Preparatory Conditions Optimization and Characterization of Hierarchical Porous Carbon from Seaweed as Carbon-Precursor Using a Box—Behnken Design for Application of Supercapacitor
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of Hierarchical Porous Activated Carbon
2.2. Design of Experiment (DOE) for Carbonization of Seaweed
2.3. Characterizations
2.4. Electrochemical Properties
3. Results and Discussion
3.1. The Preparation of Activated Carbon from Seaweed
3.2. Design of Experiment (DOE) for Carbonization of Seaweed
3.3. Physical Property Analysis of Activated Carbon
3.4. Electrochemical Analysis of Activated Carbon
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, C.; Zhang, S.; Jewell, D.; Chen, G.Z. Carbon nanotube and conducting polymer composites for supercapacitors. Prog. Nat. Sci. 2008, 18, 777–788. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, H.; Wu, X.; Wang, L.; Zhang, A.; Xia, T.; Dong, H.; Li, X.L. Progress of electrochemical capacitor electrode materials: A review. Int. J. Hydrog. Energy 2008, 34, 4889–4899. [Google Scholar] [CrossRef]
- Olivares-Marína, M.; Fernández, J.A.; Lázaro, M.J.; Fernández-González, C.; Macías-García, A.; Gómez-Serrano, V.; Stoeckli, F.; Centeno, T.A. Cherry stones as precursor of activated carbons for supercapacitors. Mater. Chem. Phys. 2009, 114, 323–327. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Jiang, L.; Yan, S.; Lei, J.; Zheng, M.; Shui, H. Direct synthesis of porous carbon nanotubes and its performance as conducting material of supercapacitor electrode. Diam. Relat. Mater. 2008, 17, 993–998. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, R.; Chen, P.; Shen, D.; Ye, X.; Ge, S. Mechanism of formation and electrochemical performance of carbide-derived carbons obtained from different carbides. Carbon 2013, 64, 444–455. [Google Scholar] [CrossRef]
- Kumar, S.; Saeed, G.; Zhu, L.; Hui, K.N.; Kim, N.H.; Lee, J.H. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review. Chem. Eng. J. 2021, 403, 126352. [Google Scholar] [CrossRef]
- Xie, L.; Su, F.; Xie, L.; Guo, X.; Wang, Z.; Kong, Q.; Sun, G.; Ahmad, A.; Li, X.; Yi, Z.; et al. Effect of pore structure and doping species on charge storage mechanisms in porous carbon-based supercapacitors. Mater. Chem. Front. 2020, 4, 2610–2634. [Google Scholar] [CrossRef]
- Yang, W.; Hou, L.; Xu, X.; Li, Z.; Ma, X.; Yang, F.; Li, Y. Carbon nitride template-directed fabrication of nitrogen-rich porous graphene-like carbon for high performance supercapacitors. Carbon 2018, 130, 325–332. [Google Scholar] [CrossRef]
- Xia, L.; Huang, H.; Fan, Z.; Hu, D.; Zhang, D.; Khan, A.S.; Usman, M.; Pan, L. Hierarchical macro-/meso-/microporous oxygen-doped carbon derived from sodium alginate: A cost-effective biomass material for binder-free supercapacitors. Mater. Des. 2019, 182, 108048. [Google Scholar] [CrossRef]
- Cheng, Z.-L.; Liu, Y.-Y.; Cao, B.-C. Two-dimensional layered structure-templated synthesis of graphene nanosheets using CoAl-LDH under low carbonization temperature. Mater. Lett. 2016, 175, 215–218. [Google Scholar] [CrossRef]
- Li, S.; Han, K.; Li, J.; Li, M.; Lu, C. Preparation and characterization of super activated carbon produced from gulfweed by KOH activation. Microporous Mesoporous Mater. 2017, 243, 291–300. [Google Scholar] [CrossRef]
- Elmouwahidi, A.; Bailón-García, E.; Pérez-Cadenas, A.F.; Maldonado-Hódar, F.J.; Carrasco-Marín, F. Activated carbons from KOH and H3PO4-activation of olive residues and its application as supercapacitor electrodes. Electrochim. Acta 2017, 229, 219–228. [Google Scholar] [CrossRef]
- Tu, W.; Liu, Y.; Xie, Z.; Chen, M.; Ma, N.L.; Du, G.; Zhu, M. A novel activation-hydrochar via hydrothermal carbonization and KOH activation of sewage sludge and coconut shell for biomass wastes: Preparation, characterization and adsorption properties. J. Colloid Interface Sci. 2021, 593, 390–407. [Google Scholar] [CrossRef]
- Zhou, F.; Li, K.; Hang, F.; Zhang, Z.; Chen, P.; Wei, L.; Xie, C. Efficient removal of methylene blue by activated hydrochar prepared by hydrothermal carbonization and NaOH activation of sugarcane bagasse and phosphoric acid. RSC Adv. 2022, 12, 1885–1896. [Google Scholar] [CrossRef]
- Chatir, E.M.; Elhadrami, A.; Ojala, S.; Brahmi, R. Production of activated carbon with tunable porosity and surface chemistry via chemical activation of hydrochar with phosphoric acid under oxidizing atmosphere. Surf. Interfaces 2022, 30, 101849. [Google Scholar] [CrossRef]
- Nguyen, T.-B.; Truong, Q.-M.; Chen, C.-W.; Doong, R.-A.; Chen, W.-H.; Dong, C.-D. Mesoporous and adsorption behavior of algal biochar prepared via sequential hydrothermal carbonization and ZnCl2 activation. Bioresour. Technol. 2022, 346, 126351. [Google Scholar] [CrossRef]
- Alhamed, Y.A. Activated carbon from dates’ stone by ZnCl2 activation. JKAU Eng. Sci. 2006, 17, 75–100. [Google Scholar] [CrossRef]
- Huo, X.; Jia, C.; Shi, S.; Teng, T.; Zhou, S.; Hua, M.; Zhu, X.; Zhang, S.; Xu, Q. One-step synthesis of high-performance N/S co-doped porous carbon material for environmental remediation. Processes 2022, 10, 1359. [Google Scholar] [CrossRef]
- Kamedulski, P.; Gauden, P.A.; Lukaszewicz, J.P.; Ilnicka, A. Effective synthesis of carbon hybrid materials containing oligothiophene dyes. Materials 2019, 12, 3354. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, D. Efficiency of wood-dust of dalbergia sisoo as low-cost adsorbent for rhodamine-B dye removal. Nanomaterials 2021, 11, 2217. [Google Scholar] [CrossRef]
- Wang, J.; Luo, X.; Young, C.; Kim, J.; Kaneti, Y.V.; You, J.; Kang, Y.-M.; Yamauchi, Y.; Wu, K.C.-W. Glucose-assisted hydrothermal reaction for directly transforming metal−organic frameworks into hollow carbonaceous materials. Chem. Mater. 2018, 30, 4401–4408. [Google Scholar] [CrossRef]
- Pokharel, J.; Gurung, A.; Baniya, A.; He, W.; Chen, K.; Pathak, R.; Lamsal, B.S.; Ghimire, N.; Zhou, Y. MOF-derived hierarchical carbon network as an extremely-high-performance supercapacitor electrode. Electrochim. Acta 2021, 394, 139058. [Google Scholar] [CrossRef]
- Wang, C.-H.; Zhang, D.-W.; Liu, S.; Yamauchi, Y.; Zhang, F.-B.; Kaneti, Y.V. Ultrathin nanosheet-assembled nickel-based metal–organic framework microflowers for supercapacitor applications. Chem. Commun. 2022, 58, 1009–1012. [Google Scholar] [CrossRef]
- Li, T.; Sun, J.; Gao, S.; Xiao, B.; Cheng, J.; Zhou, Y.; Sun, X.; Jiang, F.; Yan, Z.; Xiong, S. Superior sodium metal anodes enabled by sodiophilic carbonized coconut framework with 3D tubular structure. Adv. Energy Mater. 2021, 11, 2003699. [Google Scholar] [CrossRef]
- Feng, X.; Shi, X.; Ning, J.; Wang, D.; Zhang, J.; Hao, Y.; Wu, Z.-S. Recent advances in micro-supercapacitors for AC line-filtering performance: From fundamental models to emerging applications. eScience 2021, 1, 124–140. [Google Scholar] [CrossRef]
- Fu, G.; Li, Q.; Ye, J.; Han, J.; Wang, J.; Zhai, L.; Zhu, Y. Hierarchical porous carbon with high nitrogen content derived from plant waste (pomelo peel) for supercapacitor. J. Mater. Sci. Mater. Electron. 2018, 29, 7707–7717. [Google Scholar] [CrossRef]
- Zhang, W.; Lin, N.; Liu, D.; Xu, J.; Sha, J.; Yin, J.; Tan, X.; Yang, H.; Lu, H.; Lin, H. Direct carbonization of rice husk to prepare porous carbon for supercapacitor applications. Energy 2017, 128, 618–625. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Sun, C.; Tang, Z.S. High specific capacitance and high energy density supercapacitor electrodes enabled by porous carbon with multilevel pores and self-doped heteroatoms derived from Chinese date. Diam. Relat. Mater. 2019, 97, 107455. [Google Scholar] [CrossRef]
- Deng, M.; Wang, J.; Zhang, Q. Effect of freezing pretreatment on the performance of activated carbon from coconut shell for supercapacitor application. Mater. Lett. 2022, 306, 130934. [Google Scholar] [CrossRef]
- Wei, Y. Activated carbon microtubes prepared from plant biomass (poplar catkins) and their application for supercapacitors. Chem. Lett. 2014, 43, 216–218. [Google Scholar] [CrossRef]
- Wang, B.; Li, D.; Tang, M.; Ma, H.; Gui, Y.; Tian, X.; Quan, F.; Song, X.; Xia, Y. Alginate-based hierarchical porous carbon aerogel for high-performance supercapacitors. J. Alloy. Compd. 2018, 749, 517–522. [Google Scholar] [CrossRef]
- Li, Z.; Li, B.; Du, L.; Wang, W.; Liao, X.; Yu, H.; Yu, C.; Wang, H.; Li, Q. Three-dimensional oxygen-doped porous graphene: Sodium chloride-template preparation, structural characterization and supercapacitor performances. Chin. J. Chem. Eng. 2021, 40, 304–314. [Google Scholar] [CrossRef]
- Xie, A.; Dai, J.; Chen, Y.; Liu, N.; Ge, W.; Ma, P.; Zhang, R.; Zhou, Z.; Tian, S.; Li, C.; et al. NaCl-template assisted preparation of porous carbon nanosheets started from lignin for efficient removal of tetracycline. Adv. Powder Technol. 2019, 30, 170–179. [Google Scholar] [CrossRef]
- Zuo, L.-X.; Wang, W.-J.; Song, R.-B.; Lv, J.-J.; Jiang, L.-P.; Zhu, J.-J. NaCl crystal tuning nitrogen self-doped porous graphitic carbon nanosheets for efficient oxygen reduction. ACS Sustain. Chem. Eng. 2017, 5, 10275–10282. [Google Scholar] [CrossRef]
- Hencz, L.; Gu, X.; Zhou, X.; Martens, W.; Zhang, S. Highly porous nitrogen-doped seaweed carbon for high-performance lithium–sulfur batteries. J. Mater. Sci. 2017, 52, 12336–12347. [Google Scholar] [CrossRef]
- Xue, C.; Feng, L.; Hao, Y.; Yang, F.; Zhang, Q.; Ma, X.; Hao, X. Acid-free synthesis of oxygen-enriched electroactive carbon with unique square pores from salted seaweed for robust supercapacitor with attractive energy density. Green Chem. 2018, 20, 4983–4994. [Google Scholar] [CrossRef]
- Wang, W.; Chen, W.; Miao, P.; Luo, J.; Wei, Z.; Chen, S. NaCl crystallites as dual-functional and water-removable templates to synthesize a three-dimensional graphene-like macroporous Fe-NC catalyst. ACS Catal. 2017, 7, 6144–6149. [Google Scholar] [CrossRef]
- Jawad, A.H.; Abdulhameed, A.S. Statistical modeling of methylene blue dye adsorption by high surface area mesoporous activated carbon from bamboo chip using KOH-assisted thermal activation. Energy Ecol. Environ. 2020, 5, 456–469. [Google Scholar] [CrossRef]
- Dos Reis, G.S.; Larsson, S.H.; Mathieu, M.; Thyrel, M.; Pham, T.N. Application of design of experiments (DoE) for optimised production of micro- and mesoporous Norway spruce bark activated carbons. Biomass Convers. Biorefin. 2021, 1–19. [Google Scholar] [CrossRef]
- Nguyen, N.K.; Borkowski, J.J. New 3-level response surface designs constructed from incomplete block designs. J. Stat. Plan Inference 2008, 138, 294–305. [Google Scholar] [CrossRef]
- Ibarra-Díaz, N.; Castañón-Rodríguez, J.F.; Gómez-Rodríguez, J.; Aguilar-Uscanga, M.G. Optimization of peroxide-alkaline pretreatment and enzymatic hydrolysis of barley straw (Hordeum vulgare L.) to produce fermentable sugars using a Box–Behnken design. Biomass Convers. Biorefin. 2020, 12, 2389–2398. [Google Scholar] [CrossRef]
- Aziz, S.B.; Brza, M.A.; Hamsan, M.H.; Kadir, M.F.Z.; Muzakir, S.K.; Abdulwahid, R.T. Effect of ohmic-drop on electrochemical performance of EDLC fabricated from PVA: Dextran: NH4I based polymer blend electrolytes. J. Mater. Res. Technol. 2020, 9, 3734–3745. [Google Scholar] [CrossRef]
- Zou, K.; Cai, P.; Wang, B.; Liu, C.; Li, J.; Qiu, T.; Zou, G.; Hou, H.; Ji, X. Insights into enhanced capacitive behavior of carbon cathode for Lithium ion capacitors: The coupling of pore size and graphitization engineering. Nanomicro Lett. 2020, 12, 1–19. [Google Scholar] [CrossRef]
- Jawad, A.H.; Abdulhameed, A.S.; Wilson, L.S.; Syed-Hassan, S.S.A.; ALOthman, Z.A.; Khan, M.R. High surface area and mesoporous activated carbon from KOH-activated dragon fruit peels for methylene blue dye adsorption: Optimization and mechanism study. Chin. J. Chem. Eng. 2021, 32, 281–290. [Google Scholar] [CrossRef]
- Dastyar, W.; Zhao, M.; Yuan, W.; Li, H.; Ting, Z.J.; Ghaedi, H.; Yuan, H.; Li, X.; Wang, W. Effective pretreatment of heavy metal-contaminated biomass using a low-cost ionic liquid (triethylammonium hydrogen sulfate): Optimization by response surface methodology–Box Behnken design. ACS Sustain. Chem. Eng. 2019, 7, 11571–11581. [Google Scholar] [CrossRef]
- Rai, P.; Pandey, A.; Pandey, A. Optimization of sugar release from banana peel powder waste (BPPW) using box-behnken design (BBD): BPPW to biohydrogen conversion. Int. J. Hydrog. Energy 2019, 44, 25505–25513. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, H.; Wang, Q.; Zheng, J.; Meng, C. Kelp-derived three-dimensional hierarchical porous N, O-doped carbon for flexible solid-state symmetrical supercapacitors with excellent performance. Appl. Surf. Sci. 2018, 447, 876–885. [Google Scholar] [CrossRef]
- Qiu, D.; Cao, T.; Zhang, J.; Zhang, S.-W.; Zheng, D.; Wu, H.; Lv, W.; Kang, F.; Yang, Q.-H. Precise carbon structure control by salt template for high performance sodium-ion storage. J. Energy Chem. 2019, 31, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Ban, F.Y.; Majid, S.R.; Huang, N.M.; Lim, H.N. Graphene Oxide and Its Electrochemical Performance. Int. J. Electrochem. Sci. 2012, 7, 4345–4351. [Google Scholar]
- Yin, J.; Zhang, W.; Wang, W.; Alhebshi, N.A.; Salah, N.; Alshareef, H.N. Electrochemical zinc ion capacitors enhanced by redox reactions of porous carbon cathodes. Adv. Energy Mater. 2020, 10, 2001705. [Google Scholar] [CrossRef]
- Hung, S.-C.; Chou, Y.-R.; Dong, C.-D.; Tsai, K.-C.; Yang, W.-D. Enhanced activity of hierarchical nanostructural birnessite-MnO2-based materials deposited onto nickel foam for efficient supercapacitor electrodes. Nanamaterials 2020, 10, 1933. [Google Scholar] [CrossRef]
- Yang, C.S.; Jang, Y.S.; Jeong, H.K. Bamboo-based activated carbon for supercapacitor applications. Curr. Appl. Phys. 2014, 14, 1616–1620. [Google Scholar] [CrossRef]
- Adan-Mas, A.; Alcaraz, L.; Arévalo-Cid, P.; López-Gómez, F.A.; Montemor, F. Coffee-derived activated carbon from second biowaste for supercapacitor applications. Waste Manag. 2021, 120, 280–289. [Google Scholar] [CrossRef]
- He, J.; Zhang, D.; Han, M.; Liu, X.; Wang, Y.; Li, Y.; Zhang, X.; Wang, K.; Feng, H.; Wang, Y. One-step large-scale fabrication of nitrogen doped microporous carbon by self-activation of biomass for supercapacitors application. J. Energy Storage 2019, 21, 94–104. [Google Scholar] [CrossRef]
- Lee, K.-C.; Lim, M.S.W.; Hong, Z.-Y.; Chong, S.; Tiong, T.J.; Pan, G.-T.; Huang, C.-M. Coconut Shell-Derived Activated Carbon for High-Performance Solid-State Supercapacitors. Energies 2021, 14, 4546. [Google Scholar] [CrossRef]
- Tripathy, A.; Mohanty, S.; Nayak, S.K.; Ramadoss, A. Renewable banana-peel-derived activated carbon as an inexpensive and efficient electrode material showing fascinating supercapacitive performance. J. Environ. Chem. Eng. 2021, 9, 106398. [Google Scholar] [CrossRef]
Factor | Level | ||
---|---|---|---|
Low (−1) | Medium (0) | High (+1) | |
A: Temperature (°C) | 600 | 700 | 800 |
B: Time (min) | 30 | 60 | 90 |
C: weight ratio of NaCl/SW | 3 | 4 | 5 |
D: weight ratio of water/SW | 7.5 | 10 | 12.5 |
Std. No. | Run | A Temperature (°C) | B Time (min) | C NaCl/SW (Weight Ratio) | D Water/SW (Weight Ratio) | Response Specific Capacitance (F/g) | σ of Cs (F/g) |
---|---|---|---|---|---|---|---|
25 | 1 | 700 | 60 | 3 | 10 | 99.8 (±1.4) | 3.1 |
19 | 2 | 600 | 60 | 5 | 10 | 86.3 (±1.9) | 4.3 |
22 | 3 | 700 | 90 | 4 | 7.5 | 87.9 (±1.4) | 3.1 |
9 | 4 | 600 | 60 | 4 | 7.5 | 76.9 (±1.7) | 3.8 |
4 | 5 | 800 | 90 | 4 | 10 | 54.1 (±0.7) | 1.6 |
7 | 6 | 700 | 60 | 3 | 12.5 | 101.3 (±1.8) | 4.1 |
17 | 7 | 600 | 60 | 3 | 10 | 67.0 (±1.2) | 2.6 |
16 | 8 | 700 | 90 | 5 | 10 | 84.1 (±1.6) | 3.5 |
8 | 9 | 700 | 60 | 5 | 12.5 | 87.6 (±1.7) | 3.8 |
10 | 10 | 800 | 60 | 4 | 7.5 | 52.9 (±1.3) | 2.9 |
18 | 11 | 800 | 60 | 3 | 10 | 57.6 (±1.5) | 3.3 |
23 | 12 | 700 | 30 | 4 | 12.5 | 82.6 (±1.8) | 4.0 |
21 | 13 | 700 | 30 | 4 | 7.5 | 74.9 (±1.9) | 4.2 |
24 | 14 | 700 | 90 | 4 | 12.5 | 76.0 (±1.4) | 3.2 |
14 | 15 | 700 | 90 | 3 | 10 | 74.0 (±1.5) | 3.3 |
12 | 16 | 800 | 60 | 4 | 12.5 | 88.3 (±1.9) | 4.2 |
1 | 17 | 600 | 30 | 4 | 10 | 43.7 (±1.3) | 2.8 |
13 | 18 | 700 | 30 | 3 | 10 | 69.4 (±1.3) | 3.0 |
15 | 19 | 700 | 30 | 5 | 10 | 82.4 (±1.6) | 3.6 |
2 | 20 | 800 | 30 | 4 | 10 | 56.1 (±1.4) | 3.1 |
11 | 21 | 600 | 60 | 4 | 12.5 | 31.1 (±1.5) | 3.3 |
5 | 22 | 700 | 60 | 3 | 7.5 | 60.0 (±1.4) | 3.2 |
20 | 23 | 800 | 60 | 5 | 10 | 61.3 (±1.5) | 3.4 |
3 | 24 | 600 | 90 | 4 | 10 | 61.7 (±1.9) | 4.2 |
6 | 25 | 700 | 60 | 5 | 7.5 | 69.7 (±2.3) | 5.1 |
Sequential Model Sum of Squares | ||||||
---|---|---|---|---|---|---|
Source | Sum of Squares | DF | Mean Square | F-Value | p-Value | |
Mean vs. Total | 1.277 × 105 | 1 | 1.277 × 105 | |||
Linear vs. Mean | 383.18 | 4 | 95.80 | 0.2882 | 0.8821 | |
2FI vs. Linear | 2044.23 | 6 | 340.71 | 1.04 | 0.4429 | |
Quadratic vs. 2FI | 2925.41 | 4 | 731.35 | 4.36 | 0.0269 | Suggested |
Cubic vs. Quadratic | 1455.40 | 8 | 181.93 | 1.64 | 0.4339 | Aliased |
Residual | 222.44 | 2 | 111.22 | |||
Total | 1.347 × 105 | 25 | 5388.90 |
Source | Sum of Square | DF | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 4560.72 | 8 | 570.09 | 3.69 | 0.0126 |
A | 1.08 | 1 | 1.08 | 0.0070 | 0.0035 |
B | 68.64 | 1 | 68.64 | 0.4446 | 0.5144 |
C | 147.70 | 1 | 147.70 | 0.9568 | 0.0017 |
D | 165.76 | 1 | 165.76 | 1.07 | 0.0043 |
AC | 60.84 | 1 | 60.84 | 0.3941 | 0.0390 |
AD | 1648.36 | 1 | 1648.36 | 10.68 | 0.0148 |
CD | 136.89 | 1 | 136.89 | 0.8868 | 0.3604 |
A2 | 2331.45 | 1 | 2331.45 | 15.10 | 0.0013 |
Residual | 2469.95 | 16 | 154.37 | ||
Total | 7030.67 | 24 |
Factor | Optimal Condition | Capacitance (F g−1) |
---|---|---|
Temperature (°C) | 740 | Predict: 103.3 Actual: 110.8 |
Time (min) | 90 | |
NaCl: SW (weight ratio) | 4 | |
Water: SW (weight ratio) | 12.5 |
Sample | Surface Area (m2/g) | Micropore Area (m2/g) | Pore Volume (cm3/g) | Pore Size (nm) |
---|---|---|---|---|
Run 15 | 335 | 260 | 0.28 | 3.34 |
Run 20 | 351.2 | 269.4 | 0.292 | 3.32 |
Run 21 | 507.1 | 382.2 | 0.402 | 3.17 |
Run 2 | 576.2 | 433.2 | 0.442 | 3.07 |
Optimal | 603.7 | 437.5 | 0.481 | 3.19 |
Surface Area (m2/g) | Micropore Area (m2/g) | Fraction of Micropore Area (%) | ID/IG | Capacitance (F/g) | |
---|---|---|---|---|---|
Run 20 | 335.0 | 260.0 | 77.6 | 0.986 | 56.1 |
Run 15 | 351.2 | 269.4 | 76.7 | 0.990 | 74 |
Run 21 | 507.1 | 382.2 | 75.4 | 0.997 | 31.1 |
Run 2 | 576.2 | 433.2 | 75.2 | 0.994 | 86.3 |
optimal | 603.7 | 437.5 | 72.5 | 0.989 | 110.8 |
Starting Material | Activator | Electrolyte | Current Density (A/g) | Capacitance Retention (%) | Specific Capacitance (F/g) | Ref. |
---|---|---|---|---|---|---|
bamboo | KOH | 6 M KOH | 1 | 91 (3000 cycles) | 175 | [52] |
coffee | KOH | 1 M Na2SO4 | 1 | 93 (5000 cycles) | 84 | [53] |
celery | self-activation | 6 M KOH | 0.5 | 245 | [54] | |
rice husk | NaOH | 6 M KOH | 1 | 78 (5000 cycles) | 82 | [27] |
coconut shell | KOH | 6 M LiNO3 | 1 | 449 | [55] | |
Banana peel | ZnCl2 + FeCl3 | 2 M KOH | 1 | ~97 (5000 cycles) | 227 | [56] |
seaweed | NaCl | 1 M Na2SO4 | 1 | 95.4 (10,000 cycles) | 110.8 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.-D.; Wang, J.-X.; Wu, Y.-T.; Chang, H.-S.; Ko, H.-H. Preparatory Conditions Optimization and Characterization of Hierarchical Porous Carbon from Seaweed as Carbon-Precursor Using a Box—Behnken Design for Application of Supercapacitor. Materials 2022, 15, 5748. https://doi.org/10.3390/ma15165748
Yang W-D, Wang J-X, Wu Y-T, Chang H-S, Ko H-H. Preparatory Conditions Optimization and Characterization of Hierarchical Porous Carbon from Seaweed as Carbon-Precursor Using a Box—Behnken Design for Application of Supercapacitor. Materials. 2022; 15(16):5748. https://doi.org/10.3390/ma15165748
Chicago/Turabian StyleYang, Wein-Duo, Jing-Xuan Wang, Yu-Tse Wu, Hsun-Shuo Chang, and Horng-Huey Ko. 2022. "Preparatory Conditions Optimization and Characterization of Hierarchical Porous Carbon from Seaweed as Carbon-Precursor Using a Box—Behnken Design for Application of Supercapacitor" Materials 15, no. 16: 5748. https://doi.org/10.3390/ma15165748
APA StyleYang, W. -D., Wang, J. -X., Wu, Y. -T., Chang, H. -S., & Ko, H. -H. (2022). Preparatory Conditions Optimization and Characterization of Hierarchical Porous Carbon from Seaweed as Carbon-Precursor Using a Box—Behnken Design for Application of Supercapacitor. Materials, 15(16), 5748. https://doi.org/10.3390/ma15165748