Structure and Properties of Alloys Obtained by Aluminothermic Reduction of Deep-Sea Nodules
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Chemical Composition of the Alloys
3.2. Microstructure and Phase Composition
3.2.1. Stoichiometric Amount of Aluminum
3.2.2. 10% of Aluminum Excess
3.2.3. 20% of Aluminum Excess
3.3. Differential Thermal Analysis
3.4. Mechanical and Tribological Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haynes, B.W.; Law, S.L.; Barron, D.C.; Kramer, G.W.; Maeda, R.; Magyar, M.J. Pacific manganese nodules: Characterization and processing. In Bulletin/US Dept. of the Interior, Bureau of Mines; Government Printing Office: Washingtonm DC, USA, 1985; Volume 679, pp. 1–43. [Google Scholar]
- Hein, J.; Mizell, K.; Koschinsky, A.; Conrad, T.A. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based deposits. Ore Geol. Rev. 2013, 51, 1–14. [Google Scholar] [CrossRef]
- Mohwinkel, D.; Kleint, C.; Koschinsky, A. Phase associations and potential selective extraction methods for selected high-tech metals from ferromanganese nodules and crusts with siderophores. Appl. Geochem. 2014, 43, 13–21. [Google Scholar] [CrossRef]
- Randhawa, N.S.; Hait, J.; Jana, R.K. A brief overview on manganese nodules processing signifying the detail in the Indian context highlighting the international scenario. Hydrometallurgy 2016, 165, 166–181. [Google Scholar] [CrossRef]
- Sen, P.K. Processing of sea nodules: Current status and future needs. Met. Mater. Process. 1999, 11, 85–100. [Google Scholar]
- Sen, P.K. Metals and materials from deep sea nodules: An outlook for the future. Int. Mater. Rev. 2010, 55, 364–391. [Google Scholar] [CrossRef]
- Cardwell, P.H. Extractive metallurgy of ocean nodules. Min. Cong. J. 1973, 38–43. [Google Scholar]
- Hubred, G.L. Manganese nodule extractive metallurgy. A review. Mar. Min. 1980, 2, 191–212. [Google Scholar]
- Premchand; Jana, R.K. Processing of polymetallic sea nodules: An overview. In Proceedings of the Third ISOPE-Ocean Mining Symposium (OMS), Goa, India, 8–19 November 1999; pp. 237–245. [Google Scholar]
- Vu, H.; Jandová, J.; Lisá, K.; Vranka, F. Leaching of manganese deep ocean nodules in FeSO4–H2SO4–H2O solutions. Hydrometallurgy 2005, 77, 147–153. [Google Scholar] [CrossRef]
- Vu, H.; Jandová, J.; Lisá, K.; Vranka, F. Separation of copper and cobalt–nickel sulphide concentrates during processing of manganese deep ocean nodules. Hydrometallurgy 2005, 77, 75–79. [Google Scholar]
- Monhemius, A.J. The extractive metallurgy of deep-sea manganese nodules. In Topics in Non-Ferrous Extractive Metallurgy—Critical Reports on Applied Chemistry Volume 1; Burkin, A.R., Ed.; Blackwell Scientific Publication: Oxford, UK, 1980; pp. 42–69. [Google Scholar]
- Sridhar, R.; Jones, W.E.; Warner, J.S. Extraction of copper, nickel and cobalt from sea nodules. J. Met. 1976, 28, 32–37. [Google Scholar] [CrossRef]
- Sommerfeld, M.; Friedmann, D.; Kuhn, T.; Friedrich, B. “Zero-Waste”: A Sustainable Approach on Pyrometallurgical Processing of Manganese Nodule Slags. Minerals 2018, 8, 544. [Google Scholar] [CrossRef] [Green Version]
- Szabo, L.J. Recovery of Metal Values from Manganese Deep Sea Nodules Using Ammoniacal Cuprous Leach Solutions. U.S. Patent 3983017, 28 September 1976. [Google Scholar]
- Agarwal, J.C. A new fix on metal recovery from sea nodules. Eng. Min. J. 1976, 177, 74–78. [Google Scholar]
- Skarbo, R.R.; Galin, W.E.; Natwig, D.L. Cobalt Stripping from Oximes. U.S. Patent 3867506, 18 February 1975. [Google Scholar]
- Van Peteghem, A.L. Extracting Metal Values from Manganiferrous Ocean Nodules. U.S. Patent 4026773, 31 May 1977. [Google Scholar]
- Kane, W.S.; Cardwell, P.H. Process for Recovering Manganese from Its Ores. U.S. Patent 3832165, 27 August 1974. [Google Scholar]
- Cardwell, P.H.; Kane, W.S. Method for Separating Metal Constituents from Ocean Floor Nodules. U.S. Patent 3950486, 13 April 1976. [Google Scholar]
- Acharya, S.; Das, R.P. Kinetics and mechanism of reductive ammonia leaching of ocean nodules by manganese ion. Hydrometallurgy 1987, 19, 169–186. [Google Scholar] [CrossRef]
- Acharya, R.; Ghosh, M.K.; Anand, S.; Das, R.P. Leaching of metals from Indian Ocean nodules in SO2–H2O–H2SO4–(NH4)2SO4 medium. Hydrometallurgy 1999, 53, 169–175. [Google Scholar] [CrossRef]
- Nathsarma, K.C.; Rout, P.C.; Sarangi, K. Manganese precipitation kinetics and cobalt adsorption on MnO2 from the ammoniacal ammonium sulfate leach liquor of Indian Ocean manganese nodule. Hydrometallurgy 2013, 133, 133–138. [Google Scholar] [CrossRef]
- Basu, A.K. Metallurgy of polymetallic sea nodules for recovery of value metals. In Proceedings of the National Seminar on Chemical and Allied Materials from the Ocean; Jadavpur University: Calcutta, India, 1989; pp. 1–8. [Google Scholar]
- Srikanth, S.; Alex, T.C.; Agrawal, A.; Premchand. Reduction roasting of deep-sea manganese nodules using liquid and gaseous reductants. In Proceedings of the Second ISOPE-Ocean Mining Symposium (OMS), Seoul, Korea, 24–26 November 1997; pp. 177–184. [Google Scholar]
- Jana, R.K.; Pandey, B.D.; Premchand. Ammoniacal leaching of roast reduced deep-sea manganese nodules. Hydrometallurgy 1999, 53, 45–56. [Google Scholar] [CrossRef]
- Puvvada, G.V.K.; Jana, R.K.; Pandey, B.D.; Bagchi, D.; Kumar, V.; Premchand, P. Ammoniacal leach and solvent extraction for the recovery of valuable metals from roast-reduced polymetallic Ocean nodules. In Proceedings of the Second ISOPE-Ocean Mining Symposium (OMS), Seoul, Korea, 24–26 November 1997; pp. 185–189. [Google Scholar]
- Hall, F.W. Aluminothermic Processes. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley Online Library: Hoboken, NJ, USA, 2000. [Google Scholar]
- Novák, P.; Vlášek, J.; Dvořák, P.; Školáková, A.; Nová, K.; Knaislová, A. Microstructure of the Alloys Prepared by Reduction of Deep Sea Nodules by Aluminium and Silicon. Manuf. Technol. 2020, 20, 655–659. [Google Scholar]
- Seetharaman, S. Treatise on Process Metallurgy, Volume 3: Industrial Processes; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Shoemaker, C.B.; Shoemaker, D.P.; Hopkins, T.E.; Yindepit, S. Refinement of the structure of [beta]-manganese and of a related phase in the Mn-Ni-Si system. Acta Cryst. 1978, 34, 3573–3576. [Google Scholar] [CrossRef]
- Coefficient of Friction Equation and Table Chart. Available online: https://www.engineersedge.com/coeffients_of_friction.htm (accessed on 15 December 2020).
- Novák, P.; Vanka, T.; Nová, K.; Stoulil, J.; Průša, F.; Kopeček, J.; Haušild, P.; Laufek, F. Structure and Properties of Fe–Al–Si Alloy Prepared by Mechanical Alloying. Materials 2019, 12, 2463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massalski, T.B. Binary Alloy Phase Diagrams; ASM, Materials Park: Novelty, OH, USA, 1990. [Google Scholar]
- Atomic Radius of the Elements. Available online: https://periodictable.com/Properties/A/AtomicRadius.v.html (accessed on 10 December 2020).
Element | Mn | Fe | Si | Al | Mg | Ca | Na | Cu | Ni | Ti | Zn | Co | O |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
wt. % | 30.57 | 4.41 | 3.53 | 2.16 | 1.87 | 1.84 | 1.64 | 1.18 | 1.14 | 0.35 | 0.14 | 0.13 | bal. |
Stoichiometric Al | 10% Excess Al | 20% Excess Al | |
---|---|---|---|
Mn | 57.478 | 52.613 | 57.708 |
Al | 0.845 | 5.582 | 9.312 |
Si | 8.54 | 8.289 | 8.001 |
P | 0.457 | 0.257 | 0.487 |
S | 0.037 | 0 | 0.118 |
V | 0.173 | 0.175 | 0.236 |
Fe | 20.717 | 19.606 | 15.361 |
Co | 0.536 | 0.586 | 0.545 |
Ni | 6.427 | 6.675 | 4.083 |
Cu | 4.535 | 5.949 | 3.935 |
Mo | 0.255 | 0.268 | 0.214 |
Element | Mn0.66Ni0.2Si0.14 | (Cu,Mn)3(Al,Si) | Mn2P | MnS |
---|---|---|---|---|
Al K | 1.7 | 9.48 | 1.86 | 2.17 |
Si K | 13.98 | 2.53 | 7.62 | 4.13 |
P K | 0.05 | 1.16 | 10.11 | 0.37 |
S K | 0.08 | 0.14 | 0.05 | 20.68 |
Ti K | 0.07 | 0.24 | 0.29 | 0.38 |
Mn K | 59.98 | 36.04 | 57.74 | 53.96 |
Fe K | 18.36 | 4.99 | 8.08 | 6.37 |
Ni K | 3.75 | 3.98 | 2.71 | 2.13 |
Cu K | 2.03 | 41.44 | 11.54 | 9.81 |
Element | β-Mn | Mn0.83 Si0.11 | Mn2P | Mn2FeAl | Mn2FeSi | MnS | (Cu,Mn)3(Al,Si) |
---|---|---|---|---|---|---|---|
Al K | 6.09 | 4.83 | 2.64 | 18.28 | 2.45 | 7.5 | 15.72 |
Si K | 14.02 | 15.91 | 11.97 | 8.72 | 18.4 | 10.94 | 5.28 |
P K | 0.94 | 0.46 | 7.53 | 0 | 0.06 | 1.42 | 1.94 |
S K | 0 | 0 | 0.01 | 0 | 0 | 1 | 0 |
Ti K | 0.42 | 0.5 | 0.87 | 0.11 | 0.13 | 2.28 | 0.42 |
Mn K | 57.13 | 58.39 | 59.28 | 46.24 | 61.74 | 56.6 | 38.07 |
Fe K | 15.62 | 16.72 | 14.39 | 14.51 | 16.67 | 14.65 | 9.41 |
Ni K | 3.26 | 3.19 | 2.11 | 5.28 | 0.29 | 2.94 | 5.44 |
Cu K | 2.52 | 1.41 | 1.2 | 6.86 | 0.26 | 2.67 | 23.72 |
Element | Mn5Si3 | Mn2FeAl | α-Mn | Mn2P | Mn3(Al,Si) | Mn(Fe) | (Cu,Mn)3(Al,Si) | MnS | Ti-Part |
---|---|---|---|---|---|---|---|---|---|
Al K | 9.36 | 25.06 | 6.76 | 8.27 | 9.45 | 16.03 | 9.82 | 6.69 | 6.65 |
Si K | 15.32 | 5.43 | 13.95 | 14.57 | 15.06 | 3.56 | 14.41 | 12.03 | 11.38 |
P K | 0.20 | 0.04 | 0.06 | 3.59 | 1.65 | 0.20 | 3.57 | 1.21 | 0.54 |
S K | 0.14 | 0.07 | 0.11 | 0.15 | 0.29 | 0.14 | 0.09 | 6.43 | 5.58 |
Ti K | 0.79 | 0.57 | 0.76 | 0.72 | 0.85 | 0.54 | 0.36 | 5.62 | 13.48 |
Mn K | 55.50 | 40.93 | 61.00 | 54.69 | 52.83 | 68.36 | 55.7 | 54.5 | 47.91 |
Fe K | 15.74 | 16.61 | 14.16 | 14.25 | 13.21 | 9.65 | 11.63 | 10.68 | 11.01 |
Ni K | 2.95 | 5.76 | 1.83 | 1.84 | 3.40 | 0.70 | 1.48 | 1.24 | 1.76 |
Cu K | 1.98 | 5.53 | 1.37 | 1.92 | 3.26 | 0.82 | 2.94 | 1.60 | 1.69 |
Alloy | f (Al2O3) (-) | w (Al2O3) (mm³N−1 m−1) | f (Steel) (-) |
---|---|---|---|
stoichiometric Al | 0.68 | 1.4 × 10−6 | 0.64 |
10% excess Al | 0.68 | 1.9 × 10−6 | 0.76 |
20% excess Al | 0.67 | 5.1 × 10−6 | 0.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novák, P.; Vu, N.H.; Šulcová, L.; Kopeček, J.; Laufek, F.; Tsepeleva, A.; Dvořák, P.; Michalcová, A. Structure and Properties of Alloys Obtained by Aluminothermic Reduction of Deep-Sea Nodules. Materials 2021, 14, 561. https://doi.org/10.3390/ma14030561
Novák P, Vu NH, Šulcová L, Kopeček J, Laufek F, Tsepeleva A, Dvořák P, Michalcová A. Structure and Properties of Alloys Obtained by Aluminothermic Reduction of Deep-Sea Nodules. Materials. 2021; 14(3):561. https://doi.org/10.3390/ma14030561
Chicago/Turabian StyleNovák, Pavel, Nguyen Hong Vu, Lucie Šulcová, Jaromír Kopeček, František Laufek, Alisa Tsepeleva, Petr Dvořák, and Alena Michalcová. 2021. "Structure and Properties of Alloys Obtained by Aluminothermic Reduction of Deep-Sea Nodules" Materials 14, no. 3: 561. https://doi.org/10.3390/ma14030561
APA StyleNovák, P., Vu, N. H., Šulcová, L., Kopeček, J., Laufek, F., Tsepeleva, A., Dvořák, P., & Michalcová, A. (2021). Structure and Properties of Alloys Obtained by Aluminothermic Reduction of Deep-Sea Nodules. Materials, 14(3), 561. https://doi.org/10.3390/ma14030561