Graphene Reinforced Anticorrosion Transparent Conductive Composite Film Based on Ultra-Thin Ag Nanofilm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Ultra-Thin Ag Conductive Film
2.2. Preparation of Graphene-Decorated Ultrathin Ag Conductive Film (G/ACF)
2.3. Characterization
3. Results & Discussion
3.1. Analysis and Investigation on ACF
3.2. Analysis and Investigation of G/ACF
3.3. Effect of Graphene on Optical and Surface Resistance
3.4. Corrosion Resistance of G/ACF
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, S.; Shriwastava, S.; Kumar, S.; Bhatt, K.; Tripathi, C.C. Alternative transparent conducting electrode materials for flexible optoelectronic devices. Opto-Electron. Rev. 2018, 26, 223–235. [Google Scholar] [CrossRef]
- Ju, S.; Facchetti, A.; Xuan, Y.; Liu, J.; Ishikawa, F.; Ye, P.; Zhou, C.; Marks, T.J.; Janes, D.B. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat. Nanotechnol. 2007, 2, 378–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Wang, Y.Z.; Jing, L.C.; Zhu, Q.; Ethiraj, A.S.; Geng, W.; Tian, Y.; Zhu, Z.; Meng, Z.; Geng, H.Z. Novel biodegradable and ultra-flexible transparent conductive film for green light OLED devices. Carbon 2021, 172, 379–389. [Google Scholar] [CrossRef]
- Pietrzak, T.K.; Wasiucionek, M.; Garbarczyk, J.E. Towards higher electric conductivity and wider phase stability range via nanostructured glass-ceramics processing. Nanomaterials 2021, 11, 1321. [Google Scholar] [CrossRef]
- Li, W.; Zhang, H.; Shi, S.; Xu, J.; Qin, X.; He, Q.; Yang, K.; Dai, W.; Liu, G.; Zhou, Q. Recent progress in silver nanowire networks for flexible organic electronics. J. Mater. Chem. C 2020, 8, 4636–4674. [Google Scholar] [CrossRef]
- Ho, V.T.T.; Pham, H.Q.; Anh, T.H.T.; Nguyen, A.V.; Nguyen, T.T. Highly stable Pt/ITO catalyst as a promising electrocatalyst for direct methanol fuel cells. Comptes Rendus Chim. 2019, 22, 838–843. [Google Scholar] [CrossRef]
- Han, T.H.; Kim, H.; Kwon, S.J.; Lee, T.W. Graphene-based flexible electronic devices. Mater. Sci. Eng. R Rep. 2017, 118, 1–43. [Google Scholar] [CrossRef]
- Yu, S.H.; Zhao, L.; Liu, R.C.; Zhang, C.; Zheng, H. Performance enhancement of Cu-based AZO multilayer thin films via graphene fence engineering for organic solar cells. Sol. Energy Mater. Sol. Cells 2018, 183, 66–72. [Google Scholar] [CrossRef]
- Hu, L.; Zheng, G.; Yao, J.; Liu, N.; Weil, B.; Eskilsson, M.; Karabulut, E.; Ruan, Z.; Fan, S.; Bloking, J.T.; et al. Transparent and conductive paper from nanocellulose fibers. Energy Environ. Sci. 2013, 6, 513–518. [Google Scholar] [CrossRef]
- Wang, H.; Lu, Z.; Liu, Y.; Tan, J.; Ma, L.; Lin, S. Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding. Opt. Lett. 2017, 42, 1620–1623. [Google Scholar] [CrossRef]
- Fan, X.; Huai, X.; Wang, J.; Jing, L.C.; Wang, T.; Liu, J.; Geng, H.Z. Low Surface Roughness Graphene Oxide Film Reduced with Aluminum Film Deposited by Magnetron Sputtering. Nanomaterials 2021, 11, 1428. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liang, M.; Fang, Y.; Qiu, T.; Zhang, J.; Zhi, L. Rod-coating: Towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Adv. Mater. 2021, 24, 2874–2878. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Jing, L.C.; Zhu, Q.; Ethiraj, A.S.; Fan, X.; Liu, H.; Tian, Y.; Zhu, Z.; Meng, Z.; Geng, H.Z. Tannic acid modified graphene/CNT three-dimensional conductive network for preparing high-performance transparent flexible heaters. J. Colloid. Interface Sci. 2020, 577, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhang, C.; Wu, M.; Zhang, J.; Ling, X.; Yang, L. Scalable Solution-Processed Fabrication Approach for High-Performance Silver Nanowire/MXene Hybrid Transparent Conductive Films. Nanomaterials 2021, 11, 1360. [Google Scholar] [CrossRef]
- Ma, J.J.; Zhan, M.S.; Wang, K. Ultralight weight silver nanowires hybrid polyimide composite foams for high-performance electromagnetic interference shielding. ACS Appl. Mater. Int. 2015, 7, 563–576. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.W.; Lee, S.E.; Jeong, Y.G. Highly effective electromagnetic interference shielding materials based on silver nanowire/cellulose papers. ACS Appl. Mater. Int. 2016, 8, 13123–13132. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.J.; Li, J.; Gao, Y.; Wang, M. A facile approach to fabricating silver coated cotton fiber non-woven fabrics for ultrahigh electromagnetic interference shielding. Appl. Surf. Sci. 2018, 458, 236–244. [Google Scholar] [CrossRef]
- Wu, X.; Wang, S.; Luo, Z.; Lu, J.; Lin, K.; Xie, H.; Wang, Y.; Li, J.Z. Inkjet Printing of Flexible Transparent Conductive Films with Silver Nanowires Ink. Nanomaterials 2021, 11, 1571. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.J.; Dao, V.D.; Choi, H.S. Electromagnetic shielding effectiveness of a thin silver layer deposited onto PET film via atmospheric pressure plasma reduction. Appl. Surf. Sci. 2018, 435, 7–15. [Google Scholar] [CrossRef]
- Oh, H.J.; Umapathi, R.; Omelianovych, O. Effect of various seed metals on uniformity of Ag layer formed by atmospheric plasma reduction on polyethylene terephthalate substrate: An application to electromagnetic interference shielding effectiveness. Thin Solid Films 2019, 676, 75–86. [Google Scholar] [CrossRef]
- Formica, N.; Ghosh, D.S.; Chen, T.L. Highly stable Ag-Ni based transparent electrodes on PET substrates for flexible organic solar cells. Sol. Energy Mater. Sol. Cells 2012, 107, 63–68. [Google Scholar] [CrossRef]
- Miao, D.G.; Jiang, S.X.; Shang, S.M. Highly transparent and infrared reflective AZO/Ag/AZO multilayer film prepared on PET substrate by RF magnetron sputtering. Vacuum 2014, 106, 1–4. [Google Scholar] [CrossRef]
- Kim, J.H.; Kang, T.W.; Kwon, S.N.; Na, S.I.; Yoo, Y.Z.; Im, H.S.; Seong, T.Y. Transparent conductive ITO/Ag/ITO electrode deposited at room temperature for organic solar cells. J. Electron. Mater. 2017, 46, 306–311. [Google Scholar] [CrossRef]
- Kaspar, T.C.; Droubay, T.; Chambers, S.A.; Bagus, P.S. Spectroscopic Evidence for Ag (III) in Highly Oxidized Silver Films by X-ray Photoelectron Spectroscopy. J. Phys. Chem. C 2010, 114, 21562–21571. [Google Scholar] [CrossRef]
- Ferraria, A.M.; Carapeto, A.P.; do Rego, A.M.B. X-ray photoelectron spectroscopy: Silver salts revisited. Vacuum 2012, 86, 1988–1991. [Google Scholar] [CrossRef]
- Lee, Z.R.; Spentzouris, L.; Mascheck, M.; Terry, J. Exploration of the nonideal behavior observed in engineered, multilayer MgO/Ag/MgO photocathodes. J. Vac. Sci. Technol. A 2021, 39, 063202. [Google Scholar] [CrossRef]
- Bunch, J.S.; Vervridge, S.S.; Alden, J.S.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Impermeable atomic membranes from graphene sheets. Nano Lett. 2008, 8, 2458–2462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paton, K.R.; Varrla, E.; Backes, C.; Smith, R.J.; Khan, U.; O’Neill, A.; Boland, C.; Lotya, M.; Istrate, O.M.; King, P.; et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 2014, 13, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.H.; Yang, Z.; Yao, Z.K.; Guo, H.; Xu, Z.L.; Tang, C.Y. Interfacial polymerization with electrosprayed microdroplets: Toward controllable and ultrathin polyamide membranes. Environ. Sci. Technol. Lett. 2018, 5, 117–122. [Google Scholar] [CrossRef]
- Khan, U.; O’Neill, A.; Lotya, M.; De, S.; Coleman, J.N. High-concentration solvent exfoliation of graphene. Small 2010, 6, 864–871. [Google Scholar] [CrossRef] [PubMed]
- Dervishi, E.; Li, Z.R.; Watanabe, F.; Biswas, A.; Xu, Y.; Biris, A.R.; Saini, V.; Biris, A.S. Large-scale Graphene Production by RFcCVD Method. Chem. Commun. 2009, 27, 4061–4063. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.J.; Tung, V.C.; Kaner, R.B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145. [Google Scholar] [CrossRef]
- Xu, C.G.; Du, L.Z.; Yang, B.; Zhang, W.G. Study on salt spray corrosion of Ni–graphite abradable coating with 80Ni20Al and 96NiCr–4Al as bonding layers. Surf. Coat. Technol. 2011, 205, 4154–4161. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Duan, C.Y.; Liu, H.Y.; Chen, Y.F.; Wang, Y. Graphene coating for anti-corrosion and the investigation of failure mechanism. J. Phys. D Appl. Phys. 2017, 50, 114001. [Google Scholar] [CrossRef]
- Zhao, Y.D.; Xie, Y.Z.; Hui, Y.Y.; Tang, L.B.; Jie, W.J.; Jiang, Y.F.; Xu, L.; Lau, S.P.; Chai, Y. Highly impermeable and transparent graphene as an ultra-thin protection barrier for Ag thin films. J. Mater. Chem. C 2013, 1, 4956–4961. [Google Scholar] [CrossRef]
- Li, X.S.; Cai, W.W.; An, J.H.; Kim, S.; Nah, J.; Yang, D.X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-area synthesis of high quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, C.; Zhu, Y.; Gu, W.; Li, M.; Zhao, D.; Zhao, Z.; Chen, Y.; Wang, Y. Atomic Coupling Growth of Graphene on Carbon Steel for Exceptional Anti-Icing Performance. ACS Sustain. Chem. Eng. 2018, 6, 17359–17367. [Google Scholar] [CrossRef]
0 h | 24 h | 48 h | 72 h | |
---|---|---|---|---|
Sample 1 | ||||
Sample 1G20 | ||||
Sample 1G30 | ||||
Sample 2 | ||||
Sample 2G20 | ||||
Sample 3G30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, X.; Zhao, Z.; Liang, X.; Huai, X.; Wang, C.; Liu, J.; Duan, C. Graphene Reinforced Anticorrosion Transparent Conductive Composite Film Based on Ultra-Thin Ag Nanofilm. Materials 2022, 15, 4802. https://doi.org/10.3390/ma15144802
Fan X, Zhao Z, Liang X, Huai X, Wang C, Liu J, Duan C. Graphene Reinforced Anticorrosion Transparent Conductive Composite Film Based on Ultra-Thin Ag Nanofilm. Materials. 2022; 15(14):4802. https://doi.org/10.3390/ma15144802
Chicago/Turabian StyleFan, Xiaowei, Zenghua Zhao, Xiaoping Liang, Xuguo Huai, Chan Wang, Juncheng Liu, and Chunyang Duan. 2022. "Graphene Reinforced Anticorrosion Transparent Conductive Composite Film Based on Ultra-Thin Ag Nanofilm" Materials 15, no. 14: 4802. https://doi.org/10.3390/ma15144802
APA StyleFan, X., Zhao, Z., Liang, X., Huai, X., Wang, C., Liu, J., & Duan, C. (2022). Graphene Reinforced Anticorrosion Transparent Conductive Composite Film Based on Ultra-Thin Ag Nanofilm. Materials, 15(14), 4802. https://doi.org/10.3390/ma15144802