Alternative Materials from Agro-Industry for Wood Panel Manufacturing—A Review
Abstract
:1. Introduction
2. Categories of Different Alternative Materials
2.1. Characteristics of Alternative Materials
2.1.1. Chemical Composition of Alternative Materials
Material | References | Chemical Composition, (%) | ||||
---|---|---|---|---|---|---|
Cellulose | Hemicelluloses | Lignin | Extractives | Ash | ||
NWLM | | |||||
Bamboo | [45,46,47,48] | |||||
Flax | [45,47,48] | |||||
Hemp | [45,47,48] | |||||
Kenaf | [45,47,48] | |||||
Miscanthus | [49] | |||||
Sisal | [45,48,50] | |||||
Grow care residues | ||||||
Kiwi pruning | [51] | |||||
Orange pruning | [52] | |||||
Pinecone | [53] | |||||
Vine pruning | [54,55] | |||||
Harvest residues | ||||||
Banana wood | [45,46,47,48] | |||||
Barley stalks | [56] | |||||
Canola stalks | [57] | |||||
Corn stalks | [58] | |||||
Cotton stalks | [55] | |||||
Date palm | [59] | |||||
Oil palm | [60] | |||||
Pineapple leaves | [50,56] | |||||
Rice stalks | [45,56] | |||||
Sorghum stalks | [55,56] | |||||
Sunflower stalks | [55] | |||||
Tomato stalks | [58] | |||||
Wheat stalks | [45,56] | |||||
Process residues | ||||||
Almond husks | [61] | |||||
Coconut coir | [45,47,48,56] | |||||
Coffee husks | [33] | |||||
Corn husks | [58] | |||||
Durian peel | [62] | |||||
Hazelnut husks | [63] | |||||
Oat husk | [64] | |||||
Oil palm fruit husks | [59,60] | |||||
Peanut husks | [63] | |||||
Pineapple peel | [65] | |||||
Rice husks | [45,48] | |||||
Sugarcane bagasse | [45,66] |
2.1.2. Fiber Characteristics of Alternative Materials
Material | Fiber Characteristics | |||
---|---|---|---|---|
Length (mm) | Diameter (µm) | Density (gcm−3) | References | |
Wood | 0.3–7.2 | 10–45 | 1.4–1.5 | [48,76,77,78,80] |
NWLM | ||||
Bamboo | 1.5–4.4 | 7–27 | 0.6–1.1 | [48,76] |
Flax | 10–65 | 5–38 | 1.4 | [67] |
Hemp | 5–55 | 1–5 | 1.4–1.5 | [48,76,81] |
Kenaf | 3.55–5.5 | 12–37 | 1.4 | [48,67,82] |
Miscanthus | 0.81–1.05 | 11.8–16.7 | - | [79] |
Sisal | 0.8–8 | 7–47 | 1.45 | [50,67] |
Grow care residues | ||||
n.a. | n.a. | n.a. | ||
Harvest residues | ||||
Banana wood | 0.17 | 13.6 | 1.35 | [50,67] |
Canola stalks | 1.22 | 28 | - | [83] |
Corn stalks | 1.22 | 24.3 | - | [84] |
Cotton stalks | 0.84 | 23.9 | 1.45–1.85 | [83,85] |
Oil palm wood | 0.66 | 29.6–35.3 | 0.7–1.55 | [50,67,86] |
Pineapple leaves | - | 20–80 | 1.526 | [87,88] |
Rice stalks | 0.4–3.4 | 4–16 | 0.38 | [89,90] |
Sorghum stalks | 1.8 | 13.8 | - | [91] |
Sunflower stalks | 1.18 | 21.5 | 0.154 | [84,92] |
Tomato stalks | 0.83–1.13 | 13.24–17.26 | 0.58 | [93,94] |
Wheat stalks | 1.1–1.13 | 11.9–15.3 | - | [95] |
Barley stalks | 0.7–3.1 | 7–24 | - | [56] |
Process residues | ||||
Coconut coir | 20–150 | 10–460 | 1.15 | [81] |
Coffee husks | 0.05–0.8 | 15 | - | [33] |
Corn husks | 0.5–1.5 | 10–20 | - | [56] |
Durian peel | 0.84–2.38 | 170–447 | 1.15–1.31 | [96] |
Oil palm fruit husks | 0.89–0.99 | 19.1–25 | 0.7–1.55 | [67] |
Rice husks | - | 170 | 1.16 | [97,98] |
Sugarcane bagasse | 1.59 | 20.96 | 0.99 | [97,99] |
3. Utilization of Alternative Furnish Materials for Panel Manufacturing
4. Panel Manufacturing Parameters
5. Material Processing and Pretreatment
6. Conclusions and Future Scopes
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kerle, A.; Stewart, K.; Soares, T.M.; Ankita; Karnik, N.; Shallcross, W.; Ross, K. An Eco-Wakening—Measuring Global Awareness, Engagement and Action for Nature; The Economist Intelligence Unit Limited: London, UK, 2021; p. 50. [Google Scholar]
- UNFPA. Population Data Portal. 2022. Available online: https://pdp.unfpa.org/ (accessed on 2 June 2022).
- Ceccherini, G.; Duveiller, G.; Grassi, G.; Lemoine, G.; Avitabile, V.; Pilli, R.; Cescatti, A. Abrupt increase in harvested forest area over Europe after 2015. Nature 2020, 583, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Moor, H.; Eggers, J.; Fabritius, H.; Forsell, N.; Henckel, L.; Bradter, U.; Mazziotta, A.; Nordén, J.; Snäll, T. Rebuilding green infrastructure in boreal production forest given future global wood demand. J. Appl. Ecol. 2022, 59, 1659–1669. [Google Scholar] [CrossRef]
- Pędzik, M.; Janiszewska, D.; Rogoziński, T. Alternative lignocellulosic raw materials in particleboard production: A review. Ind. Crops Prod. 2021, 174, 114162. [Google Scholar] [CrossRef]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresour. Bioprocess. 2018, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Sapwarobol, S.; Saphyakhajorn, W.; Astina, J. Biological Functions and Activities of Rice Bran as a Functional Ingredient: A Review. Nutr. Metab. Insights 2021, 14, 11786388211058559. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Yu, P.; Xu, X. Straw Utilization in China—Status and Recommendations. Sustainability 2019, 11, 1762. [Google Scholar] [CrossRef] [Green Version]
- Cassou, E. Field Burning—Agricultural Pollution; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Sam-Brew, S.; Smith, G.D. Flax Shive and Hemp Hurd Residues as Alternative Raw Material for Particleboard Production. Bioresources 2017, 12, 5715–5735. [Google Scholar] [CrossRef] [Green Version]
- Luo, P.; Yang, C.M.; Li, M.Y.; Wang, Y.Q. Manufacture of Thin Rice Straw Particleboards Bonded with Various Polymeric Methane Diphenyl Diisocyanate/Urea Formaldehyde Resin Mixtures. Bioresources 2020, 15, 935–944. [Google Scholar] [CrossRef]
- Moreno-Anguiano, O.; Cloutier, A.; Rutiaga-Quiñones, J.G.; Wehenkel, C.; Rosales-Serna, R.; Rebolledo, P.; Hernández-Pacheco, C.E.; Carrillo-Parra, A. Use of Agave durangensis Bagasse Fibers in the Production of Wood-Based Medium Density Fiberboard (MDF). Forests 2022, 13, 271. [Google Scholar] [CrossRef]
- Akinyemi, B.A.; Kolajo, T.E.; Adedolu, O. Blended formaldehyde adhesive bonded particleboards made from groundnut shell and rice husk wastes. Clean Technol. Environ. Policy 2022. [Google Scholar] [CrossRef]
- Müller, C.; Schwarz, U.; Thole, V. Zur Nutzung von Agrar-Reststoffen in der Holzwerkstoffindustrie. Eur. J. Wood Wood Prod. 2011, 70, 587–594. [Google Scholar] [CrossRef]
- Araújo, D.J.C.; Machado, A.V.; Vilarinho, M.C.L.G. Availability and Suitability of Agroindustrial Residues as Feedstock for Cellulose-Based Materials: Brazil Case Study. Waste Biomass Valorizat. 2018, 10, 2863–2878. [Google Scholar] [CrossRef]
- Nasir, M.; Khali, D.P.; Jawaid, M.; Tahir, P.M.; Siakeng, R.; Asim, M.; Khan, T.A. Recent development in binderless fiber-board fabrication from agricultural residues: A review. Constr. Build. Mater. 2019, 211, 502–516. [Google Scholar] [CrossRef]
- Ye, X.P.; Julson, J.; Kuo, M.; Womac, A.; Myers, D. Properties of medium density fiberboards made from renewable biomass. Bioresour. Technol. 2007, 98, 1077–1084. [Google Scholar] [CrossRef]
- Dizaji, H.B.; Zeng, T.; Lenz, V.; Enke, D. Valorization of Residues from Energy Conversion of Biomass for Advanced and Sustainable Material Applications. Sustainability 2022, 14, 4939. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization—Database. 2022. Available online: http://www.fao.org/faostat/ (accessed on 2 June 2022).
- Zhao, X.; Wei, X.; Guo, Y.; Qiu, C.; Long, S.; Wang, Y.; Qiu, H. Industrial Hemp—An Old but Versatile Bast Fiber Crop. J. Nat. Fibers 2021, 1–14. [Google Scholar] [CrossRef]
- Abdollahi, M.; Sefidkon, F.; Calagari, M.; Mousavi, A.; Mahomoodally, M.F. Impact of four hemp (Cannabis sativa L.) varieties and stage of plant growth on yield and composition of essential oils. Ind. Crops Prod. 2020, 155, 112793. [Google Scholar] [CrossRef]
- Cui, Z.; Yan, B.; Gao, Y.; Wu, B.; Wang, Y.; Wang, H.; Xu, P.; Zhao, B.; Cao, Z.; Zhang, Y.; et al. Agronomic cultivation measures on productivity of oilseed flax: A review. Oil Crop Sci. 2022, 7, 53–62. [Google Scholar] [CrossRef]
- Fednand, C.; Bigambo, P.; Mgani, Q. Modification of the Mechanical and Structural Properties of Sisal Fiber for Textile Applications. J. Nat. Fibers 2021, 1–12. [Google Scholar] [CrossRef]
- Sheichenko, V.; Marynchenko, I.; Dudnikov, I.; Korchak, M. Development of technology for the hemp stalks preparation. Indep. J. Manag. Prod. 2019, 10, 687–701. [Google Scholar] [CrossRef] [Green Version]
- Kaur, P.J. Bamboo availability and utilization potential as a building material. For. Res. Eng. Int. J. 2018, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Naira, A.; Moieza, A. Summer pruning in fruit trees. Afr. J. Agric. Res. 2014, 9, 206–210. [Google Scholar] [CrossRef]
- Spinelli, R.; Picchi, G. Industrial harvesting of olive tree pruning residue for energy biomass. Bioresour. Technol. 2010, 101, 730–735. [Google Scholar] [CrossRef] [PubMed]
- San José, M.J.; Alvarez, S.; Peñas, F.J.; García, I. Thermal exploitation of fruit tree pruning wastes in a novel conical spouted bed combustor. Chem. Eng. J. 2014, 238, 227–233. [Google Scholar] [CrossRef]
- Martín, J.F.G.; Cuevas, M.; Bravo, V.; Sánchez, S. Ethanol production from olive prunings by autohydrolysis and fermentation with Candida tropicalis. Renew. Energy 2010, 35, 1602–1608. [Google Scholar] [CrossRef]
- Stelte, W.; Clemons, C.; Holm, J.K.; Ahrenfeldt, J.; Henriksen, U.B.; Sanadi, A.R. Fuel Pellets from Wheat Straw: The Effect of Lignin Glass Transition and Surface Waxes on Pelletizing Properties. BioEnergy Res. 2012, 5, 450–458. [Google Scholar] [CrossRef] [Green Version]
- Barbu, M.C.; Reh, R.; Çavdar, A.D. Non-Wood Lignocellulosic Composites. In Research Developments in Wood Engineering and Technology; IGI Global: Hershey, PA, USA, 2014; pp. 281–319. [Google Scholar]
- Barbieri, V.; Gualtieri, M.L.; Siligardi, C. Wheat husk: A renewable resource for bio-based building materials. Constr. Build. Mater. 2020, 251, 118909. [Google Scholar] [CrossRef]
- Bekalo, S.A.; Reinhardt, H.-W. Fibers of coffee husk and hulls for the production of particleboard. Mater. Struct. 2010, 43, 1049–1060. [Google Scholar] [CrossRef]
- Cheng, W.; Sun, Y.; Fan, M.; Li, Y.; Wang, L.; Qian, H. Wheat bran, as the resource of dietary fiber: A review. Crit. Rev. Food Sci. Nutr. 2021, 1–28. [Google Scholar] [CrossRef]
- Onipe, O.O.; Jideani, A.I.O.; Beswa, D. Composition and functionality of wheat bran and its application in some cereal food products. Int. J. Food Sci. Technol. 2015, 50, 2509–2518. [Google Scholar] [CrossRef]
- Tyagi, S.; Lee, K.-J.; Mulla, S.I.; Garg, N.; Chae, J.-C. Chapter 2—Production of Bioethanol From Sugarcane Bagasse: Current Approaches and Perspectives. In Applied Microbiology and Bioengineering; Shukla, P., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 21–42. [Google Scholar]
- Nagpal, R.; Bhardwaj, N.K.; Mahajan, R. Eco-friendly bleaching of sugarcane bagasse with crude xylanase and pectinase enzymes to reduce the bleaching effluent toxicity. Environ. Sci. Pollut. Res. 2021, 28, 42990–42998. [Google Scholar] [CrossRef] [PubMed]
- García-Condado, S.; López-Lozano, R.; Panarello, L.; Cerrani, I.; Nisini, L.; Zucchini, A.; Van der Velde, M.; Baruth, B. Assessing lignocellulosic biomass production from crop residues in the European Union: Modelling, analysis of the current scenario and drivers of interannual variability. GCB Bioenergy 2019, 11, 809–831. [Google Scholar] [CrossRef] [Green Version]
- Rowell, R.M. Handbook of Wood Chemistry and Wood Composites, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Lohmann, U. Holzlexikon, 4th ed.; Nikol Verlagsgesellschaft mbH & Co. KG: Hamburg, Germany, 2015. [Google Scholar]
- Baharoğlu, M.; Nemli, G.; Sarı, B.; Birtürk, T.; Bardak, S. Effects of anatomical and chemical properties of wood on the quality of particleboard. Compos. Part B Eng. 2013, 52, 282–285. [Google Scholar] [CrossRef]
- Bardak, S.; Nemli, G.; Tiryaki, S. The influence of raw material growth region, anatomical structure and chemical composition of wood on the quality properties of particleboards. Maderas. Cienc. Tecnol. 2017, 19, 363–372. [Google Scholar] [CrossRef] [Green Version]
- Roffael, E. Significance of wood extractives for wood bonding. Appl. Microbiol. Biotechnol. 2016, 100, 1589–1596. [Google Scholar] [CrossRef]
- Li, X.; Cai, Z.; Winandy, J.E.; Basta, A.H. Selected properties of particleboard panels manufactured from rice straws of different geometries. Bioresour. Technol. 2010, 101, 4662–4666. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Fink, H.-P.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Fu, J.J.; Zhang, X.Q.; Yu, C.W.; Guebitz, G.M.; Cavaco-Paulo, A. Bioprocessing of Bamboo Materials. Fibres Text. East Eur. 2012, 20, 13–19. [Google Scholar]
- Liu, D.; Song, J.; Anderson, D.P.; Chang, P.R.; Hua, Y. Bamboo fiber and its reinforced composites: Structure and properties. Cellulose 2012, 19, 1449–1480. [Google Scholar] [CrossRef]
- Vaisanen, T.; Haapala, A.; Lappalainen, R.; Tomppo, L. Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review. Waste Manag. 2016, 54, 62–73. [Google Scholar] [CrossRef]
- Brosse, N.; Dufour, A.; Meng, X.; Sun, Q.; Ragauskas, A. Miscanthus: A fast-growing crop for biofuels and chemicals production. Biofuels Bioprod. Biorefining 2012, 6, 580–598. [Google Scholar] [CrossRef]
- Idicula, M.; Boudenne, A.; Umadevi, L.; Ibos, L.; Candau, Y.; Thomas, S. Thermophysical properties of natural fibre reinforced polyester composites. Compos. Sci. Technol. 2006, 66, 2719–2725. [Google Scholar] [CrossRef]
- Gencer, A. The utilization of kiwi (Actinidia deliciosa) pruning waste for kraft paper production and the effect of the bark on paper properties. Drewno 2015, 58, 103–113. [Google Scholar]
- González, Z.; Rodriguez, A.; Vargas, F.; Jiménez, L. Refining of Soda-AQ, Kraft-AQ, and Ethanol Pulps from Orange Tree Wood. Bioresources 2013, 8, 5622–5634. [Google Scholar] [CrossRef] [Green Version]
- Ucar, M.B.; Ucar, G. Lipophilic extractives and main components of black pine cones. Chem. Nat. Compd. 2008, 44, 380–383. [Google Scholar] [CrossRef]
- Ntalos, G.A.; Grigoriou, A.H. Characterization and utilisation of vine prunings as a wood substitute for particleboard production. Ind. Crops Prod. 2002, 16, 59–68. [Google Scholar] [CrossRef]
- Jimenez, L.; Perez, A.; Delatorre, M.; Moral, A.; Serrano, L. Characterization of vine shoots, cotton stalks, Leucaena leucocephala and Chamaecytisus proliferus, and of their ethyleneglycol pulps. Bioresour. Technol. 2007, 98, 3487–3490. [Google Scholar] [CrossRef]
- Reddy, N.; Yang, Y. Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol. 2005, 23, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Xi, B.; Zhang, Y.; Angelidaki, I. Microwave pretreatment of rape straw for bioethanol production: Focus on energy efficiency. Bioresour. Technol. 2011, 102, 7937–7940. [Google Scholar] [CrossRef]
- Cardoen, D.; Joshi, P.; Diels, L.; Sarma, P.M.; Pant, D. Agriculture biomass in India: Part 1. Estimation and characterization. Resour. Conserv. Recycl. 2015, 102, 39–48. [Google Scholar] [CrossRef]
- Alotaibi, M.D.; Alshammari, B.A.; Saba, N.; Alothman, O.Y.; Sanjay, M.R.; Almutairi, Z.; Jawaid, M. Characterization of natural fiber obtained from different parts of date palm tree (Phoenix dactylifera L.). Int. J. Biol. Macromol. 2019, 135, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Khalil, H.P.S.A.; Alwani, M.S.; Ridzuan, R.; Kamarudin, H.; Khairul, A. Chemical Composition, Morphological Characteristics, and Cell Wall Structure of Malaysian Oil Palm Fibers. Polym. Technol. Eng. 2008, 47, 273–280. [Google Scholar] [CrossRef]
- Pirayesh, H.; Khazaeian, A. Using almond (Prunus amygdalus L.) shell as a bio-waste resource in wood based composite. Compos. Part B Eng. 2012, 43, 1475–1479. [Google Scholar] [CrossRef]
- Khedari, J.; Nankongnab, N.; Hirunlabh, J.; Teekasap, S. New low-cost insulation particleboards from mixture of durian peel and coconut coir. Build. Environ. 2004, 39, 59–65. [Google Scholar] [CrossRef]
- Guler, C.; Copur, Y.; Tascioglu, C. The manufacture of particleboards using mixture of peanut hull (Arachis hypoqaea L.) and European Black pine (Pinus nigra Arnold) wood chips. Bioresour. Technol. 2008, 99, 2893–2897. [Google Scholar] [CrossRef] [PubMed]
- Valdebenito, F.; Pereira, M.; Ciudad, G.; Azocar, L.; Briones, R.; Chinga-Carrasco, G. On the nanofibrillation of corn husks and oat hulls fibres. Ind. Crops Prod. 2017, 95, 528–534. [Google Scholar] [CrossRef]
- Rani, D.S.; Nand, K. Ensilage of pineapple processing waste for methane generation. Waste Manag. 2004, 24, 523–528. [Google Scholar] [CrossRef]
- Pandey, A.; Soccol, C.R.; Nigam, P.; Soccol, V.T. Biotechnological potential of agro-industrial residues. I: Sugarcane bagasse. Bioresour. Technol. 2000, 74, 69–80. [Google Scholar] [CrossRef]
- Jawaid, M.; Khalil, H.P.S.A. Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydr. Polym. 2011, 86, 1–18. [Google Scholar] [CrossRef]
- Spinelli, R.; Magagnotti, N.; Nati, C. Harvesting vineyard pruning residues for energy use. Biosyst. Eng. 2010, 105, 316–322. [Google Scholar] [CrossRef]
- Han, G.; Deng, J.; Zhang, S.; Bicho, P.; Wu, Q. Effect of steam explosion treatment on characteristics of wheat straw. Ind. Crops Prod. 2010, 31, 28–33. [Google Scholar] [CrossRef]
- Stubbs, T.L.; Kennedy, A.C.; Reisenauer, P.E.; Burns, J.W. Chemical Composition of Residue from Cereal Crops and Cultivars in Dryland Ecosystems. Agron. J. 2009, 101, 538–545. [Google Scholar] [CrossRef] [Green Version]
- Müller, C.; Deetz, R.; Schwarz, U.; Thole, V. Agricultural residues in panel production—Impact of silica particle content and morphology on tool wear. Wood Mater. Sci. Eng. 2012, 7, 217–224. [Google Scholar] [CrossRef]
- Ciannamea, E.M.; Stefani, P.M.; Ruseckaite, R.A. Medium-density particleboards from modified rice husks and soybean protein concentrate-based adhesives. Bioresour. Technol. 2010, 101, 818–825. [Google Scholar] [CrossRef]
- Beh, J.H.; Yew, M.C.; Saw, L.H.; Yew, M.K. Fire Resistance and Mechanical Properties of Intumescent Coating Using Novel BioAsh for Steel. Coatings 2020, 10, 1117. [Google Scholar] [CrossRef]
- Lee, S.; Shupe, T.F.; Hse, C.Y. Mechanical and physical properties of agro-based fiberboard. Holz Als Roh-Und Werkst. 2005, 64, 74–79. [Google Scholar] [CrossRef]
- Suchsland, O.; Woodson, G.E. Fiberboard Manufacturing Practices in the United States; US Department of Agriculture, Forest Service: Missoula, MT, USA, 1987.
- Olesen, P.; Plackett, D. Perspectives on the perfomrance of natural plant fibres. In Proceedings of the Natural Fibres Performance Forum, Copenhagen, Denmark, 27–28 May 1999. [Google Scholar]
- Jajcinovic, M.; Fischer, W.J.; Hirn, U.; Bauer, W. Strength of individual hardwood fibres and fibre to fibre joints. Cellulose 2016, 23, 2049–2060. [Google Scholar] [CrossRef]
- Kellogg, R.M.; Wangaard, F.F. Variation in the cell-wall density of wood. Wood Fiber Sci. 1969, 1, 180–204. [Google Scholar]
- Ververis, C.; Georghiou, K.; Christodoulakis, N.; Santas, P.; Santas, R. Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Ind. Crops Prod. 2004, 19, 245–254. [Google Scholar] [CrossRef]
- Tröger, F.; Wegener, G.; Seemann, C. Miscanthus and flax as raw material for reinforced particleboards. Ind. Crops Prod. 1998, 8, 113–121. [Google Scholar] [CrossRef]
- Ghori, W.; Saba, N.; Jawaid, M.; Asim, M. A review on date palm (Phoenix dactylifera) fibers and its polymer composites. IOP Conf. Ser. Mater. Sci. Eng. 2018, 368, 012009. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Widyorini, R.; Yamauchi, H.; Kawai, S. Development of binderless fiberboard from kenaf core. J. Wood Sci. 2006, 52, 236–243. [Google Scholar] [CrossRef]
- Yousefi, H. Canola straw as a bio-waste resource for medium density fiberboard (MDF) manufacture. Waste Manag. 2009, 29, 2644–2648. [Google Scholar] [CrossRef] [PubMed]
- Ashori, A.; Nourbakhsh, A. Bio-based composites from waste agricultural residues. Waste Manag. 2010, 30, 680–684. [Google Scholar] [CrossRef] [PubMed]
- Nkomo, N.; Nkiwane, L.; Njuguna, D.; Oyondi, E. Extraction and characterisation of the mechanical properties of cotton stalk bast fibres. In Proceedings of the 2016 Annual Conference on Sustainable Research and Innovation, Nairobi, Kenya, 4–6 May 2016. [Google Scholar]
- Sreekala, M.S.; Kumaran, M.G.; Joseph, S.; Jacob, M.; Thomas, S. Oil Palm Fibre Reinforced Phenol Formaldehyde Composites: Influence of Fibre Surface Modifications on the Mechanical Performance. Appl. Compos. Mater. 2000, 7, 295–329. [Google Scholar] [CrossRef]
- George, J.; Bhagawan, S.S.; Thomas, S. Effects of environment on the properties of low-density polyethylene composites reinforced with pineapple-leaf fibre. Compos. Sci. Technol. 1998, 58, 1471–1485. [Google Scholar] [CrossRef]
- Aji, I.S.; Zainudin, E.S.; Abdan, K.; Sapuan, S.M.; Khairul, M.D. Mechanical properties and water absorption behavior of hybridized kenaf/pineapple leaf fibre-reinforced high-density polyethylene composite. J. Compos. Mater. 2012, 47, 979–990. [Google Scholar] [CrossRef]
- Greeshma, P.G.; Joseph, M. Rice Straw reinforcement for improvment in Kuttanad clay. In Proceedings of the Indian Geotechnical Conference, Kochi, India, 15–17 December 2011. [Google Scholar]
- Tofanica, B.M. Rapeseed—A valuable renewavle bioresource. Cellul. Chem. Technol. 2019, 53, 837–849. [Google Scholar] [CrossRef]
- Khazaeian, A.; Ashori, A.; Dizaj, M.Y. Suitability of sorghum stalk fibers for production of particleboard. Carbohydr. Polym. 2015, 120, 15–21. [Google Scholar] [CrossRef]
- Khristova, P.; Gabir, S.; Bentcheva, S.; Dafalla, S. Soda-anthraquinone pulping of sunflower stalks. Ind. Crop. Prod. 1998, 9, 9–17. [Google Scholar] [CrossRef]
- Uner, B.; Kombeci, K.; Akgul, M. The utilization of tomato stalk in fiber production: Naoh and Cao pulping process. Wood Res. 2016, 61, 927–936. [Google Scholar]
- Taha, I.; Elkafafy, M.S.; El Mously, H. Potential of utilizing tomato stalk as raw material for particleboards. Ain Shams Eng. J. 2018, 9, 1457–1464. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Dutt, D.; Tyagi, C.H. Complete Characterization of Wheat Straw (Triticum aestivum Pbw-343 L. Emend. Fiori & Paol.)—A Renewable Source of Fibres for Pulp and Paper Making. Bioresources 2011, 6, 154–177. [Google Scholar]
- Manshor, R.M.; Anuar, H.; Nazri, W.B.W.; Fitrie, M.I.A. Preparation and Characterization of Physical Properties of Durian Skin Fibers Biocomposite. Adv. Mater. Res. 2012, 576, 212–215. [Google Scholar] [CrossRef]
- Ali, N.; El-Harbawi, M.; Jabal, A.A.; Yin, C.-Y. Characteristics and oil sorption effectiveness of kapok fibre, sugarcane bagasse and rice husks: Oil removal suitability matrix. Environ. Technol. 2012, 33, 481–486. [Google Scholar] [CrossRef]
- Johar, N.; Ahmad, I.; Dufresne, A. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind. Crops Prod. 2012, 37, 93–99. [Google Scholar] [CrossRef]
- Hemmasi, A.H.; Samariha, A.; Tabei, A.; Nemati, M.; Khakifirooz, A. Study of Morphological and Chemical Composition of Fibers from Iranian Sugarcane Bagasse. Am. Eurasian J. Agric. Environ. Sci. 2011, 11, 478–481. [Google Scholar]
- Pengelly, J.J.; Kwasny, S.; Bala, S.; Evans, J.R.; Voznesenskaya, E.V.; Koteyeva, N.K.; Edwards, G.E.; Furbank, R.T.; von Caemmerer, S. Functional analysis of corn husk photosynthesis. Plant Physiol. 2011, 156, 503–513. [Google Scholar] [CrossRef] [Green Version]
- Grigoriou, A.; Passialis, C.; Voulgaridis, E. Kenaf core and bast fiber chips as raw material in production of one-layer experimental particleboards. Holz als Roh- und Werkstoff 2000, 58, 290–291. [Google Scholar] [CrossRef]
- Akgül, M.; Çamlibel, O. Manufacture of medium density fiberboard (MDF) panels from rhododendron (R. ponticum L.) biomass. Build. Environ. 2008, 43, 438–443. [Google Scholar] [CrossRef]
- Hiziroglu, S.; Jarusombuti, S.; Fueangvivat, V.; Bauchongkol, P.; Soontonbura, W.; Darapak, T. Properties of bamboo-rice straw-eucalyptus composite panels. For. Prod. J. 2005, 55, 221–225. [Google Scholar]
- Arruda, L.M.; Del Menezzi, C.H.S.; Teixeira, D.E.; de Araújo, P.C. Lignocellulosic composites from brazilian giant bamboo (Guadua magna) Part 1: Properties of resin bonded particleboards. Maderas. Ciencia y tecnología 2011, 13, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Melo, R.R.D.; Stangerlin, D.M.; Santana, R.R.C.; Pedrosa, T.D. Physical and mechanical properties of particleboard manufactured from wood, bamboo and rice husk. Mater. Res. 2014, 17, 682–686. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, A.N.; Hague, J.R.B. The potential for using flax (Linum usitatissimum L.) shiv as a lignocellulosic raw material for particleboard. Ind. Crops Prod. 2003, 17, 143–147. [Google Scholar] [CrossRef]
- Nikvash, N.; Kraft, R.; Kharazipour, A.; Euring, M. Comparative properties of bagasse, canola and hemp particle boards. Eur. J. Wood Wood Prod. 2010, 68, 323–327. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Pan, Z.; Zhang, R.; Jenkins, B.M.; Blunk, S. Particleboard quality characteristics of saline jose tall wheatgrass and chemical treatment effect. Bioresour. Technol. 2007, 98, 1304–1310. [Google Scholar] [CrossRef] [Green Version]
- Balducci, F.; Harper, C.; Meinlschmidt, P.; Dix, B.; Sanasi, A. Development of Innovative Particleboard Panels. Drv. Ind. 2008, 59, 131–136. [Google Scholar]
- Yushada, A.; Nurjannah, S.; Rasidi, R.; Siti, N.; Ishak, W.M.F. Mechanical Properties of Particleboard from Seaweed (Kappaphycus alvarezii). In Green Design and Manufacture: Advanced and Emerging Applications; Abdullah, M., Rahim, S., Saad, M.N.B., BinGhazli, M.F., Ahmad, R., Tahir, M.F.B., Jamaludin, L.B., Eds.; AIP Publishing LLC: Melville, NY, USA, 2018; Volume 2030. [Google Scholar]
- Ayrilmis, N.; Buyuksari, U.; Avci, E.; Koc, E. Utilization of pine (Pinus pinea L.) cone in manufacture of wood based composite. For. Ecol. Manag. 2009, 259, 65–70. [Google Scholar] [CrossRef]
- Nemli, G.; Demirel, S.; Gümüşkaya, E.; Aslan, M.; Acar, C. Feasibility of incorporating waste grass clippings (Lolium perenne L.) in particleboard composites. For. Ecol. Manag. 2009, 29, 1129–1131. [Google Scholar] [CrossRef]
- Nemli, G.; Kirci, H.; Serdar, B.; Ay, N. Suitability of kiwi (Actinidia sinensis Planch.) prunings for particleboard manufacturing. Ind. Crops Prod. 2003, 17, 39–46. [Google Scholar] [CrossRef]
- Nemli, G.; Yildiz, S.; Derya Gezer, E. The potential for using the needle litter of Scotch pine (Pinus sylvestris L.) as a raw material for particleboard manufacturing. Bioresour. Technol. 2008, 99, 6054–6058. [Google Scholar] [CrossRef] [PubMed]
- Yasar, S.; Guntekin, E.; Cengiz, M.; Tanriverdi, H. The correlation of chemical characteristics and UF-Resin ratios to physical and mechanical properties of particleboard manufactured from vine prunings. Sci. Res. Essays 2010, 5, 737–741. [Google Scholar]
- Ferrandez-Villena, M.; Ferrandez-Garcia, C.E.; Garcia-Ortuno, T.; Ferrandez-Garcia, A.; Ferrandez-Garcia, M.T. Analysis of the Thermal Insulation and Fire-Resistance Capacity of Particleboards Made from Vine (Vitis vinifera L.) Prunings. Polymers 2020, 12, 1147. [Google Scholar] [CrossRef]
- Carvalho, A.G.; Andrade, B.G.D.; Cabral, C.P.T.; Vital, B.R. Efeito Da Adição De Resíduos De Poda Da Erva-Mate Em Painéis Aglomerados. Rev. Árvore 2015, 39, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Kargarfard, A.; Jahan-Latibari, A. The Performance of Corn and Cotton Stalks for Medium Density Fiberboard Production. Bioresources 2011, 6, 1147–1157. [Google Scholar]
- Halvarsson, S.; Edlund, H.; Norgren, M. Manufacture of High-Performance Rice-Straw Fiberboards. Ind. Eng. Chem. Res. 2010, 49, 1428–1435. [Google Scholar] [CrossRef]
- Halvarsson, S.; Edlund, H.; Norgren, M. Properties of medium-density fibreboard (MDF) based on wheat straw and melamine modified urea formaldehyde (UMF) resin. Ind. Crop. Prod. 2008, 28, 37–46. [Google Scholar] [CrossRef]
- Dziurka, D.; Mirski, R.; Łęcka, J. Properties of boards manufactured form rape straw depending on the type of the binding agent. Cellulose 2005, 37, 3. [Google Scholar]
- Cosereanu, C.; Cerbu, C. Morphology, Physical, and Mechanical Properties of Particleboard Made from Rape Straw and Wood Particles Glued with Urea-Formaldehyde Resin. Bioresources 2019, 14, 2903–2918. [Google Scholar] [CrossRef]
- Papadopoulos, A.N.; Traboulay, E.A.; Hill, C.A.S. One layer experimental particleboard from coconut chips—(Cocos nucifera L.). Holz Als Roh- Und Werkst. 2002, 60, 394–396. [Google Scholar] [CrossRef]
- Guler, C.; Ozen, R. Some properties of particleboards made from cotton stalks (Gossypium hirsitum L.). Holz Als Roh Werkst. 2004, 62, 40–43. [Google Scholar] [CrossRef]
- Shaikh, A.J.; Gurjar, R.M.; Patil, P.G.; Paralikar, K.M.; Varadarajan, P.V.; Balasubramanya, R.H. Particle Boards from Cotton Stalk; Central Institute for Research on Cotton Technology: Mumbai, India, 2010. [Google Scholar]
- Yasar, S.; Icel, B. Alkali Modification of Cotton (Gossypium hirsutum L.) Stalks and its Effect on Properties of Produced Particleboards. BioResources 2016, 11, 3. [Google Scholar] [CrossRef] [Green Version]
- Nemli, G.; Kalaycioglu, H.; Alp, T. Suitability of date palm (Phoenix dactyliferia) branches for particleboard production. Holz Roh Werkst. 2001, 59, 411–412. [Google Scholar] [CrossRef]
- Guntekin, E.; Karakus, B. Feasibility of using eggplant (Solanum melongena) stalks in the production of experimental particleboard. Ind. Crops Prod. 2008, 27, 354–358. [Google Scholar] [CrossRef]
- Dukarska, D.; Łęcka, J.; Szafoni, K. Straw of white mustard (Sinapis alba) as an alternative raw material in the production of particle boards resinated with UF resin. Acta Sci. Pol. Silvarum Colendarum Ratio Ind. Lignaria 2011, 10, 1. [Google Scholar]
- Hashim, R.; Said, N.; Lamaming, J.; Baskaran, M.; Sulaiman, O.; Sato, M.; Hiziroglu, S.; Sugimoto, T. Influence of press temperature on the properties of binderless particleboard made from oil palm trunk. Mater. Des. 2011, 32, 2520–2525. [Google Scholar] [CrossRef]
- Guntekin, E.; Uner, B.; Sahin, H.T.; Karakus, B. Pepper stalks (Capsicum annuum) as raw material for particleboard manufacturing. J. Appl. Sci. 2008, 8, 2333–2336. [Google Scholar] [CrossRef]
- Oh, Y.S.; Yoo, J.Y. Properties of Particleboard Made from Chili Pepper Stalks. J. Trop. Sci. 2011, 23, 473–477. [Google Scholar]
- Dukarska, D.; Łęcka, J.; Czarnecki, R. Properties of boards manufactured from evening primrose straw particles depending on the amount and type of binding agent. Electron. J. Pol. Agric. Univ. 2010, 13, 8. [Google Scholar]
- Mirski, R.; Dziurka, D.; Banaszak, A. Properties of Particleboards Produced from Various Lignocellulosic Particles. Bioresources 2018, 13, 7758–7765. [Google Scholar] [CrossRef]
- Khristova, P.; Yossifov, N.; Gabir, S. Particle board from sunflower stalks: Preliminary trials. Bioresour. Technol. 1996, 58, 319–321. [Google Scholar] [CrossRef]
- Bektas, I.; Guler, C.; Kalaycioğlu, H.; Mengeloglu, F.; Nacar, M. The Manufacture of Particleboards using Sunflower Stalks (Helianthus annuus L.) And Poplar Wood (Populus alba L.). J. Compos. Mater. 2005, 39, 467–473. [Google Scholar] [CrossRef]
- Guler, C.; Bektas, I.; Kalaycioglu, H. The experimental particleboard manufacture from sunflower stalks (Helianthus annuus L.) and Calabrian pine (Pinus brutia Ten.). For. Prod. J. 2006, 56, 56–60. [Google Scholar]
- Guntekin, E.; Uner, B.; Karakus, B. Chemical composition of tomato (Solanum lycopersicum) stalk and suitability in the particleboard production. J. Env. Biol. 2009, 30, 731–734. [Google Scholar]
- Mo, X.; Cheng, E.; Wang, D.; Sun, X.S. Physical properties of medium-density wheat straw particleboard using different adhesives. Ind. Crop. Prod. 2003, 18, 47–53. [Google Scholar] [CrossRef]
- Tabarsa, T.; Jahanshahi, S.; Ashori, A. Mechanical and physical properties of wheat straw boards bonded with a tannin modified phenol–formaldehyde adhesive. Compos. Part B Eng. 2011, 42, 176–180. [Google Scholar] [CrossRef]
- Çöpür, Y.; Guler, C.; Tascioglu, C.; Tozluoglu, A. Incorporation of hazelnut shell and husk in MDF production. Bioresour. Technol. 2008, 99, 7402–7406. [Google Scholar] [CrossRef]
- Ramli, R.; Shaler, S.; Jamaludin, M.A. Properties of Medium Density Fibreboard from Oil Palm Empty Fruit Bunch Fibre. J. Oil Palm Res. 2002, 14, 35–44. [Google Scholar]
- Ferrandez-Villena, M.; Ferrandez-Garcia, C.E.; Garcia Ortuño, T.; Ferrandez-Garcia, A.; Ferrandez-Garcia, M.T. Study of the Utilisation of Almond Residues for Low-Cost Panels. Agronomy 2019, 9, 811. [Google Scholar] [CrossRef] [Green Version]
- Narciso, C.R.P.; Reis, A.H.S.; Mendes, J.F.; Nogueira, N.D.; Mendes, R.F. Potential for the Use of Coconut Husk in the Production of Medium Density Particleboard. Waste Biomass Valorizat. 2020, 12, 1647–1658. [Google Scholar] [CrossRef]
- Ren, H.Y.; Richard, T.L.; Chen, Z.L.; Kuo, M.L.; Bian, Y.L.; Moore, K.J.; Patrick, P. Ensiling corn stover: Effect of feedstock preservation on particleboard perform. Biotechnol. Prog. 2006, 22, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Çöpür, Y.; Güler, C.; Akgül, M.; Taşçıoğlu, C. Some chemical properties of hazelnut husk and its suitability for particleboard production. Build. Environ. 2007, 42, 2568–2572. [Google Scholar] [CrossRef]
- Wechsler, A.; Zaharia, M.; Crosky, A.; Jones, H.; Ramírez, M.; Ballerini, A.; Nuñez, M.; Sahajwalla, V. Macadamia (Macadamia integrifolia) shell and castor (Rícinos communis) oil based sustainable particleboard: A comparison of its properties with conventional wood based particleboard. Mater. Des. 2013, 50, 117–123. [Google Scholar] [CrossRef]
- Farag, E.; Alshebani, M.; Elhrari, W.; Klash, A.; Shebani, A. Production of particleboard using olive stone waste for interior design. J. Build. Eng. 2020, 29, 101119. [Google Scholar] [CrossRef]
- Faria, D.L.; Guimarães, I.L.; Sousa, T.B.; Protásio, T.D.P.; Mendes, L.M.; Guimarães, J.B., Jr. Technological properties of medium density particleboard produced with soybean pod husk and Eucalyptus wood. Sci. For. 2020, 48, 126. [Google Scholar] [CrossRef]
- Borysiuk, P.; Jenczyk-Tolloczko, I.; Auriga, R.; Kordzikowski, M. Sugar beet pulp as raw material for particleboard production. Ind. Crops Prod. 2019, 141, 111829. [Google Scholar] [CrossRef]
- Nonaka, S.; Umemura, K.; Kawai, S. Characterization of bagasse binderless particleboard manufactured in high-temperature range. J. Wood Sci. 2013, 59, 50–56. [Google Scholar] [CrossRef]
- Xu, X.; Yao, F.; Wu, Q.; Zhou, D. The influence of wax-sizing on dimension stability and mechanical properties of bagasse particleboard. Ind. Crops Prod. 2009, 29, 80–85. [Google Scholar] [CrossRef]
- Pirayesh, H.; Khazaeian, A.; Tabarsa, T. The potential for using walnut (Juglans regia L.) shell as a raw material for wood-based particleboard manufacturing. Compos. Part B Eng. 2012, 43, 3276–3280. [Google Scholar] [CrossRef]
- Batiancela, M.A.; Acda, M.N.; Cabangon, R.J. Particleboard from waste tea leaves and wood particles. J. Compos. Mater. 2014, 48, 911–916. [Google Scholar] [CrossRef]
- Fiorelli, J.; Bueno, S.B.; Cabral, M.R. Assessment of multilayer particleboards produced with green coconut and sugarcane bagasse fibers. Constr. Build. Mater. 2019, 205, 1–9. [Google Scholar] [CrossRef]
- Klímek, P.; Wimmer, R.; Meinlschmidt, P.; Kúdela, J. Utilizing Miscanthus stalks as raw material for particleboards. Ind. Crops Prod. 2018, 111, 270–276. [Google Scholar] [CrossRef]
- Nicolao, E.S.; Leiva, P.; Chalapud, M.C.; Ruseckaite, R.A.; Ciannamea, E.M.; Stefani, P.M. Flexural and tensile properties of biobased rice husk-jute-soybean protein particleboards. J. Build. Eng. 2020, 30, 101261. [Google Scholar] [CrossRef]
- Grigoriou, A.H.; Ntalos, G.A. The potential use of Ricinus communis L. (Castor) stalks as a lignocellulosic resource for particleboards. Ind. Crop. Prod. 2001, 13, 209–218. [Google Scholar] [CrossRef]
- Iswanto, A.H.; Azhar, I.; Susilowati, A.; Supriyanto; Ginting, A. Effect of Wood Shaving to Improve the Properties of Particleboard Made from Sorghum Bagasse. Int. J. Mater. Sci. Appl. 2016, 5, 113. [Google Scholar] [CrossRef]
- Khalil, H.P.S.A.; Fazita, M.R.N.; Bhat, A.H.; Jawaid, M.; Fuad, N.A.N. Development and material properties of new hybrid plywood from oil palm biomass. Mater. Des. 2010, 31, 417–424. [Google Scholar] [CrossRef]
- Varanda, L.D.; Nascimento, M.F.D.; Christoforo, A.L.; Silva, D.A.L.; Lahr, F.A.R. Oat hulls as addition to high density panels production. Mater. Res. 2013, 16, 1355–1361. [Google Scholar] [CrossRef] [Green Version]
- Guler, C.; Buyuksari, U. Effect of production parameters on physical and mechanical properties of particleboards made from peanut (Arachis hypogaea L.) hull. Bioresources 2011, 6, 5027–5036. [Google Scholar]
- Papadopoulos, A.N.; Hill, C.A.S.; Gkaraveli, A.; Ntalos, G.A.; Karastergiou, S.P. Bamboo chips (Bambusa vulgaris) as an alternative lignocellulosic raw material for particleboard manufacture. Holz als Roh- und Werkstoff 2004, 62, 36–39. [Google Scholar] [CrossRef]
- Barbu, M.C.; Sepperer, T.; Tudor, E.M.; Petutschnigg, A. Walnut and Hazelnut Shells: Untapped Industrial Resources and Their Suitability in Lignocellulosic Composites. Appl. Sci. 2020, 10, 6340. [Google Scholar] [CrossRef]
- Minopoulou, E.; Dessipri, E.; Chryssikos, G.D.; Gionis, V.; Paipetis, A.; Panayiotou, C. Use of NIR for structural characterization of urea–formaldehyde resins. Int. J. Adhes. Adhes. 2003, 23, 473–484. [Google Scholar] [CrossRef]
- Sahin, A.; Tasdemir, H.M.; Karabulut, A.F.; Guru, M. Mechanical and Thermal Properties of Particleboard Manufactured from Waste Peachnut Shell with Glass Powder. Arab. J. Sci. Eng. 2017, 42, 1559–1568. [Google Scholar] [CrossRef]
- Battegazzore, D.; Alongi, J.; Duraccio, D.; Frache, A. All Natural High-Density Fiber- and Particleboards from Hemp Fibers or Rice Husk Particles. J. Polym. Environ. 2017, 26, 1652–1660. [Google Scholar] [CrossRef]
- Tangjuank, S. Thermal insulation and physical properties of particleboards from pineapple leaves. Int. J. Phys. Sci. 2011, 6, 4528–4532. [Google Scholar]
- Pan, Z.; Cathcart, A.; Wang, D. Properties of particleboard bond with rice bran and polymeric methylene diphenyl diisocyanate adhesives. Ind. Crops Prod. 2006, 23, 40–45. [Google Scholar] [CrossRef]
- Hussein, Z.; Ashour, T.; Khalil, M.; Bahnasawy, A.; Ali, S.; Hollands, J.; Korjenic, A. Rice Straw and Flax Fiber Particleboards as a Product of Agricultural Waste: An Evaluation of Technical Properties. Appl. Sci. 2019, 9, 3878. [Google Scholar] [CrossRef] [Green Version]
- Canadido, L.S.; Saito, F.; Suzuki, S. Influence of Strand Thickness and Board Density on the Orthotropic Properties of Oriented Strandboard. Mokuzai Gakkaishi 1990, 36, 632–636. [Google Scholar]
- Sumardi, I.; Ono, K.; Suzuki, S. Effect of board density and layer structure on the mechanical properties of bamboo oriented strandboard. J. Wood Sci. 2007, 53, 510–515. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.Y.; Wu, Q.L.; Lee, J.N.; Hiziroglu, S. Influence of board density, mat construction, and chip type on performance of particleboard made from eastern redcedar. For. Prod. J. 2004, 54, 226–232. [Google Scholar]
- Kalaycıoglu, H.; Nemli, G. Producing composite particleboard from kenaf (Hibiscus cannabinus L.) stalks. Ind. Crops Prod. 2006, 24, 177–180. [Google Scholar] [CrossRef]
- Thoemen, H.; Ruf, C. Measuring and simulating the effects of the pressing schedule on the density profile development in wood-based composites. Wood Fiber Sci. 2008, 40, 325–338. [Google Scholar]
- Kwon, J.H.; Ayrilmis, N. Effect of Hot-Pressing Parameters on Selected Properties of Flakeboard. Wood Res. 2016, 61, 1033–1040. [Google Scholar]
- Cai, Z.; Muehl, J.; Winandy, J. Effects of Pressing Schedule on Formation of Vertical Density Profile for MDF Panels. In Proceedings of the 40th International Wood Composites Symposium, Seattle, WA, USA, 11–12 April 2006. [Google Scholar]
- Nogueira, N.D.; Narciso, C.R.P.; Felix, A.D.L.; Mendes, R.F. Pressing Temperature Effect on the Properties of Medium Density Particleboard Made with Sugarcane Bagasse and Plastic Bags. Mater. Res. 2022, 25. [Google Scholar] [CrossRef]
- Ndazi, B.S.; Karlsson, S.; Tesha, J.V.; Nyahumwa, C.W. Chemical and physical modifications of rice husks for use as composite panels. Compos. Part A Appl. Sci. Manuf. 2007, 38, 925–935. [Google Scholar] [CrossRef]
- Zawawi, I.; Humaira, A.A.; Ridzuan, R.; Abdul, W.N.; Mansur, A.; Syaiful, O.; Lay, S.E. Effects of Refining Parameters on the Properties of Oil Palm Frond (OPF) Fiber for Medium Density Fibreboard (MDF). J. Adv. Res. Fluid Mech. Therm. Sci. 2021, 87, 64–77. [Google Scholar] [CrossRef]
- Lopattananon, N.; Payae, Y.; Seadan, M. Influence of fiber modification on interfacial adhesion and mechanical properties of pineapple leaf fiber-epoxy composites. J. Appl. Polym. Sci. 2008, 110, 433–443. [Google Scholar] [CrossRef]
- Ray, D.; Sarkar, B.K. Characterization of alkali-treated jute fibers for physical and mechanical properties. J. Appl. Polym. Sci. 2001, 80, 1013–1020. [Google Scholar] [CrossRef]
- Khalil, H.P.S.A.; Ismail, H.; Ahmad, M.N.; Ariffin, A.; Hassan, K. The effect of various anhydride modifications on mechanical properties and water absorption of oil palm empty fruit bunches reinforced polyester composites. Polym. Int. 2001, 50, 395–402. [Google Scholar] [CrossRef]
- Dušek, J.; Jerman, M.; Podlena, M.; Böhm, M.; Černý, R. Sustainable composite material based on surface-modified rape straw and environment-friendly adhesive. Constr. Build. Mater. 2021, 300, 124036. [Google Scholar] [CrossRef]
- Mantanis, G.; Nakos, P.; Berns, J.; Rigal, L. Turning agricultural straw residues into value added composite products: A new environmentally friendly technology. In Proceedings of the 5th International Conference on Environmental Pollution, Thessaloniki, Greece, 28 August–1 September 2000. [Google Scholar]
- Silva, D.A.L.; Lahr, F.A.R.; Pavan, A.L.R.; Saavedra, Y.M.B.; Mendes, N.C.; Sousa, S.R.; Sanches, R.; Ometto, A.R. Do wood-based panels made with agro-industrial residues provide environmentally benign alternatives? An LCA case study of sugarcane bagasse addition to particle board manufacturing. Int. J. Life Cycle Assess. 2014, 19, 1767–1778. [Google Scholar] [CrossRef]
Area | Forest Land | Cropland |
---|---|---|
Africa | 6.41 | 2.76 |
Asia | 6.2 | 5.90 |
Europe | 10.17 | 2.89 |
North America | 6.57 | 1.99 |
Oceania | 1.85 | 0.33 |
South America | 8.46 | 1.32 |
Crop | Residue-to-Crop Ratio | Production | Stalks | Husks | Leaves | |||||
---|---|---|---|---|---|---|---|---|---|---|
Stalks | Husks | Leaves | World | Europe | World | Europe | World | Europe | World | |
Sugarcane | 0.26 | - | 0.2 | 1907.0 | 2.3 | 495.8 | 0.6 | - | - | 381.4 |
Corn | 1.96 | 0.22 | - | 1147.6 | 128.6 | 2249.3 | 252.0 | 252.5 | 28.3 | - |
Rice | 1.33 | 0.25 | - | 782.0 | 4.0 | 1040.1 | 5.4 | 195.5 | 1.0 | - |
Wheat | 1.28 | - | - | 734.0 | 242.1 | 939.6 | 309.9 | - | - | - |
Potato | 0.25 | - | - | 368.2 | 105.2 | 92.0 | 26.3 | - | - | - |
Soybean | 1.53 | 1.09 | - | 348.7 | 12.1 | 533.5 | 18.4 | 380.1 | 13.1 | - |
Sugar beet | 0.25 | - | - | 274.9 | 185.1 | 68.7 | 46.3 | - | - | - |
Oil palm | 0.31 | - | 2.6 | 272.1 | 0.1 | 84.3 | - | - | - | 707.3 |
Coconut | - | 0.49 | 0.47 | 61.9 | - | - | - | 30.3 | - | 29.1 |
Sorghum | 2.44 | - | - | 59.3 | 1.1 | 144.8 | 2.6 | - | - | - |
Groundnut | - | 0.47 | - | 46.0 | - | - | - | 21.6 | - | - |
Cotton | 3.4 | 0.26 | - | 41.2 | 0.5 | 140.0 | 1.9 | 10.7 | 0.1 | - |
Millet | 2.54 | - | - | 31.0 | 0.4 | 78.8 | 1.0 | - | - | - |
Oat | 1.42 | - | - | 23.1 | 13.5 | 32.7 | 19.2 | - | - | - |
Barley | 1.35 | - | - | 14.1 | 83.1 | 19.1 | 112.2 | - | - | - |
Rye | 1.61 | - | - | 11.3 | 9.1 | 18.2 | 14.7 | - | - | - |
Coffee | - | 1.32 | - | 10.3 | - | - | - | 13.6 | - | - |
Cacao | - | 1.5 | - | 5.3 | - | - | - | 7.9 | - | - |
Total | 6137.9 | 787.3 | 5936.9 | 810.6 | 912.2 | 42.6 | 1117.8 |
Panel Type | Materials | Resin Type SL; CL (%) | MOR (Nmm−2) | IB (Nmm−2) | References | ||||
---|---|---|---|---|---|---|---|---|---|
Fiberboard | Bamboo | Bagasse fiber | UF | 4 | 12 | ✕ | 1.4 | ✓ | [74] |
Kenaf | - | - | - | 18 * | ✓ | 0.2 * | - | [82] | |
Kenaf | - | UF | 10 | 29.14 | ✓ | 0.33 | ✓ | [101] | |
Rhododendron | - | UF | 11 | 40 * | ✓ | 0.63 * | ✓ | [102] | |
Rhododendron | ind. wood fibers | UF | 11 | 32 * | ✓ | 0.60 * | ✓ | [102] | |
Particleboard | Bamboo | - | UF | 8 | 22.57 | ✓ | 1.61 | ✓ | [103] |
Bamboo | Eucalyptus | UF | 8 | 25.25 | ✓ | 1.62 | ✓ | [103] | |
Bamboo | Rice stalks | UF | 8 | 14.36 | ✓ | 0.1 | ✕ | [103] | |
Bamboo | - | UF | 8 | 13.44 | ✓ | 0.32 | ✓ | [104] | |
Bamboo | - | PF | 8 | 13.6 | ✓ | 0.26 | ✕ | [104] | |
Bamboo | Pinus taeda | PF | 8 | 17.68 | ✓ | 0.4 | ✓ | [104] | |
Bamboo | - | UF | 8 | 11.25 | ✕ | 0.22 | ✕ | [105] | |
Bamboo | Eucalyptus | UF | 8 | 12.79 | ✓ | 0.22 | ✕ | [105] | |
Flax | - | UF | 13 | 11.72 | ✓ | 0.09 | ✕ | [106] | |
Flax | ind. wood chips | UF | 13 | 13.22 | ✓ | 0.43 | ✓ | [106] | |
Hemp | - | UF | 10; 8 | 16 * | ✓ | 0.78 * | ✓ | [107] | |
Hemp | ind. wood chips | UF | 10; 8 | 16 * | ✓ | 0.78 * | ✓ | [107] | |
Jose wheat grass | - | pMDI | 4 | 19.6 | ✓ | - | - | [108] | |
Kenaf | - | UF | 8 | 12.88 | ✓ | 0.86 | ✓ | [101] | |
Miscanthus | - | pMDI | 6 | 24.2 | ✓ | 0.11 | ✕ | [80] | |
Miscanthus | - | UF | 12 | 11 | ✕ | 0.67 | ✓ | [80] | |
Miscanthus | - | pMDI | 6 | 5.7 | ✕ | 0.23 | ✕ | [109] | |
Seaweed | UF | 25 | 2.6 * | ✕ | 5.8 * | ✓ | [110] |
Panel Type | Materials | Resin Type SL; CL (%) | MOR (Nmm−2) | IB (Nmm−2) | References | ||||
---|---|---|---|---|---|---|---|---|---|
Fiberboard | Pinecone | ind. Wood fiber | UF | 10 | 13.3 | 0.4 | - | [111] | |
Particleboard | Grass clipping | - | UF | 12 | 4.19 | ✕ | 0.08 | ✕ | [112] |
Grass clipping | Eucalyptus chips | UF | 12 | 8.39 | ✕ | 0.189 | ✕ | [112] | |
Kiwi pruning | - | UF | 10; 8 | 8.42 | ✕ | 0.527 | ✓ | [113] | |
Kiwi pruning | ind. wood chips | UF | 10; 8 | 10.47 | ✕ | 0.555 | ✓ | [113] | |
Needle litter | - | UF | 12 | 6.83 | ✕ | 0.152 | ✕ | [114] | |
Needle litter | ind. wood chips | UF | 12 | 9.15 | ✕ | 0.208 | ✕ | [114] | |
Vine pruning | - | UF | 8 | 8.5 | ✕ | 0.69 | ✓ | [54] | |
Vine pruning | - | UF | 8 | 3.75 | ✕ | 0.3 | ✓ | [115] | |
Vine pruning | - | UF | 9 | 13.6 | ✓ | 1.32 | ✓ | [116] | |
Vine pruning | - | UF | 10 | 4.17 | ✕ | 0.33 | ✓ | [115] | |
Vine pruning | ind. wood chips | UF | 8 | 14 | ✓ | 0.84 | ✓ | [54] | |
Yerba mata pruning | - | UF | 8 | 9.6 | ✕ | 1.05 | ✓ | [117] | |
Yerba mata pruning | ind. wood chips | UF | 8 | 14.5 | ✓ | 1.28 | ✓ | [117] |
Panel Type | Materials | Resin Type SL; CL (%) | MOR (Nmm−2) | IB (Nmm−2) | References | ||||
---|---|---|---|---|---|---|---|---|---|
Fiberboard | Canola stalks | - | UF | 9 | 18.95 | ✓ | 0.414 | ✓ | [83] |
Corn stalks | - | UF | 10 | 22.26 | ✓ | 0.415 | ✓ | [118] | |
Rice stalks | - | pMDI | 3 | 26 * | ✓ | 1.3 | ✓ | [119] | |
Wheat stalks | - | UMF | 14 | 31 * | ✓ | 0.7 * | ✓ | [120] | |
Particleboard | Canola stalks | - | MUPF | 8 | 11.1 | ✕ | 0.31 | ✓ | [121] |
Canola stalks | - | pMDI | 8 | 14.7 | ✓ | 0.82 | ✓ | [121] | |
Canola stalks (CL) | - | UF | 10; 8 | 13 * | ✓ | 0.12 * | ✕ | [107] | |
Canola stalks | - | UF | 8 | 11 | ✕ | 0.28 | ✓ | [121] | |
Canola stalks (CL) | ind. wood chips | UF | 10; 8 | 14.5 * | ✓ | 0.21 * | ✓ | [107] | |
Canola stalks | ind. wood chips | UF | 12 | 9.1 | ✕ | 0.25 | ✓ | [122] | |
Coconut wood | - | EMDI | 4 | 14.21 | ✓ | 0.54 | ✓ | [121,123] | |
Cotton stalks | - | PF | 12; 10 | 17.95 | ✓ | 0.591 | ✓ | [107,124] | |
Cotton stalks | - | UF | 10 | 14.6 | ✓ | 0.6 | ✓ | [122,125] | |
Cotton stalks | - | UF | 10 | 8.1 | ✕ | 0.34 | ✓ | [123,126] | |
Date palm | - | UF | 11; 9 | 18.14 | ✓ | 0.67 | ✓ | [127] | |
Eggplant stalks | - | MUF | 12; 10 | 13.2 | ✓ | 0.966 | ✓ | [128] | |
Eggplant stalks | - | UF | 12; 10 | 13.14 | ✓ | 0.5 | ✓ | [128] | |
Mustard stalks | - | UF | 12 | 14.5 | ✓ | 0.29 | ✓ | [129] | |
Mustard stalks | ind. wood chips | UF | 12 | 14.7 | ✓ | 0.59 | ✓ | [129] | |
Oil palm wood | - | - | - | 4.9 * | ✕ | 0.37 * | ✓ | [130] | |
Pepper stalks | - | UF | 12; 10 | 12.32 | ✓ | 0.83 | ✓ | [131] | |
Pepper stalks | - | UF | 8 | 12.2 | ✕ | 0.61 | ✓ | [132] | |
Pepper stalks | trop. hardwood | UF | 8 | 14.2 | ✓ | 0.71 | ✓ | [132] | |
Primrose stalks | pine chips (SL) | MUPF | 12; 10 | 14.3 | ✓ | 0.57 | ✓ | [133] | |
Primrose stalks | pine chips (SL) | pMDI | 8; 6 | 19 | ✓ | 0.9 | ✓ | [133] | |
Primrose stalks | pine chips (SL) | UF | 12; 10 | 15.7 | ✓ | 0.41 | ✓ | [133] | |
Reed stalks | ind. wood chips | pMDI | 6; 4 | 14.1 * | ✓ | 0.31 * | ✓ | [134] | |
Rice stalks | - | pMDI | 4 | 14 * | ✓ | 0.46 * | ✓ | [44] | |
Rice stalks | - | UF | 12 | 7 * | ✕ | 0.15 * | ✕ | [44] | |
Rye stalks | ind. wood chips | pMDI | 6; 4 | 29 * | ✓ | 0.32 * | ✓ | [134] | |
Sorghum stalks | ind. wood chips | UF | 8 | 10 * | ✕ | 0.61 * | ✓ | [91] | |
Sunflower stalks | - | PF | 12 | 10.28 | ✕ | 0.16 | ✕ | [135] | |
Sunflower stalks | - | UF | 11; 9 | 15.65 | ✓ | 0.46 | ✓ | [136] | |
Sunflower stalks | ind. wood chips | PF | 12 | 6.98 | ✕ | 0.11 | ✕ | [135] | |
Sunflower stalks | pine chips | UF | 11; 9 | 18.74 | ✓ | 0.58 | ✓ | [137] | |
Sunflower stalks | Popolus alba L. | UF | 11; 9 | 22.03 | ✓ | 0.51 | ✓ | [136] | |
Tomato stalks | - | MUF | 12; 10 | 12.75 | ✓ | 0.69 | ✓ | [138] | |
Tomato stalks | - | UF | 12; 10 | 10.89 | ✕ | 0.53 | ✓ | [138] | |
Tomato stalks | - | UF | 12 | 12.5 * | ✓ | 0.38 * | ✓ | [94] | |
Triticale stalks | ind. wood chips | pMDI | 6; 4 | 25 * | ✓ | 0.32 * | ✓ | [134] | |
Wheat stalks | - | MDI | 4 | 11.45 | ✕ | 0.64 | ✓ | [139] | |
Wheat stalks | - | PF | 10 | 16.9 | ✓ | 0.68 | ✓ | [140] | |
Wheat stalks | - | UF | 8 | 3.96 | ✕ | 0.11 | ✕ | [139] |
Panel Type | Materials | Resin Type SL; CL (%) | MOR (Nmm−2) | IB (Nmm−2) | References | ||||
---|---|---|---|---|---|---|---|---|---|
Fiberboard | Hazelnut husks (30%) | ind. wood fibers | UF | 8 | 13.9 | ✓ | 0.22 | ✓ | [141] |
Oil palm fruit husks | - | PF | 6 | 32.8 | ✓ | 0.114 | ✓ | [142] | |
Oil palm fruit husks | - | PF | 10 | 27.2 | ✓ | 0.24 | ✓ | [142] | |
Particleboard | Almond husks | - | - | - | 14.01 | ✓ | 0.90 | ✓ | [143] |
Almond husks | - | UF | 11; 9 | 7.41 | ✕ | 0.27 | ✓ | [61] | |
Almond husks | ind. wood chips | UF | 11; 9 | 10.2 | ✕ | 0.36 | ✓ | [61] | |
Coconut Coir | - | UF | 11; 7 | 15.1 | ✓ | 0.40 * | ✓ | [144] | |
Coconut Coir | pine chips | UF | 11; 7 | 17.5 | ✓ | 0.32 | ✓ | [144] | |
Coconut Coir | Durian husks | UF | 12 | 36.8 | ✓ | 0.3 | ✓ | [62] | |
Coffee husks | ind. wood chips | MUPF | 15 | 11.9 | ✓ | 0.34 | ✓ | [33] | |
Coffee husks | ind. wood chips | pMDI | 8 | 14.1 | ✓ | 0.6 | ✓ | [33] | |
Coffee husks | ind. wood chips | UF | 15 | 13.1 | ✓ | 0.41 | ✓ | [33] | |
Corn stover | - | soy | 10 | 16.5 * | ✓ | 0.8 * | ✓ | [145] | |
Hazelnut husks | - | MUF | 10; 8 | 10.1 | ✕ | 0.39 | ✓ | [146] | |
Hazelnut husks | - | PF | 10; 8 | 12 | ✓ | 0.482 | ✓ | [146] | |
Hazelnut husks | - | UF | 10; 8 | 11.9 | ✓ | 0.505 | ✓ | [146] | |
Macadamia husks | - | PU | 20 | 4.3 | ✕ | 1.33 | ✓ | [147] | |
Olive stone | - | PU | 20 | 15.56 | ✓ | - | - | [148] | |
Peanut husks | - | UF | 10; 8 | 9.9 | ✕ | 0.316 | ✓ | [63] | |
Peanut husks | pine chips | UF | 10; 8 | 11.32 | ✕ | 0.35 | ✓ | [63] | |
Rice husks | - | UF | 8 | 4.69 | ✕ | 0.04 | ✕ | [105] | |
Rice husks | Bamboo | UF | 8 | 6.74 | ✕ | 0.07 | ✕ | [105] | |
Soybean husks | - | UF | 10 | 11.02 | ✕ | 0.23 | ✕ | [149] | |
Soybean husks | ind. wood chips | UF | 10 | 20.84 | ✓ | 0.40 | ✓ | [149] | |
Sugar beet pulp (CL) | - | UF | 10; 7 | 6.29 | ✕ | 0.51 | ✓ | [150] | |
Sugar beet pulp (CL) | ind. wood chips | UF | 10; 8 | 9.97 | ✕ | 0.51 | ✓ | [150] | |
Sugarcane bagasse | - | - | - | 6 * | ✕ | 0.01 * | ✕ | [151] | |
Sugarcane bagasse | - | pMDI | 3 | 16 | ✓ | 0.86 | ✓ | [152] | |
Sugarcane bagasse | - | pMDI | 8 | 40 * | ✓ | 1.8 * | ✓ | [151] | |
Sugarcane bagasse (CL) | - | UF | 10; 8 | 17 * | ✓ | 0.42 * | ✓ | [107] | |
Sugarcane bagasse (CL) | ind. wood chips | UF | 10; 8 | 17.5 * | ✓ | 0.45 * | ✓ | [107] | |
Walnut husks | - | UF | 11; 9 | 5.86 | ✕ | 0.24 | ✓ | [153] | |
Walnut husks | ind. wood chips | UF | 11; 9 | 8.62 | ✕ | 0.34 | ✓ | [153] | |
Waste tea leaves | - | UF | 8 | 37 * | ✓ | 0.16 * | ✕ | [154] | |
Waste tea leaves | ind. wood chips | UF | 8 | 35 * | ✓ | 0.22 * | ✕ | [154] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neitzel, N.; Hosseinpourpia, R.; Walther, T.; Adamopoulos, S. Alternative Materials from Agro-Industry for Wood Panel Manufacturing—A Review. Materials 2022, 15, 4542. https://doi.org/10.3390/ma15134542
Neitzel N, Hosseinpourpia R, Walther T, Adamopoulos S. Alternative Materials from Agro-Industry for Wood Panel Manufacturing—A Review. Materials. 2022; 15(13):4542. https://doi.org/10.3390/ma15134542
Chicago/Turabian StyleNeitzel, Nicolas, Reza Hosseinpourpia, Thomas Walther, and Stergios Adamopoulos. 2022. "Alternative Materials from Agro-Industry for Wood Panel Manufacturing—A Review" Materials 15, no. 13: 4542. https://doi.org/10.3390/ma15134542
APA StyleNeitzel, N., Hosseinpourpia, R., Walther, T., & Adamopoulos, S. (2022). Alternative Materials from Agro-Industry for Wood Panel Manufacturing—A Review. Materials, 15(13), 4542. https://doi.org/10.3390/ma15134542