/kg] | Helmholtz free energy |
G [kg/s] | mass flow rate |
G(i) […] † | constants of the mBWR32 equation, † constants of the mBWR32 equation are dimensional; their dimensions depend on particular terms at which these constants appear |
H [J/kg] | enthalpy |
N [kW] | power |
P [kPa] | pressure |
P* [kPa] | total pressure |
po [kPa] | constant of the Tammann equation of state |
R [J/(kg×K)] | gas constant |
S [J/(kg×K)] | entropy |
T [K] | temperature |
T* [K] | total temperature |
u [J/kg] | internal energy |
γ [–] | adiabatic index |
η [%] | efficiency |
ρ [kg/m3] | density |
ρ* [kg/m3] | density in critical point |
Ω [rpm] | rotational speed |
Indexes
in | parameters at the inlet |
ex | parameters at the outlet |
is | isentropic parameters |
isT | isentropic parameters obtained using the Tammann equation of state |
* | stagnant flow parameters |
Appendix A. Determination of the Caloric Equation and Equations Describing Thermodynamic Functions Corresponding to the Modified Benedict–Webb–Rubin Thermal Equation of State
Appendix B. The Values of the Constants of the mBWR32 Equation
Header | Water | HFE7100 | R227ea |
---|---|---|---|
γ | −0.3231043142361733D-05 | 0.1205572957283814D-04 | −0.4070048644587564D-05 |
R | 461.5221 | 33.2578 | 48.900286 |
G(1) | 0.1340188952700849D+03 | −0.2525969245607927D+01 | −0.3822484082371177D+00 |
G(2) | −0.113303814253851D+05 | 0.1763741711279182D+03 | 0.3160389924533887D+02 |
G(3) | 0.2749007471054583D+06 | −0.3601187752097783D+04 | −0.6964326417230550D+03 |
G(4) | −0.5829440628781757D+08 | 0.5458851793941257D+06 | 0.1031623062428149D+06 |
G(5) | 0.6411659750384605D+10 | −0.5663324176871473D+08 | −0.1223225314792705D+08 |
G(6) | 0.4129629566529071D-01 | 0.9648702918708597D-02 | −0.3193811769158057D-02 |
G(7) | −0.3145701008839712D+02 | −0.18125682062194D+02 | 0.5188230632727036D+01 |
G(8) | 0.5901184750968312D+04 | 0.1286291165389281D+05 | −0.3213400289440099D+04 |
G(9) | −0.5661166428856716D+08 | −0.6299375060616176D+06 | 0.1012250688519747D+07 |
G(10) | 0.5132663309662063D-04 | −0.8753130222925309D-05 | −0.2197301359332797D-06 |
G(11) | −0.2658843752788538D+00 | 0.9307351571136587D-02 | 0.7172225363205859D-03 |
G(12) | 0.1651883341198171D+03 | −0.2450136776131232D+01 | −0.3008513561879612D+00 |
G(13) | 0.2266027017849203D-03 | 0.2632266072695997D-05 | −0.1192023216555466D-06 |
G(14) | −0.2864338390658241D-03 | 0.1286131777344554D-03 | 0.1273328787250847D-05 |
G(15) | 0.3051102426759072D+00 | −0.4003450054558224D-01 | −0.1030080706600882D-02 |
G(16) | −0.1031902385352661D-07 | −0.7272480072620692D-06 | −0.3742988522718769D-08 |
G(17) | 0.1272432927055814D-09 | 0.1370553160729363D-08 | 0.198611771894904D-11 |
G(18) | −0.4205928256302565D-06 | −0.7311642108133796D-07 | 0.8602107806419969D-09 |
G(19) | 0.1969386059083182D-09 | −0.21916813548160857D-08 | −0.3439884131761577D-12 |
G(20) | 0.5251565542126347D+08 | −0.339994425757511D+07 | −0.1063496697985402D+06 |
G(21) | 0.1592357820321519D+10 | 0.481540423072116D+09 | −0.9608289845410669D+08 |
G(22) | 0.3910795651035839D+02 | 0.29141961883346D+02 | −0.9382279023090581D+00 |
G(23) | −0.242578208092937D+07 | −0.6038000612169966D+06 | −0.5130819818146024D+05 |
G(24) | −0.2657686496886626D-03 | 0.9152256834775216D-04 | 0.2887503456985266D-05 |
G(25) | 0.1103996250508223D-01 | −0.1772968331616998D-01 | −0.1133636629805082D-02 |
G(26) | −0.1413468432232942D-09 | −0.1009669532982529D-08 | −0.1517330593686373D-11 |
G(27) | 0.1393914328000583D-04 | 0.5427714466691425D-04 | 0.2006200837684165D-06 |
G(28) | 0.4705295923820445D-16 | 0.1498672827301075D-14 | 0.39494924918485634D-16 |
G(29) | −0.26690260796323977D-12 | 0.1907285109535534D-12 | −0.1035803258385956D-13 |
G(30) | −0.4396223589757114D-22 | −0.364152113015046D-20 | −0.3003171762530103D-22 |
G(31) | 0.1675173765276002D-18 | 0.1700716094002334D-17 | 0.1053509965613469D-19 |
G(32) | −0.5393086721503225D-17 | −0.3340812356980171D-15 | −0.4695091535355264D-19 |
G(33) | −0.1144301681378893D+11 | −0.3397310131672742D+09 | 0.1148400077140449D+09 |
G(34) | −0.238993513584905D+06 | 0.3117370419539324D+04 | 0.9631857575641608D+04 |
G(35) | −0.1121389642058093D+02 | −0.3284940764348829D+00 | 0.1552792260893027D+00 |
G(36) | 0.310205161600632D+05 | −0.5386718572092581D+03 | −0.1609342678142145D+04 |
G(37) | 0.4000508032246298D+08 | 0.4375477883494194D+06 | −0.5838965010940802D+06 |
References
- Younglove, B.A.; Ely, J.F. Thermophysical Properties of Fluids II Methane, Ethane, Propane, Isobutane, and Normal Butane. J. Phys. Chem. Ref. Data 1987, 16, 577–798. [Google Scholar] [CrossRef]
- Chmielniak, T.J.; Wróblewski, W.; Dykas, S. Steam flow calculations in turbine channels. In Proceedings of the 3rd European Conference on Turbomachinery, London, UK, 2–5 March 1999; pp. 803–813. [Google Scholar]
- Dykas, S.; Wróblewski, W. Numerical modelling of steam condensing flow in low and high–pressure nozzles. Int. J. Heat Mass Transfer. 2012, 55, 6191–6199. [Google Scholar] [CrossRef]
- Lampart, P.; Rusanov, A.; Yershov, S.; Marcinkowski, S.; Gardzilewicz, A. Validation of 3D RANS Solver With a State Equation of Thermally Perfect and Calorically Imperfect Gas on a Multi-Stage Low-Pressure Steam Turbine Flow. Trans. ASME J. Fluids Eng. 2005, 127, 83–93. [Google Scholar] [CrossRef]
- IAPWS. Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. Available online: http://www.iapws.org (accessed on 10 August 2021).
- Benedict, M.; Webb, G.B.; Rubin, L.C. An Empirical Equation for Thermodynamic Properties of Light Hydrocarbons and Their Mixtures: I. Methane, Ethane, Propane, and n–Butane. J. Chem. Phys. 1940, 8, 334–345. [Google Scholar] [CrossRef]
- Soave, G.S. An effective modification of the Benedict–Webb–Rubin equation of state. Fluid Phase Equilibria 1999, 164, 157–172. [Google Scholar] [CrossRef]
- Outcalt, S.L.; McLinden, M.O. A modified Benedict–Webb–Rubin equation of state for the thermodynamic properties of R152a (1,1–difluoroethane). J. Phys. Chem. Ref. Data 1996, 25, 605–636. [Google Scholar] [CrossRef] [Green Version]
- Asano, Y.; Fuchizaki, K. Modified Benedict–Webb–Rubin Equation of State for the Modified Lennard–Jones Fluid. J. Phys. Soc. Jpn. 2014, 83, 034601. [Google Scholar] [CrossRef]
- REFPROP. National Institute of Standards and Technology, Standard Reference Database. Available online: https://www.nist.gov/srd/refprop (accessed on 15 August 2021).
- Rausch, M.H.; Kretschmer, L.; Will, S.; Leipertz, A.; Fröba, A.P. Density, Surface, Tension, and Kinematic Viscosity of Hydrofluoroethers HFE-7000, HFE-7100, HFE7200, HFE-7300, and HFE-7500. J. Chem. Eng. Data 2015, 60, 3759–3765. [Google Scholar] [CrossRef]
- Lemmon, E.W.; Span, R. Thermodynamic Properties of R-227ea, R-365mfc, R-115, and R-13I1. J. Chem. Eng. Data 2015, 60, 3745–3758. [Google Scholar] [CrossRef]
- Rusanov, A.; Rusanov, R.; Lampart, P. Designing and updating the flow part of axial and radial-axial turbines through mathematical modelling. Open Eng. 2015, 5, 399–410. [Google Scholar] [CrossRef] [Green Version]
- Yershov, S.; Rusanov, A. The Application Package FlowER for the Calculation of 3D Viscous Flows through Multi-Stage Turbomachinery; Certificate of State Registration of Copyright, Ukrainian State Agency of Copyright and Related Rights: Kyiv, Ukraine, 1996. (In Russian) [Google Scholar]
- Anderson, D.A.; Tannehill, J.C.; Pletcher, R.H. Computational Fluid Mechanics and Heat Transfer, 2nd ed.; Taylor and Francis: Milton Park, UK, 1986; 792p. [Google Scholar]
- Fletcher, C.A.J. Computational Techniques for Fluid Dynamics. In Vol. I: Fundamental and General Techniques. Vol. II: Specific Techniques for Different Flow Categories; Springer: Berlin/Heidelberg, Germany, 1988; 409p. [Google Scholar]
- Menter, F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef] [Green Version]
- Yershov, S.; Rusanov, A.; Gardzilewicz, A.; Lampart, P. Calculations of 3D viscous compressible turbomachinery flows. In Proceedings of the 2nd Symposium on Computational Technologies for Fluid/Thermal/Chemical Systems with Industrial Applications, ASME PVP Division Conference, Boston, MA, USA, 1–5 August 1999; Volume 397.2, pp. 143–154. [Google Scholar]
- Sardjono, J.A.; Darmawan, S.; Tanujaya, H. Flow investigation of cross-flow turbine using CFD method. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 1007, p. 012035. [Google Scholar]
- Hills, N.J. Whole Turbine CFD Modelling. In Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea, and Air Volume 6: Turbo Expo 2007, Parts A and B, Montreal, QC, Canada, 14–17 May 2007; pp. 817–824. [Google Scholar]
- Chima, R.V. Explicit multigrid algorithm for quasi-three-dimensional viscous flows in turbomachinery. J. Propuls. Power 1987, 3, 397–405. [Google Scholar] [CrossRef]
- Lampart, P.; Gardzilewicz, A.; Yershov, S.; Rusanov, A. Investigation of interaction of the main flow with root and tip leakage flows in an axial turbine stage by means of a source/sink approach for a 3D Navier-Stokes Solver. J. Therm. Sci. 2001, 10, 198–204. [Google Scholar] [CrossRef]
- Parsonage, M.G. The Gaseous State; The Commonwealth and International Library, Chemistry Division: Pergamon, Turkey, 1966; 162p. [Google Scholar]
- Mansour, E.; Desouky, S.; Batanoni, M.; Mahmoud, M.; Farag, A.; El-Dars, F. Modification proposed for SRK equation of state. Oil Gas J. 2012, 110, 78–91. [Google Scholar]
- Rusanov, A.V.; Yershov, S.V. Mathematical Modelling of Unsteady Gasdynamic Processes in Turbomachinery Flow Parts; Institute of Mechanical Engineering Problems: Kharkiv, Ukraine, 2008; 275p. (In Russian) [Google Scholar]
- Weber, L.A. A Modified Benedict-Webb-Rubin Equation of State for Gaseous and Liquid Oxygen; National Bureau of Standards, NASA CR-157861: Gaithersburg, MD, USA, 1978; 37p. [Google Scholar]
- Bridgman, P.W. A complete collection of thermodynamic formulas. Phys. Rev. 1914, 3, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Lewis, G.N.; Randall, M. Thermodynamics, 2nd ed.; Pitzer, K.S., Brewer, L., Eds.; McGraw-Hill Book Company: New York, NY, USA, 1961; p. 479. [Google Scholar]
- Rusanov, A.V.; Lampart, P.; Pashchenko, N.V.; Rusanov, R.A. Modelling 3D steam turbine flow using thermodynamic properties of steam IAPWS–95. Pol. Marit. Res. 2016, 23, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Kunick, M.; Kretzschmar, H.J.; di Mare, F.; Gampe, U. CFD Analysis of steam turbines with the IAPWS standard on the Spline-Based Table Look-Up Method (SBTL) for the fast calculation of real fluid properties. In Proceedings of the ASME Turbo Expo, Paper GT2015-43984, Montreal, QC, Canada, 15–19 June 2015. V008T26A037. [Google Scholar]
- Sobachkin, A.; Dumnov, G. Numerical Basis of CAD-Embedded CFD. In Proceedings of the NAFEMS World Congress 2013, Salzburg, Austria, 9–12 June 2013. [Google Scholar]
- Marcinkowski, S. Results of Extended Flow Measurements in the LP Part of 18K370 Steam Turbine in the Belchatów Power Station; Rep. Institute of Fluid Flow Machinery: Gdansk, Poland, 1998; No. 292/98. (In Polish) [Google Scholar]
- Kaczmarczyk, T.Z.; Zywica, G.; Ihnatowicz, E. The experimental investigation of the biomass–fired ORC system with a radial microturbine. Appl. Mech. Mater. 2016, 831, 235–244. [Google Scholar] [CrossRef]
- Kaczmarczyk, T.Z.; Zywica, G.; Ihnatowicz, E. The impact of changes in the geometry of a radial microturbine stage on the efficiency of the micro CHP plant based on ORC. Energy 2017, 137, 530–543. [Google Scholar] [CrossRef]
- Klonowicz, P.; Borsukiewicz-Gozdur, A.; Hanausek, P.; Kryllowicz, W.; Brüggemann, D. Design and performance measurements of an organic vapour turbine. Appl. Therm. Eng. 2014, 63, 297–303. [Google Scholar] [CrossRef]
- Borsukiewicz-Gozdur, A. Experimental investigation of R227ea applied as working fluid in the ORC power plant with hermetic turbogenerator. Appl. Therm. Eng. 2013, 56, 126–133. [Google Scholar] [CrossRef]
Pex, kPa | ||||||
---|---|---|---|---|---|---|
519 | 539 | 2.12 | 8.3 | 315.21 | 0.06485 | 699.2 |
γ | R, J/(kg·K) | , kJ/kg | |
---|---|---|---|
1.154 | 455.1 | 1.002 | 763.85 |
Parameter | Experiment | Tammann | IAPWS95 | mBWR32 |
---|---|---|---|---|
Inlet | ||||
P *, kPa | 519 | |||
T *, K | 539 | |||
H *, kJ/kg | 2993.64 | |||
Outlet of stage 3 | ||||
P, kPa | 79.9 | 78.85 | 79.92 | 79.91 |
ΔP, % | 1.3 | −0.03 | 0.15 | |
T, K | 371.2 | 429.4 | 366.71 | 366.71 |
ΔT, % | −15.7 | 1.21 | 1.21 | |
H, kJ/kg | 2647 | 2647.2 | 2643.51 | 2643.51 |
Δh, % | −0.01 | 0.13 | 0.13 | |
G, kg/s | 107.9 | 103.8 | 107.63 | 107.64 |
ΔG, % | 3.8 | 0.25 | 0.24 | |
Outlet of stage 4 | ||||
P, kPa | 34.9 | 34.87 | 35.04 | 35.02 |
ΔP, % | 0.09 | −0.4 | −0.34 | |
T, K | 346.4 | 390.58 | 345.88 | 345.87 |
ΔT, % | −12.75 | 0.15 | 0.15 | |
H, kJ/kg | 2531 | 2503.5 | 2525.14 | 2527.14 |
Δh, % | 1.09 | 0.23 | 0.23 | |
G, kg/s | 100.9 | 97.6 | 101.11 | 101.12 |
ΔG, % | 3.27 | −0.21 | −0.22 | |
Outlet of stage 5 | ||||
P, kPa | 8.3 | |||
ΔP, % | 0.0 | 0.0 | 0.0 | |
T, K | 314.8 | 334.63 | 315.38 | 315.38 |
ΔT, % | −6.3 | −0.19 | −0.19 | |
H, kJ/kg | 2350 | 2326.9 | 2353.27 | 2353.27 |
Δh, % | 0.98 | −0.14 | −0.14 | |
G, kg/s | 96 | 91.39 | 95.81 | 95.81 |
ΔG, % | 4.81 | 0.2 | 0.2 |
№ | Ω, rpm | |||||||
---|---|---|---|---|---|---|---|---|
1 | 18,120 | 760.2 | 427 | 75.07 | 203.2 | 403.32 | 16.56 | 15.16 |
2 | 19,620 | 786.8 | 416.1 | 85.73 | 192.7 | 390.06 | 16.34 | 15.28 |
3 | 19,000 | 750 | 413.7 | 80.84 | 175 | 387.41 | 14.83 | 188 |
№ | γ | R, J/(kg·K) | % | ||
---|---|---|---|---|---|
1 | 1.038 | 21.96 | −56.6 | 14.29 | 5.75 |
2 | 1.038 | 20.31 | −63.35 | 14.09 | 7.76 |
3 | 1.039 | 20.77 | −55.76 | 14.62 | 7.93 |
Operational Mode | Experiment/Computation | G, kg/s | N, kW | η, % |
---|---|---|---|---|
1 | Experiment | 0.1796 | 1.8188 | 66.82 |
Tammann | 0.1955 (+8.86%) | 1.9539 (+7.43%) | 69.96 (+3.14%) | |
mBWR32 | 0.1882 (+4.81%) | 1.8604 (+2.29%) | 65.21 (−1.61%) | |
2 | Experiment | 0.189 | 2.0824 | 72.05 |
Tammann | 0.2098 (+10.88%) | 1.9461 (−6.54%) | 65.84 (−6.21%) | |
mBWR32 | 0.2014 (+6.45%) | 2.0889 (+0.32%) | 67.98 (−4.07%) | |
3 | Experiment | 0.185 | 1.9353 | 65.88 |
Tammann | 0.2031 (+9.8%) | 2.0257 (+4.67%) | 68.21 (+2.34%) | |
mBWR32 | 0.1913 (+3.41%) | 1.9877 (+2.71%) | 65.51 (−0.36%) |
№ | Ω, rpm | kPa | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2847 | 820.8 | 322.4 | 64.96 | 320.8 | 299.29 | 24.13 | 12.28 |
2 | 2895 | 831.8 | 321.4 | 66.58 | 315.8 | 297.45 | 23.92 | 12.56 |
3 | 3128 | 916.8 | 326 | 73.42 | 342.8 | 301.18 | 25.75 | 12.82 |
4 | 3264 | 953.8 | 326.8 | 77.07 | 332.8 | 300.1 | 25.04 | 13.68 |
№ | γ | R, J/(kg·K) | |||
---|---|---|---|---|---|
1 | 1.075 | 36.465 | −57.617 | 12.05 | 1.83 |
2 | 1.076 | 36.151 | −58.74 | 12.3 | 2.05 |
3 | 1.076 | 35.497 | −67.68 | 12.53 | 2.25 |
4 | 1.076 | 35.166 | −68.7 | 13.32 | 2.67 |
Operation Mode | Experiment/Computation | G, kg/s | N, kW | η, % |
---|---|---|---|---|
1 | Experiment | 1.111 | 8.451 | 61.94 |
Tammann | 1.166 (+4.99%) | 8.41 (−0.49%) | 55.821 (−6.12%) | |
mBWR32 | 1.142 (+2.79%) | 8.264 (−2.21%) | 55.059 (−6.88%) | |
2 | Experiment | 1.154 | 8.67 | 59.819 |
Tammann | 1.19 (+3.14%) | 8.809 (+1.60%) | 56.216 (−3.60%) | |
mBWR32 | 1.161 (+0.62%) | 8.637 (−0.38%) | 55.432 (−4.39%) | |
3 | Experiment | 1.311 | 10.022 | 59.63 |
Tammann | 1.309 (−0.16%) | 10.210 (+1.87%) | 57.61 (−2.02%) | |
mBWR32 | 1.275 (−2.77%) | 10.034 (+0.12%) | 56.912 (−2.72%) | |
4 | Experiment | 1.334 | 10.846 | 59.434 |
Tammann | 1.373 (+2.95%) | 11.506 (+6.08%) | 58.009 (−1.43%) | |
mBWR32 | 1.330 (−0.28%) | 11.348 (+4.63%) | 57.637 (−1.80%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusanov, A.; Rusanov, R.; Klonowicz, P.; Lampart, P.; Żywica, G.; Borsukiewicz, A. Development and Experimental Validation of Real Fluid Models for CFD Calculation of ORC and Steam Turbine Flows. Materials 2021, 14, 6879. https://doi.org/10.3390/ma14226879
Rusanov A, Rusanov R, Klonowicz P, Lampart P, Żywica G, Borsukiewicz A. Development and Experimental Validation of Real Fluid Models for CFD Calculation of ORC and Steam Turbine Flows. Materials. 2021; 14(22):6879. https://doi.org/10.3390/ma14226879
Chicago/Turabian StyleRusanov, Andrii, Roman Rusanov, Piotr Klonowicz, Piotr Lampart, Grzegorz Żywica, and Aleksandra Borsukiewicz. 2021. "Development and Experimental Validation of Real Fluid Models for CFD Calculation of ORC and Steam Turbine Flows" Materials 14, no. 22: 6879. https://doi.org/10.3390/ma14226879
APA StyleRusanov, A., Rusanov, R., Klonowicz, P., Lampart, P., Żywica, G., & Borsukiewicz, A. (2021). Development and Experimental Validation of Real Fluid Models for CFD Calculation of ORC and Steam Turbine Flows. Materials, 14(22), 6879. https://doi.org/10.3390/ma14226879