In-Plane Strain Measurement in Composite Structures with Fiber Bragg Grating Written in Side-Hole Elliptical Core Optical Fiber
Abstract
:1. Introduction
2. Fiber Bragg Grating Inscribed in Highly Birefringent Side-Hole Fibers
2.1. Birefringent Fibers Used for Bragg Grating Inscription
2.2. Birefringence Measurement
2.3. Bragg Gratings Inscription
2.4. Exemplary Spectrum
3. Sensor Characterization
3.1. Determination of the Force-Sensing Sensitivity of HiBi FBG Sensors
3.2. Transverse Force Sensitivity Curves for FBG on HiBi Fibers
3.3. Temperature Characterization of FBG Sensors Written in HiBi Fibers
- For SH1 fiber: 10.75 pm/°C (fast axis) and 10.63 pm/°C (slow axis);
- For SH2 fiber: 10.41 pm/°C (fast axis) and 10.24 pm/°C (slow axis).
4. Application of Fabricated FBG Sensor for Strain Measurement of Composites
4.1. Materials and Methods
4.2. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Di Sante, R. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications. Sensors 2015, 15, 18666–18713. [Google Scholar] [CrossRef]
- Shivakumar, K.; Emmanwori, L. Mechanics of Failure of Composite Laminates with an Embedded Fiber Optic Sensor. J. Compos. Mater. 2004, 38, 669–680. [Google Scholar] [CrossRef]
- Jensen, D.W.; Pascual, J. Degradation of graphite/bismaleimide laminates with multiple embedded fiber optic sensors. Fiber Opt. Smart Struct. Ski. 1967, 1370, 228–237. [Google Scholar] [CrossRef]
- Kreuzer, M. Strain measurement with fiber Bragg grating sensors. HBM Darmstadt 2006, S2338, 1–9. [Google Scholar]
- Espejo, R.J.; Dyer, S.D. Transverse-stress fiber Bragg grating sensor with high spatial resolution and temperature stability. J. Light. Technol. 2007, 25, 1777–1785. [Google Scholar] [CrossRef]
- Berkoff, T.A.; Kersey, A.D. Experimental demonstration of a fiber bragg grating accelerometer. IEEE Photonics Technol. Lett. 1996, 8, 1677–1679. [Google Scholar] [CrossRef]
- Kinet, D.; Mégret, P.; Goossen, K.W.; Qiu, L.; Heider, D.; Caucheteur, C. Fiber Bragg grating sensors toward structural health monitoring in composite materials: Challenges and solutions. Sensors 2014, 14, 7394–7419. [Google Scholar] [CrossRef]
- Güemes, A.; Fernández-López, A.; Díaz-Maroto, P.F.; Lozano, A.; Sierra-Perez, J. Structural health monitoring in composite structures by fiber-optic sensors. Sensors 2018, 18, 1094. [Google Scholar] [CrossRef] [Green Version]
- Sierra-Pérez, J.; Torres-Arredondo, M.A.; Güemes, A. Damage and nonlinearities detection in wind turbine blades based on strain field pattern recognition. FBGs, OBR and strain gauges comparison. Compos. Struct. 2016, 135, 156–166. [Google Scholar] [CrossRef]
- Lamberti, A.; Chiesura, G.; Luyckx, G.; Degrieck, J.; Kaufmann, M.; Vanlanduit, S. Dynamic strain measurements on automotive and aeronautic composite components by means of embedded fiber bragg grating sensors. Sensors 2015, 15, 27174–27200. [Google Scholar] [CrossRef]
- Szebényi, G.; Blößl, Y.; Hegedüs, G.; Tábi, T.; Czigany, T.; Schledjewski, R. Fatigue monitoring of flax fibre reinforced epoxy composites using integrated fibre-optical FBG sensors. Compos. Sci. Technol. 2020, 199, 108317. [Google Scholar] [CrossRef]
- Gąsior, P.; Malesa, M.; Kaleta, J.; Kujawińska, M.; Malowany, K.; Rybczyński, R. Application of complementary optical methods for strain investigation in composite high pressure vessel. Compos. Struct. 2018, 203, 718–724. [Google Scholar] [CrossRef]
- Gąsior, P.; Rybczyński, R.; Kaleta, J.; Villalonga, S.; Nony, F.; Magnier, C. High Pressure Composite Vessel with Integrated Optical Fiber Sensors: Monitoring of Manufacturing Process and Operation. In Proceedings of the Volume 5: High-Pressure Technology; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD); American Society of Mechanical Engineers: New York, NY, USA, 2018; Volume 5. [Google Scholar]
- Mieloszyk, M.; Majewska, K.; Ostachowicz, W. Application of embedded fibre Bragg grating sensors for structural health monitoring of complex composite structures for marine applications. Mar. Struct. 2021, 76, 102903. [Google Scholar] [CrossRef]
- Wagreich, R.B.; Atia, W.A.; Singh, H.; Sirkis, J.S. Effects of diametric load on fibre Bragg gratings fabricated in low birefringent fibre. Electron. Lett. 1996, 32, 1223–1224. [Google Scholar] [CrossRef]
- Luyckx, G.; Voet, E.; Lammens, N.; De Waele, W.; Degrieck, J. Residual strain-induced birefringent FBGs for multi-axial strain monitoring of CFRP composite laminates. NDT E Int. 2013, 54, 142–150. [Google Scholar] [CrossRef]
- Singh, A.K.; Berggren, S.; Zhu, Y.; Han, M.; Huang, H. Simultaneous strain and temperature measurement using a single fiber Bragg grating embedded in a composite laminate. Smart Mater. Struct. 2017, 26, 115025. [Google Scholar] [CrossRef]
- Lawrence, C.M.; Nelson, D.V.; Udd, E.; Bennett, T. A fiber optic sensor for transverse strain measurement. Exp. Mech. 1999, 39, 202–209. [Google Scholar] [CrossRef]
- Bosia, F.; Giaccari, P.; Botsis, J.; Facchini, M.; Limberger, H.G.; Salathé, R.P. Characterization of the response of fibre Bragg grating sensors subjected to a two-dimensional strain field. Smart Mater. Struct. 2003, 12, 925–934. [Google Scholar] [CrossRef]
- Chehura, E.; Ye, C.C.; Staines, S.E.; James, S.W.; Tatam, R.P. Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load. Smart Mater. Struct. 2004, 13, 888–895. [Google Scholar] [CrossRef]
- Geernaert, T.; Luyckx, G.; Voet, E.; Nasilowski, T.; Chah, K.; Becker, M.; Bartelt, H.; Urbanczyk, W.; Wojcik, J.; De Waele, W.; et al. Transversal load sensing with fiber Bragg gratings in microstructured optical fibers. IEEE Photonics Technol. Lett. 2009, 21, 6–8. [Google Scholar] [CrossRef]
- Sonnenfeld, C.; Luyckx, G.; Sulejmani, S.; Geernaert, T.; Eve, S.; Gomina, M.; Chah, K.; Mergo, P.; Urbanczyk, W.; Thienpont, H.; et al. Microstructured optical fiber Bragg grating as an internal three-dimensional strain sensor for composite laminates. Smart Mater. Struct. 2015, 24, 055003. [Google Scholar] [CrossRef]
- Jewart, C.; Chen, K.P.; McMillen, B.; Bails, M.M.; Levitan, S.P.; Canning, J.; Avdeev, I.V. Sensitivity enhancement of fiber Bragg gratings to transverse stress by using microstructural fibers. Opt. Lett. 2006, 31, 2260. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Xu, B.; Ju, S.; Hou, M.; Guo, K.; Xu, X.; Wang, Y.; Liu, S.; Wang, Y. Temperature-insensitive directional transverse load sensor based on dual side-hole fiber Bragg grating. Opt. Express 2021, 29, 17700. [Google Scholar] [CrossRef]
- Wójcik, J.; Urbańczyk, W.; Bock, W.J.; Janoszczyk, B.; Mergo, P.; Makara, M.; Poturaj, K.; Spytek, W. Prototype of the side-hole HB optical fiber. In Optical Fibers and Their Applications VI; Dorosz, J., Romaniuk, R.S., Eds.; International Society for Optics and Photonics: Bellingham, DC, USA, 1999; Volume 3731, pp. 88–93. [Google Scholar]
- Noda, J.; Okamoto, K.; Sasaki, Y. Polarization-maintaining fibers and their applications. J. Light. Technol. 1986, 4, 1071–1089. [Google Scholar] [CrossRef]
- Shlyagin, M.G.; Khomenko, A.V.; Tentori, D. Birefringence dispersion measurement in optical fibers by wavelength scanning. Opt. Lett. 1995, 20, 869. [Google Scholar] [CrossRef] [PubMed]
- Calvani, R.; Caponi, R.; Cisternino, F. Polarization measurements on single-mode fibers. J. Light. Technol. 1989, 7, 1187–1196. [Google Scholar] [CrossRef]
- Dyott, R.B.; Dyott, R.B.; Cozens, J.R.; Morris, D.G. Preservation of polarisation in optical-fibre waveguides with elliptical cores. Electron. Lett. 1979, 15, 380–382. [Google Scholar] [CrossRef]
- Kashyap, R. Fiber Bragg Gratings; Optics and Photonics; Elsevier Science: Amsterdam, The Netherlands, 2009; ISBN 9780080919911. [Google Scholar]
- Geernaert, T.; Becker, M.; Mergo, P.; Nasilowski, T.; Wójcik, J.; Urbańczyk, W.; Rothhardt, M.; Chojetzki, C.; Bartelt, H.; Terryn, H.; et al. Bragg grating inscription in GeO2-doped microstructured optical fibers. J. Light. Technol. 2010, 28, 1459–1467. [Google Scholar] [CrossRef]
- Luyckx, G.; De Waele, W.; Degrieck, J.; Van Paepegem, W.; Vlekken, J.; Verbeke, T. Feasibility study of an embedded multi-axial fibre Bragg grating sensor. In Optical Sensing Technology and Applications; Baldini, F., Homola, J., Lieberman, R.A., Miler, M., Eds.; International Society for Optics and Photonics: Bellingham, DC, USA, 2007; Volume 6585, p. 65850E. [Google Scholar]
- Sonnenfeld, C.; Sulejmani, S.; Geernaert, T.; Eve, S.; Lammens, N.; Luyckx, G.; Voet, E.; Degrieck, J.; Urbanczyk, W.; Mergo, P.; et al. Microstructured optical fiber sensors embedded in a laminate composite for smart material applications. Sensors 2011, 11, 2566–2579. [Google Scholar] [CrossRef] [Green Version]
- Luyckx, G.; Voet, E.; Lammens, N.; Degrieck, J. Strain measurements of composite laminates with embedded fibre bragg gratings: Criticism and opportunities for research. Sensors 2011, 11, 384–408. [Google Scholar] [CrossRef] [Green Version]
- Luyckx, G.; De Waele, W.; Degrieck, J.; Van Paepegem, W.; Vlekken, J.; Vandamme, S.; Chah, K. Three-dimensional strain and temperature monitoring of composite laminates. Insight Non-Destr. Test. Cond. Monit. 2007, 49, 10–16. [Google Scholar] [CrossRef]
SH Fiber No. | Core | Glass Bridge | Side-Hole | Cladding | ||||
---|---|---|---|---|---|---|---|---|
a | b | e | c | Ds | Df | 2Rs | 2Rf | |
[µm] | [µm] | [-] | [µm] | [µm] | [µm] | [µm] | [µm] | |
SH1 | 4.6 | 1.8 | 2.6 | 5.7 | 23.4 | 32.5 | 128.9 | 120.0 |
SH2 | 6.9 | 1.5 | 4.6 | 4.0 | 27.4 | 33.8 | 131.7 | 120.0 |
Optical Fiber | Peak Separation [nm] | Effective Sensitivity to the Transverse Force [pm/(N/mm)] | Ref. |
---|---|---|---|
Panda | 0.34 | −210 | [20] |
MOF | 0.85 | 100 | [21] |
MOF (Butterfly) | 2.17 | −370 | [33] |
Side-hole | 0.07 | 699 | [24] |
Bow-tie-literature | 0.35 | 160 | [20,35] |
Bow-tie-measured | 0.32 | 230 | This article |
Side-hole 1 (SH1) | 0.54 | 410 (φ = 90°), −700 (φ = 0°) | This article |
Side-hole 2 (SH2) | 1.16 | 650 (φ = 90°), −1150 (φ = 0°) | This article |
Load State | ||||
---|---|---|---|---|
Strain along the fiber | 0.819 | 0.848 | -- | |
Strain perpendicular to the fiber | −0.149 | −0.0295 | 0.120 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wachtarczyk, K.; Gąsior, P.; Kaleta, J.; Anuszkiewicz, A.; Bender, M.; Schledjewski, R.; Mergo, P.; Osuch, T. In-Plane Strain Measurement in Composite Structures with Fiber Bragg Grating Written in Side-Hole Elliptical Core Optical Fiber. Materials 2022, 15, 77. https://doi.org/10.3390/ma15010077
Wachtarczyk K, Gąsior P, Kaleta J, Anuszkiewicz A, Bender M, Schledjewski R, Mergo P, Osuch T. In-Plane Strain Measurement in Composite Structures with Fiber Bragg Grating Written in Side-Hole Elliptical Core Optical Fiber. Materials. 2022; 15(1):77. https://doi.org/10.3390/ma15010077
Chicago/Turabian StyleWachtarczyk, Karol, Paweł Gąsior, Jerzy Kaleta, Alicja Anuszkiewicz, Marcel Bender, Ralf Schledjewski, Paweł Mergo, and Tomasz Osuch. 2022. "In-Plane Strain Measurement in Composite Structures with Fiber Bragg Grating Written in Side-Hole Elliptical Core Optical Fiber" Materials 15, no. 1: 77. https://doi.org/10.3390/ma15010077
APA StyleWachtarczyk, K., Gąsior, P., Kaleta, J., Anuszkiewicz, A., Bender, M., Schledjewski, R., Mergo, P., & Osuch, T. (2022). In-Plane Strain Measurement in Composite Structures with Fiber Bragg Grating Written in Side-Hole Elliptical Core Optical Fiber. Materials, 15(1), 77. https://doi.org/10.3390/ma15010077