Mechanical and Tribological Properties of Aluminum-Based Metal-Matrix Composites
Abstract
:1. Introduction
1.1. Composite Materials Based on Reinforcement Material
1.2. Composites Based on Various Metals/Alloys Available as Matrix Materials
1.3. Importance of Metal Matrix Composites
2. Aluminum Metal-Matrix Composites (AMMCs)
2.1. Cast Aluminum Alloys
2.2. Cast Aluminum Alloy A357
2.3. Dual-Particle-Size (DPS) Composites and Their Advantages
2.4. Applications of Al-Si Alloys
2.5. Potential Applications of Al-Based MMCs
Property? Weight Reduction | Wear Resistance | Stiffness | Thermal Conductivity | Tailorable CTE | Corrosion Resistance | Corrosion to Radiation | High Strength | |
---|---|---|---|---|---|---|---|---|
Benefits | ||||||||
Potential and Existing Applications | ||||||||
Bearings | ||||||||
Brake rotors | ||||||||
Engine cylinder liners | ||||||||
Pistons | ||||||||
Worm gears | ||||||||
Aircraft skins | ||||||||
Bicycle frames | ||||||||
Electronics packaging | ||||||||
Ground vehicles | ||||||||
Medical implant | ||||||||
Sea vehicles | ||||||||
Space structures | ||||||||
Transmission components | ||||||||
Turbine engine components |
3. Fabrication Techniques and Factors of Al-Based MMCs
3.1. Methods
3.1.1. Liquid-State Fabrication
3.1.2. Solid-State Fabrication
3.1.3. Gaseous-State Fabrication
3.2. Factors Influencing the Mechanical Performance of Composite Materials
3.2.1. Interfacial Bonding
3.2.2. Orientation
3.2.3. Material
3.2.4. Wettability
4. Heat Treatment of Al Alloys
4.1. Temper Designations Used in Heat Treatment
4.2. Precipitation-Hardening Heat Treatment
- (i)
- (ii)
- (iii)
4.3. Effect of Heat Treatment on Mechanical Behaviour and Strengthening Mechanisms
5. Mechanical and Tribological Properties of Al-Based MMCs
5.1. Mechanical Properties of Al-Based MMCs
5.2. Tribological Properties of Al-Based MMCs
5.3. Dual-Particle-Size (DPS) Composites
6. Additive Manufacturing of Al-Based MMCs
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vencl, A.; Rac, A.; Bobić, I. Tribological Behaviour of Al-Based MMCs and their Application in Automotive Industry. Tribol. Ind. 2004, 26, 31–38. [Google Scholar]
- Basak, A.K.; Pramanik, A.; Prakash, C. Deformation and strengthening of SiC reinforced Al-MMCs during in-situ micro-pillar compression. Mater. Sci. Eng. A 2019, 763, 138141. [Google Scholar] [CrossRef]
- Shanmugavel, R.; Chinthakndi, N.; Selvam, M.; Madasamy, N.; Shanmugakani, S.K.; Nair, A.; Prakash, C.; Buddhi, D.; Dixit, S. Al-Mg-MoS2 Reinforced Metal Matrix Composites: Machinability Characteristics. Materials 2022, 15, 4548. [Google Scholar] [CrossRef] [PubMed]
- Hull, D.; Clyne, T.W. An Introduction to Composite Materials; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Subramaniam, S.; Raju, N.; Shanmugam, E.; Rajavel, N.; Pramanik, A.; Basak, A.K.; Prakash, C.; Gur, A.K. Tribo-mechanical behaviour of aluminium alloy (AlSi10Mg) reinforced with palmyra shell ash and silicon carbide particles. Metall. Res. Technol. 2022, 119, 1–9. [Google Scholar] [CrossRef]
- Dawoud, M.M.; Saleh, H.M. Introductory Chapter: Background on Composite Materials. In Characterizations of Some Composite Materials; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Thostenson, E.T.; Ren, Z.; Chou, T.-W. Advances in the Science and Technology of Carbon Nanotubes and their Composites: A Review. Compos. Sci. Technol. 2001, 61, 1899–1912. [Google Scholar] [CrossRef]
- Miyajima, T.; Iwai, Y. Effects of reinforcements on sliding wear behavior of aluminum matrix composites. Wear 2003, 255, 606–616. [Google Scholar] [CrossRef]
- Chou, T.; Kelly, A.; Okura, A. Fibre-reinforced metal-matrix composites. Composites 1985, 16, 187–206. [Google Scholar] [CrossRef]
- Kainer, K.U. Metal Matrix Composites: Custom-Made Materials for Automotive and Aerospace Engineering; Wiley-VCH: Weinheim, Germany, 2006. [Google Scholar]
- Kaw, A.K. Mechanics of Composite Materials; Taylor & Francis Group: Boca Raton, CA, USA, 2006. [Google Scholar]
- Christensen, R.M. Mechanics of Composite Materials; Dover Publications: Mineola, NY, USA, 2005. [Google Scholar]
- Sajjan, B.; Avinash, L.; Varun, S.; Varun Kumar, K.N.; Parthasarathy, A. Parthasarathy Investigation of Mechanical Properties and Dry Sliding Wear Behaviour of Graphite Reinforced Al7068 Alloy Applied Mechanics and Materials; Trans Tech Publications: Bäch, Switzerland, 2017; Volume 867, pp. 10–18. ISSN 1662–7482. [Google Scholar]
- Hosking, F.M.; Portillo, F.F.; Wunderlin, R.; Mehrabian, R. Composites of aluminium alloys: Fabrication and wear behaviour. J. Mater. Sci. 1982, 17, 477–498. [Google Scholar] [CrossRef]
- Roy, D.; Basu, B.; Mallick, A.B. Tribological properties of Ti-aluminide reinforced Al-based in situ metal matrix composite. Intermetallics 2005, 13, 733–740. [Google Scholar] [CrossRef]
- Czerwinski, F. Magnesium Injection Molding; Springer: New York, NY, USA, 2008. [Google Scholar] [CrossRef]
- Thiyaneshwaran, N.; Selvan, C.P.; Lakshmikanthan, A.; Sivaprasad, K.; Ravisankar, B. Comparison based on specific strength and density of in-situ Ti/Al and Ti/Ni metal intermetallic laminates. J. Mater. Res. Technol. 2021, 14, 1126–1136. [Google Scholar] [CrossRef]
- Ibrahim, I.A.; Mohamed, F.A.; Lavernia, E.J. Particulate Reinforced Metal Matrix Composites—A Review. J. Mater. Sci. 1991, 26, 1137–1156. [Google Scholar] [CrossRef]
- Avinash, L.; Ram Prabhu, T.; Parthasarathy, A.; Varun Kumar, K.N.; Sajjan, B. Wear and Mechanical Behaviour of Hypo-Eutectic Al-7%Si-0.5%Mg Alloy (A357) Reinforced with Al2O3 Particles Applied Mechanics and Materials; Trans Tech Publications: Bäch, Switzerland, 2016; Volume 829, pp. 66–72. [Google Scholar]
- Bindumadhavan, P.; Wah, H.K.; Prabhakar, O. Dual particle size (DPS) composites: Effect on wear and mechanical properties of particulate metal matrix composites. Wear 2001, 248, 112–120. [Google Scholar] [CrossRef]
- Kumar, P.; Soni, S.; Rana, R.S.; Singh, A. Mechanical Behavior and Dry Sliding Wear Response of Al-Si-Sic Particulate Composite. Int. J. Mech. Prod. Eng. 2014, 2, 11–19. [Google Scholar]
- Ghandvar, H.; Farahany, S.; Idris, J. Wettability Enhancement of SiCp in Cast A356/SiCp Composite Using Semisolid Process. Mater. Manuf. Processes 2015, 30, 1442–1449. [Google Scholar] [CrossRef]
- Tucker, N.; Lindsey, K. Introduction to Automotive Composites; iSmithers Rapra Technology Ltd.: Shrewsbury, UK, 2002. [Google Scholar]
- Swamy, P.K.; Mylaraiah, S.; Gowdru Chandrashekarappa, M.P.; Lakshmikanthan, A.; Pimenov, D.Y.; Giasin, K.; Krishna, M. Corrosion Behaviour of High-Strength Al 7005 Alloy and Its Composites Reinforced with Industrial Waste-Based Fly Ash and Glass Fibre: Comparison of Stir Cast and Extrusion Conditions. Materials 2021, 14, 3929. [Google Scholar] [CrossRef]
- Naik, M.H.; Manjunath, L.; Koti, V.; Lakshmikanthan, A.; Koppad, P.G.; Kumaran, S.P. Al/Graphene/CNT hybrid composites: Hardness and sliding wear studies. FME Trans. 2021, 49, 414–421. [Google Scholar] [CrossRef]
- Al-Rubaie, K.S.; Yoshimura, H.N.; de Mello, J.D.B. Two-body Abrasive Wear of Al–SiC Composites. Wear 1999, 233–235, 444–454. [Google Scholar] [CrossRef]
- Gomes, J.; Ramalho, A.; Gaspar, M.; Carvalho, S. Reciprocating wear tests of Al–Si/SiCp composites: A study of the effect of stroke length. Wear 2005, 259, 545–552. [Google Scholar] [CrossRef]
- Kopeliovich, D. Classification of Aluminum Alloys. 2012. Available online: http://www.substech.com/dokuwiki/doku.php?id=classification_of_aluminum_alloys (accessed on 1 May 2022).
- Hatch, J.E. Aluminium: Properties and Physical Metallurgy; ASM International: Novelty, OH, USA, 1984. [Google Scholar]
- Avinash, L.; Kumar, H.; Parthasarathy, A.; Varun Kumar, K.N.; Sajjan, B. The Effect of Ceramic Reinforcement on the Microstructure, Mechanical Properties and Tribological Behavior of Al-7.5%Si-0.5%Mg Alloy Applied Mechanics and Materials; Trans Tech Publications: Bäch, Switzerland, 2017; Volume 867, pp. 3–9. [Google Scholar]
- Parthasarathy, A.; Avinash, L.; Varun Kumar, K.N.; Sajjan, B.; Varun, S. Fabrication and Characterization of Al-0.4%Si-0.5%Mg-SiCp using Permanent Mould Casting Technique Applied Mechanics and Materials; Trans Tech Publications: Bäch, Switzerland, 2017; Volume 867, pp. 34–40. ISSN 1662–7482. [Google Scholar]
- Sigworth, G.K.; Kuhn, T.A. Grain Refinement of Aluminum Casting Alloys. Int. J. Met. 2007, 1, 31–40. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, G.D.; Blucher, J.T.; Cornie, J.A. Microstructure of the Interface and Interfiber Regions in P-55 Reinforced Aluminum Alloys Manufactured by Pressure Infiltration. In Proceedings of the Third International Conference on Composite Interfaces (ICCI-III), Cleveland, OH, USA, 21–24 May 1990. [Google Scholar]
- Jacquesson, M.; Girard, A.; Vidal-Sétif, M.-H.; Valle, R. Tensile and Fatigue Behavior of Al-based Metal Matrix Composites Reinforced with Continuous Carbon or Alumina Fibers: Part I. Quasi-unidirectional Composites. Metall. Mater. Trans. A 2004, 35, 3289–3305. [Google Scholar] [CrossRef]
- Hernandez, F.C.R.; Ramírez, J.M.H.; Mackay, R. Al-Si Alloys: Automotive, Aeronautical, and Aerospace Applications; Springer International Publishing AG: Cham, Switzerland, 2017. [Google Scholar]
- Ye, H. An Overview of the Development of Al-Si-Alloy based Material for Engine Applications. J. Mater. Eng. Perform. 2003, 12, 288–297. [Google Scholar] [CrossRef]
- Bansal, H. Wear Behavior of Aluminium Based Metal Matrix Composites Reinforced with Red Mud, SiC and Al2O3. Ph.D. Thesis, Thapar University, Patiala, India, 2011. [Google Scholar]
- Stojanović, B.; Ivanović, L. Application of Aluminium Hybrid Composites in Automotive Industry. Tech. Gaz. 2015, 22, 247–251. [Google Scholar] [CrossRef]
- Kaczmar, J.W.; Pietrzak, K.; Włosiński, W. The Production and Application of Metal Matrix Composite Materials. J. Mater. Processing Technol. 2000, 106, 58–67. [Google Scholar] [CrossRef]
- Miracle, D.B. Metal Matrix Composites–From Science to Technological Significance. Compos. Sci. Technol. 2005, 65, 2526–2540. [Google Scholar] [CrossRef]
- Harrigan, W.C. Commercial Processing of Metal Matrix Composites. Mater. Sci. Eng. A 1998, 244, 75–79. [Google Scholar] [CrossRef]
- Flemings, M.C. Continuous Production of Strip by Rheocasting; U.S. Department of Energy, Office of Scientific and Technical Information, MIT: Cambridge, MA, USA, 1981. [Google Scholar]
- Schoene, C.; Scala, E. Multiple Necking Phenomena in Metal Composites. Metall. Trans. 1970, 1, 3466–3469. [Google Scholar] [CrossRef]
- Vennett, R.M.; Wolf, S.M.; Levitt, A.P. Multiple Necking of Tungsten Fibers in a Brass-tungsten Composite. Metall. Trans. 1970, 1, 1569–1575. [Google Scholar] [CrossRef]
- Campbell, F.C. Structural Composite Materials; ASM International: Novelty, OH, USA, 2010. [Google Scholar]
- Lloyd, D.J.; Lagace, H.; McLeod, A.; Morris, P.L. Microstructural Aspects of Aluminium-Silicon Carbide Particulate Composites Produced by a Casting Method. Mater. Sci. Eng. A 1989, 107, 73–80. [Google Scholar] [CrossRef]
- Ceschini, L.; Morri, A.; Morri, A.; Gamberini, A.; Messieri, S. Correlation between Ultimate Tensile Strength and Solidification Microstructure for the Sand Cast A357 Aluminium Alloy. Mater. Des. 2009, 30, 4525–4531. [Google Scholar] [CrossRef]
- Tan, Y.-H.; Lee, S.-L.; Lin, Y.-L. Effects of Be and Fe Additions on the Microstructure and Mechanical Properties of A357.0 Alloys. Metall. Mater. Trans. A 1995, 26, 1195–1205. [Google Scholar] [CrossRef]
- Chakrabarti, D.J.; Laughlin, D.E. Phase Relations and Precipitation in Al–Mg–Si Alloys with Cu Additions. Prog. Mater. Sci. 2004, 49, 389–410. [Google Scholar] [CrossRef]
- Hasting, H.S.; Froseth, A.G.; Andersen, S.J.; Vissers, R.; Walmsley, J.C.; Marioara, C.D.; Danoix, F.; Lefebvre, W.; Holmestad, R. Composition of β″ Precipitates in Al–Mg–Si Alloys by Atom Probe Tomography and First Principles Calculations. J. Appl. Phys. 2009, 106, 123527. [Google Scholar] [CrossRef]
- Colley, L.J.; Wells, M.A.; Poole, W.J. Microstructure–strength Models for Heat Treatment of Al–Si–Mg Casting Alloys I: Microstructure Evolution and Precipitation Kinetics. Can. Metall. Q. 2014, 53, 125–137. [Google Scholar] [CrossRef]
- Colley, L.J.; Wells, M.A.; Poole, W.J. Microstructure–yield Strength Models for Heat Treatment of Al–Si–Mg Casting Alloys II: Modelling Microstructure and Yield Strength Evolution. Can. Metall. Q. 2014, 53, 138–150. [Google Scholar] [CrossRef]
- Andersen, S.J.; Zandbergen, H.W.; Jansen, J.; TrÆholt, C.; Tundal, U.; Reiso, O. The Crystal Structure of the β′′ Phase in Al–Mg–Si Alloys. Acta Mater. 1998, 46, 3283–3298. [Google Scholar] [CrossRef]
- Pashley, D.W.; Jacobs, M.H.; Vietz, J.T. The Basic Processes Affecting Two-step Ageing in an Al-Mg-Si Alloy. Philos. Mag. A J. Theor. Exp. Appl. Phys. 1967, 16, 51–76. [Google Scholar] [CrossRef]
- Lakshmikanthan, A.; Prabhu, T.R.; Udayagiri, S.B.; Koppad, P.G.; Gupta, M.; Munishamaiah, K.; Bontha, S. The Effect of Heat Treatment on the Mechanical and Tribological Properties of Dual Size SiC Reinforced A357 Matrix Composites. J. Mater. Res. Technol. 2020, 9, 6434–6452. [Google Scholar] [CrossRef]
- Avinash, L.; Prabhu, T.R.; Bontha, S. The Effect on the Dry Sliding Wear Behavior of Gravity Cast A357 Reinforced with Dual Size Silicon Carbide Particles Applied Mechanics and Materials; Trans Tech Publications: Bäch, Switzerland, 2016; Volume 829, pp. 83–89. [Google Scholar]
- Zulfia, A.; Atkinson, H.V.; Jones, H.; King, S. Effect of Hot Isostatic Pressing on Cast A357 Aluminium Alloy with and Without SiC Particle Reinforcement. J. Mater. Sci. 1999, 34, 4305–4310. [Google Scholar] [CrossRef]
- Churyumov, A.Y.; Mohamed, I.A. Microstructure and Mechanical Properties of Composite Materials Based on the Al–Si–Mg System Reinforced with SiC Particles and Obtained by Pressure Crystallization. Met. Sci. Heat Treat. 2019, 60, 571–573. [Google Scholar] [CrossRef]
- Badizi, R.M.; Askari-Paykani, M.; Parizad, A.; Shahverdi, H.R. Effects of Electromagnetic Frequency and SiC Nanoparticles on the Microstructure Refinement and Mechanical Properties of Al A357-1.5 wt% SiC Nanocomposites. Int. J. Met. 2018, 12, 565–573. [Google Scholar]
- Kumar, P.A.; Madhu, H.C.; Pariyar, A.; Perugu, C.S.; Kailas, S.V.; Garg, U.; Rohatgi, P. Friction Stir Processing of Squeeze Cast A356 with Surface Compacted Graphene Nanoplatelets (GNPs) for the Synthesis of Metal Matrix Composites. Mater. Sci. Eng. A 2020, 769, 138517. [Google Scholar] [CrossRef]
- Kandemir, S. Microstructure and Mechanical Properties of A357/SiC Nanocomposites Fabricated by Ultrasonic Cavitation-based Dispersion of Ball-milled Nanoparticles. J. Compos. Mater. 2017, 51, 395–404. [Google Scholar] [CrossRef]
- Tekmen, C.; Cocen, U. Role of Cold Work and SiC Volume Fraction on Accelerated Age Hardening Behavior of Al-Si-Mg/SiC Composites. J. Mater. Sci. Lett. 2003, 22, 1247–1249. [Google Scholar] [CrossRef]
- Li, N.; Yan, H.; Wang, Z.-W. Effects of Heat Treatment on the Tribological Properties of Sicp/Al-5Si-1Cu-0.5Mg Composite Processed by Electromagnetic Stirring Method. Appl. Sci. 2018, 8, 372. [Google Scholar] [CrossRef]
- Gao, C.; Wu, W.; Shi, J.; Xiao, Z.; Akbarzadeh, A.H. Simultaneous Enhancement of Strength, Ductility, and Hardness of TiN/AlSi10Mg Nanocomposites via Selective Laser Melting. Addit. Manuf. 2020, 34, 101378. [Google Scholar] [CrossRef]
- Li, X.; Shi, S.; Han, S.; Hu, X.; Zhu, Q.; Lu, H.; Li, W.; Shi, Y.; Ding, H. Microstructure, Solidification Behavior and Mechanical Properties of Al-Si-Mg-Ti/TiC Fabricated by Selective Laser Melting. Addit. Manuf. 2020, 34, 101326. [Google Scholar]
- Cöcen, K.; Önel, K.; Özdemir, I. Microstructures and Age Hardenability of AL-5%si-0.2%Mg based Composites Reinforced with Particulate SiC. Compos. Sci. Technol. 1997, 57, 801–808. [Google Scholar] [CrossRef]
- Bloyce, A.; Summers, J.C. Static and Dynamic Properties of Squeeze-cast A357-SiC Particulate Duralcan Metal Matrix Composite. Mater. Sci. Eng. A 1991, 135, 231–236. [Google Scholar] [CrossRef]
- Liu, Z.; Dong, Z.; Cheng, X.; Zheng, Q.; Zhao, J.; Han, Q. On the Supplementation of Magnesium and Usage of Ultrasound Stirring for Fabricating In Situ TiB2/A356 Composites with Improved Mechanical Properties. Metall. Mater. Trans. A 2018, 49, 5585–5598. [Google Scholar] [CrossRef]
- Podrezov, Y.M.; Gogaev, K.O.; Voropaev, V.; Yevych, Y.I.; Korzhova, N.P.; Legka, T.M. The Structure and Properties of Precipitation-Strengthened Composites Produced from a Cast Alloy in the Al–Si–Mg System. Powder Metall. Met. Ceram. 2021, 60, 496–503. [Google Scholar] [CrossRef]
- Wang, T.; Zheng, Y.; Chen, Z.; Zhao, Y.; Kang, H. Effects of Sr on the Microstructure and Mechanical Properties of In Situ TiB2 Reinforced A356 Composite. Mater. Des. 2014, 64, 185–193. [Google Scholar] [CrossRef]
- Kumar, T.S.; Subramanian, R.; Shalini, S.; Angelo, P.C. Age Hardening Behaviour of Al-Si-Mg Alloy Matrix/zircon and Alumina Hybrid Composite. J. Sci. Ind. Res. 2016, 75, 89–94. [Google Scholar]
- Kumar, S.D.; Mandal, A.; Chakraborty, M. On the Age Hardening Behavior of Thixoformed A356–5TiB2 In-situ Composite. Mater. Sci. Eng. A 2015, 636, 254–262. [Google Scholar] [CrossRef]
- Samuel, A.M.; Liu, H.; Samuel, F.H. Effect of Melt, Solidification and Heat-treatment Processing Parameters on the Properties of Al-Si-Mg/SiC(p) Composites. J. Mater. Sci. 1993, 28, 6785–6798. [Google Scholar] [CrossRef]
- Abdulwahab, M.; Umaru, O.B.; Bawa, M.A.; Jibo, H.A. Microstructural and Thermal Study of Al-Si-Mg/melon Shell Ash Particulate Composite. Results Phys. 2017, 7, 947–954. [Google Scholar] [CrossRef]
- Menargues, S.; Martín, E.; Baile, M.T.; Picas, J.A. New Short T6 Heat Treatments for Aluminium Silicon Alloys Obtained by Semisolid Forming. Mater. Sci. Eng. A 2015, 621, 236–242. [Google Scholar] [CrossRef]
- Elahi, M.A.; Shabestari, S.G. Effect of Various Melt and Heat Treatment Conditions on Impact Toughness of A356 Aluminum Alloy. Trans. Nonferrous Met. Soc. China 2016, 26, 956–965. [Google Scholar] [CrossRef]
- Ebenezer, N.S.; Narayana, P.S.V.V.S.; Ramakrishna, A.; Sandeep, C.N.; Vijay, G.S.; Manipal, P.P.; Dhanesh, T.S.S. Mechanical and Microstructural Characterization of Nickel Electroplated Metal Matrix Composites. Mater. Today Proc. 2020, 27, 1278–1281. [Google Scholar] [CrossRef]
- Senan, A.V.R.; Akshay, M.C.; Shankar, K.V. Determination on the Effect of Al2O3/B4C on the Mechanical Behaviour of Al-6.6Si-0.5Mg Alloy Cast in Permanent Mould. Mater. Sci. Forum 2019, 969, 398–403. [Google Scholar] [CrossRef]
- Sadhasivam, R.S.; Ramanathan, K.; Ravichandran, M.; Jayaseelan, C. Experimental Investigations on Microstructure, Properties and Workability Behavior of Zinc Oxide Reinforced Al–Si–Mg Matrix Composites. Silicon 2022, 14, 2175–2187. [Google Scholar] [CrossRef]
- Leonard, A.J.; Perrin, C.; Rainforth, W.M. Microstructural Changes Induced by Dry Sliding Wear of a A357/SiC Metal Matrix Composite. Mater. Sci. Technol. 1997, 13, 41–48. [Google Scholar] [CrossRef]
- Zulfia, A.; Zhakiah, T.; Dhaneswara, D. Characteristics of Al-Si-Mg Reinforced SiC Composites Produced by Stir Casting Route. IOP Conf. Ser. Mater. Sci. Eng. 2017, 202, 012089. [Google Scholar] [CrossRef]
- Natarajan, N.; Vijayarangan, S.; Rajendran, I. Wear Behaviour of A356/25SiCp Aluminium Matrix Composites Sliding against Automobile Friction Material. Wear 2006, 261, 812–822. [Google Scholar] [CrossRef]
- Rahimipour, M.R.; Tofigh, A.A.; Shabani, M.O.; Davami, P. The Enhancement of Wear Properties of Compo-Cast A356 Composites Reinforced with Al2O3 Nano Particulates. Tribol. Ind. 2014, 36, 220–227. [Google Scholar]
- Sam, M.; Radhika, N.; Sai, K.P. Effect of Heat Treatment on Mechanical and Tribological Properties of Aluminum Metal Matrix Composites. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, 234, 4493–4504. [Google Scholar] [CrossRef]
- Hegde, N.T.; Pai, D.; Hegde, R. Heat Treatment and Mechanical Characterization of LM-25/Tungsten Carbide Metal Matrix Composites. Mater. Today Proc. 2019, 19, 810–817. [Google Scholar] [CrossRef]
- Radhika, N.; Sasikumar, J.; Arulmozhivarman, J. Tribo-Mechanical Behaviour of Ti-Based Particulate Reinforced As-Cast and Heat Treated A359 Composites. Silicon 2020, 12, 2769–2782. [Google Scholar] [CrossRef]
- Padmanaban, S.; Subramanian, R.; Anburaj, J.; Thillairajan, K. Rheo-Die-Casting of Al-Si-Mg Alloy and Al-Si-Mg/SiCp Composites: Microstructure and Wear Behavior. Mater. Res. 2020, 23, 1–11. [Google Scholar] [CrossRef]
- Vuddagiri, H.K.; Ravisankar, H. Estimation of Wear Performance of Al-based Composite Reinforced with Al2O3 and MoS2 Using Taguchi Approach. Tribol. Ind. 2022, 44, 24–38. [Google Scholar] [CrossRef]
- Balasubramaniam, C.; Santhosh, A.; Aadarsh, B.; Abhijith, V.K.; Midhun, M.; Harinarayanan, A.R.; Shankar, K.V. Influence of Si Content on the Mechanical and Wear Behavior of Al-xSi-0.4Mg-10Fly Ash Metal Matrix Composite. Mater. Today Proc. 2021, 39, 1378–1381. [Google Scholar] [CrossRef]
- Usman, Y.; Dauda, E.T.; Abdulwahab, M.; Dodo, R.M. Effect of Mechanical Properties and Wear Behaviour on Locust Bean Waste Ash (LBWA) Particle Reinforced Aluminium Alloy (A356 Alloy) Composites. Fudma J. Sci. 2020, 4, 416–421. [Google Scholar]
- Anilkumar, V.; Shankar, K.V.; Balachandran, M.; Joseph, J.; Nived, S.; Jayanandan, J.; Jayagopan, J.; Balaji, U.S.S. Impact of Heat Treatment Analysis on the Wear Behaviour of Al-14.2Si-0.3Mg-TiC Composite using Response Surface Methodology. Tribol. Ind. 2021, 43, 590–602. [Google Scholar] [CrossRef]
- Kheirifard, R.; Khosroshahi, N.B.; Khosroshahi, R.A.; Mousavian, R.T.; Brabazon, D. Fabrication of A356-based Rolled Composites Reinforced by Ni–P-coated Bimodal Ceramic Particles. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2018, 232, 803–815. [Google Scholar] [CrossRef]
- Wang, Q.; Min, F.; Zhu, J. Microstructure and Thermo-mechanical Properties of SiCp/Al Composites Prepared by Pressureless Infiltration. J. Mater. Sci. Mater. Electron. 2013, 24, 1937–1940. [Google Scholar] [CrossRef]
- Montoya-Dávila, M.; Pech-Canul, M.A.; Pech-Canul, M.I. Effect of Bi- and Trimodal Size Distribution on the Superficial Hardness of Al/SiCp Composites Prepared by Pressureless Infiltration. Powder Technol. 2007, 176, 66–71. [Google Scholar] [CrossRef]
- Dhandapani, S.; Rajmohan, T.; Palanikumar, K.; Charan, M. Synthesis and Characterization of Dual Particle (MWCT+B4C) Reinforced Sintered Hybrid Aluminum Matrix Composites. Part. Sci. Technol. 2016, 34, 255–262. [Google Scholar] [CrossRef]
- Chandrashekar, J.R.; Annaiah, M.H.; Chandrashekar, R. Microstructure and Mechanical Properties of Aluminum Cast Alloy A356 reinforced with Dual-Size B4C Particles. Fract. Struct. Integr. 2021, 15, 127–137. [Google Scholar] [CrossRef]
- Khosroshahi, N.B.; Mousavian, R.T.; Khosroshahi, R.A.; Brabazon, D. Mechanical Properties of Rolled A356 based Composites Reinforced by Cu-coated Bimodal Ceramic Particles. Mater. Des. 2015, 83, 678–688. [Google Scholar] [CrossRef]
- Arpón, R.; Molina, J.M.; Saravanan, R.A.; García-Cordovilla, C.; Louis, E.; Narciso, J. Thermal Expansion Behaviour of Aluminium/SiC Composites with Bimodal Particle Distributions. Acta Mater. 2003, 51, 3145–3156. [Google Scholar] [CrossRef]
- Chu, K.; Jia, C.; Liang, X.; Chen, H.; Guo, H. The Thermal Conductivity of Pressure Infiltrated SiCp/Al Composites with Various Size Distributions: Experimental Study and Modeling. Mater. Des. 2009, 30, 3497–3503. [Google Scholar] [CrossRef]
- Sharma, S.; Nanda, T.; Pandey, O.P. Effect of Dual Particle Size (DPS) on Dry Sliding Wear Behaviour of LM30/sillimanite Composites. Tribol. Int. 2018, 123, 142–154. [Google Scholar] [CrossRef]
- Prabhu, T.R. Effect of Bimodal Size Particles Reinforcement on the Wear, Friction and Mechanical Properties of Brake Composites, Tribology-Materials. Surf. Interfaces 2016, 10, 163–171. [Google Scholar] [CrossRef]
- Maleque, A.; Karim, R. Tribological Behavior of Dual and Triple Particle Size SiC Reinforced Al-MMCs: A Comparative Study. Ind. Lubr. Tribol. 2008, 60, 189–194. [Google Scholar] [CrossRef]
- Arora, R.; Kumar, S.; Singh, G.; Pandey, O.P. Role of Different Range of Particle Size on Wear Characteristics of Al–Rutile Composites. Part. Sci. Technol. 2014, 33, 229–233. [Google Scholar] [CrossRef]
- Arora, R.; Kumar, S.; Singh, G.; Pandey, O. Influence of Particle Size and Temperature on the Wear Properties of Rutile-reinforced Aluminium Metal Matrix Composite. J. Compos. Mater. 2015, 49, 843–852. [Google Scholar] [CrossRef]
- Singh, R.; Podder, D.; Singh, S. Effect of Single, Double and Triple Particle Size SiC and Al2O3 Reinforcement on Wear Properties of AMC Prepared by Stir Casting in Vacuum Mould. Trans. Indian Inst. Met. 2015, 68, 791–797. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, S.; Singh, G.; Pandey, O.P. Effect of Particle Size on Wear Behavior of Al–Garnet Composites. Part. Sci. Technol. 2015, 33, 234–239. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, V.; Panwar, R.S.; Pandey, O.P. Wear Behavior of Dual Particle Size (DPS) Zircon Sand Reinforced Aluminum Alloy. Tribol. Lett. 2012, 47, 231–251. [Google Scholar] [CrossRef]
- Kumar, S.; Panwar, R.S.; Pandey, O.P. Wear Behavior at High Temperature of Dual-Particle Size Zircon-Sand-Reinforced Aluminum Alloy Composite. Met. Mater. Trans. A 2012, 44, 1548–1565. [Google Scholar] [CrossRef]
- Kumar, S.; Panwar, R.S.; Pandey, O.P. Effect of Dual Reinforced Ceramic Particles on High Temperature Tribological Properties of Aluminum Composites. Ceram. Int. 2013, 39, 6333–6342. [Google Scholar] [CrossRef]
- Lakshmikanthan, A.; Bontha, S.; Krishna, M.; Koppad, P.G.; Ramprabhu, T. Microstructure, Mechanical and Wear Properties of the A357 Composites Reinforced with Dual Sized SiC Particles. J. Alloys Compd. 2019, 786, 570–580. [Google Scholar] [CrossRef]
- Mizuuchi, K.; Inoue, K.; Agari, Y.; Sugioka, M.; Tanaka, M.; Takeuchi, T.; Tani, J.; Kawahara, M.; Makino, Y.; Ito, M. Bimodal and Monomodal Diamond Particle Effect on the Thermal Conductivity of Diamond Particle Dispersed Al Matrix Composite Produced by SPS. Mater. Sci. Forum 2014, 783–786, 2462–2467. [Google Scholar] [CrossRef]
- Wang, C.-J.; Deng, K.-K.; Zhou, S.-S.; Liang, W. Dynamic Recrystallization Behavior of Bimodal Size SiCp-Reinforced Mg Matrix Composite during Hot Deformation. Engl. Lett. 2016, 29, 527–537. [Google Scholar] [CrossRef]
- Zhang, L.-J.; Qiu, F.; Wang, J.-G.; Wang, H.-Y.; Jiang, Q.-C. Microstructures and Mechanical Properties of the Al2014 Composites Reinforced with Bimodal Sized SiC Particles. Mater. Sci. Eng. A 2015, 637, 70–74. [Google Scholar] [CrossRef]
- Malik, V.R.; Bajakke, P.A.; Saxena, K.K.; Lakshmikanthan, A.; Deshpande, A.S.; Mabuwa, S.; Masomi, V. Energy-efficient method for developing in-situ Al-Cu metal matrix composites using microwave sintering and friction stir processing. Mater. Res. Express 2022, 9, 066507. [Google Scholar] [CrossRef]
- Naik, H.R.M.; LH, M.; Malik, V.; Patel, G.C.M.; Saxena, K.K.; Lakshmikanthan, A. Effect of microstructure, mechanical and wear on Al-CNTs/graphene hybrid MMC’S. Adv. Mater. Processing Technol. 2021, 1–14. [Google Scholar] [CrossRef]
- Pelevin, I.A.; Nalivaiko, A.Y.; Ozherelkov, D.Y.; Shinkaryov, A.S.; Chernyshikhin, S.V.; Arnautov, A.N.; Zmanovsky, S.V.; Gromov, A.A. Selective Laser Melting of Al-Based Matrix Composites with Al2O3 Reinforcement: Features and Advantages. Materials 2021, 14, 2648. [Google Scholar] [CrossRef]
- Shorowordi, K.M.; Laoui, T.; Haseeb, A.; Celis, J.P.; Froyen, L. Microstructure and Interface Characteristics of B4C, SiC and Al2O3 Reinforced Al Matrix Composites: A Comparative Study. J. Mater. Processing Technol. 2003, 142, 738–743. [Google Scholar] [CrossRef]
- Nalivaiko, A.Y.; Ozherelkov, D.Y.; Arnautov, A.N.; Zmanovsky, S.V.; Osipenkova, A.A.; Gromov, A.A. Selective Laser Melting of Aluminum-alumina Powder Composites Obtained by Hydrothermal Oxidation Method. Appl. Phys. A 2020, 126, 871. [Google Scholar] [CrossRef]
- Chang, F.; Gu, D.; Dai, D.; Yuan, P. Selective Laser Melting of In-situ Al4SiC4+SiC Hybrid Reinforced Al Matrix Composites: Influence of Starting SiC Particle Size. Surf. Coat. Technol. 2015, 272, 15–24. [Google Scholar] [CrossRef]
- Aboulkhair, N.T.; Simonelli, M.; Parry, L.; Ashcroft, I.; Tuck, C.; Hague, R. 3D printing of Aluminium Alloys: Additive Manufacturing of Aluminium Alloys using Selective Laser Melting. Prog. Mater. Sci. 2019, 106, 100578. [Google Scholar] [CrossRef]
- Sercombe, T.B.; Li, X. Selective Laser Melting of Aluminium and Aluminium Metal Matrix Composites: Review. Mater. Technol. 2016, 31, 77–85. [Google Scholar] [CrossRef]
- Gu, D.D.; Meiners, W.; Wissenbach, K.; Poprawe, R. Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int. Mater. Rev. 2012, 57, 133–164. [Google Scholar] [CrossRef]
- Jue, J.; Gu, D.; Chang, K.; Dai, D. Microstructure Evolution and Mechanical Properties of Al-Al2O3 Composites Fabricated by Selective Laser Melting. Powder Technol. 2017, 310, 80–91. [Google Scholar] [CrossRef]
- Wang, P.; Gammer, C.; Brenne, F.; Niendorf, T.; Eckert, J.; Scudino, S. A Heat Treatable TiB2/Al-3.5Cu-1.5Mg-1Si Composite Fabricated by Selective Laser Melting: Microstructure, Heat Treatment and Mechanical Properties. Compos. Part B Eng. 2018, 147, 162–168. [Google Scholar] [CrossRef]
- Prashanth, K.G.; Scudino, S.; Chaubey, A.K.; Löber, L.; Wang, P.; Attar, H.; Schimansky, F.P.; Pyczak, F.; Eckert, J. Processing of Al–12Si–TNM composites by selective laser melting and evaluation of compressive and wear properties. J. Mater. Res. 2016, 31, 55–65. [Google Scholar] [CrossRef] [Green Version]
Reinforcement Type | Aspect Ratio | Examples of Reinforcements |
---|---|---|
Continuous fibers | >1000 | Carbon, glass, boron, SiC, kevlar, steel, wood fibers, carbon nanotubes, Al2O3, Si3N4, NbTi |
Whiskers/flakes | >10 | Mica, graphite, BN, SiC, Al2O3, TiB2, Al2O3+SiO2 |
Particulates | 1–4 | SiC, WC, TiC, B4C, TiO2, Al2O3, flash |
Reinforcement | Crystal Structure | Density (g/cm3) | Melting Point (°C) | Elastic Modulus (GPa) | Coefficient of Thermal Expansion (10−6 K−1) |
---|---|---|---|---|---|
BN | Hexagonal | 2.25 | 3000 | 90 | 3.8 |
B4C | Rhombohedral | 2.52 | 2450 | 450 | 5.4 |
AlN | Hexagonal | 3.25 | 2300 | 350 | 6.0 |
Al2O3 | Hexagonal | 3.90 | 2050 | 410 | 8.3 |
SiC | Hexagonal | 3.21 | 2300 | 410 | 4.9 |
TiC | Cubic | 4.93 | 3140 | 320 | 7.4 |
S/No | Designations | Alloying Elements |
---|---|---|
1 | 1xx.x | Unalloyed aluminum |
2 | 2xx.x | Al alloyed with Cu |
3 | 3xx.x | Al alloyed with Si (traces of Cu, Mg) |
4 | 4xx.x | Binary Al-Si |
5 | 5xx.x | Al alloyed with Mg |
6 | 7xx.x | Al alloyed with Zn (traces of Mg, Cr, and Cu) |
7 | 8xx.x | Al alloyed with Sn |
Reference | First Particle Type | Second Particle Type | ||
---|---|---|---|---|
Material | Size | Material | Size | |
Kheirifard et al. [92] | Al2O3 | 170 µm | SiC | 15 µm |
Sadeghi et al. (2018) | α-Al2O3 | 20 nm | α -Al2O3 | 10 µm |
Montoya-Dávila et al. [94] | SiC | 10 µm | SiC | 68 µm |
Dhandapani et al. [95] | CNTs | 50–80 nm | B4C | 150 µm |
Khosroshahi et al. [97] | Al2O3 | 170 µm | SiC | 15 µm |
Arpon et al. [98] | SiC | 16 µm | SiC | 170 µm |
Bindumadhavan et al. [20] | SiC | 47 µm | SiC | 120 µm |
Sandeep et al. (2018) | Al2SiO5 | 1–20 µm | Al2SiO5 | 75–106 µm |
Maleque et al. [102] | SiC | 20 µm | SiC | 80 µm |
Arora et al. (2015) | Rutile | 50–75 µm | Rutile | 106–125 µm |
Sharma et al. [106] | Garnet | 50–75 µm | Garnet | 106–125 µm |
Kumar et al. [107] | ZrSiO4 | 50–75 µm | Zircon | 106–125 µm |
Kumar et al. (2013) | ZrSiO4 | 3.75 µm | SiC | 11.25 µm |
Prabhu et al. (2017) | Nano clay | 15–20 nm | CaSiO3 | 75–150 µm |
Mizuuchi et al. [111] | Diamond | 34.8 µm | Diamond | 310 µm |
Wang et al. [112] | SiC | 0.2 µm | SiC | 10 µm |
Zhang et al. [113] | SiC | 40 nm | SiC | 15 µm |
Avinash et al. [56] | SiC | 38 µm | SiC | ~250 µm |
Malik et al. [114] | Al | 45 µm | Cu | 45 µm |
Naik et al. [115] | CNT | Ø 15 nm & 6 µm length | Graphene | 8 µm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakshmikanthan, A.; Angadi, S.; Malik, V.; Saxena, K.K.; Prakash, C.; Dixit, S.; Mohammed, K.A. Mechanical and Tribological Properties of Aluminum-Based Metal-Matrix Composites. Materials 2022, 15, 6111. https://doi.org/10.3390/ma15176111
Lakshmikanthan A, Angadi S, Malik V, Saxena KK, Prakash C, Dixit S, Mohammed KA. Mechanical and Tribological Properties of Aluminum-Based Metal-Matrix Composites. Materials. 2022; 15(17):6111. https://doi.org/10.3390/ma15176111
Chicago/Turabian StyleLakshmikanthan, Avinash, Santosh Angadi, Vinayak Malik, Kuldeep K. Saxena, Chandar Prakash, Saurav Dixit, and Kahtan A. Mohammed. 2022. "Mechanical and Tribological Properties of Aluminum-Based Metal-Matrix Composites" Materials 15, no. 17: 6111. https://doi.org/10.3390/ma15176111
APA StyleLakshmikanthan, A., Angadi, S., Malik, V., Saxena, K. K., Prakash, C., Dixit, S., & Mohammed, K. A. (2022). Mechanical and Tribological Properties of Aluminum-Based Metal-Matrix Composites. Materials, 15(17), 6111. https://doi.org/10.3390/ma15176111