Influence of Grain Orientation and Grain Boundary Features on Local Stress State of Cu-8Al-11Mn Alloy Investigated Using Crystal Plasticity Finite Element Method
Abstract
:1. Introduction
2. Crystal Plasticity Theory and Modeling
2.1. Crystal Plasticity Theory
2.1.1. Deformation Configuration
2.1.2. Rate-Dependent Deformation Kinetic and Hardening Model
2.1.3. Plastic Constitutive Relationship of Single Crystal
2.2. Crystal Plasticity Modeling
3. Results
3.1. Effect of Grain Orientation on Stress Distribution in Columnar Single Crystals
3.2. Effect of Misorientation Angles on Local Stress Distribution of Columnar Grains
3.3. Effect of Grain Boundary Morphology on Local Stress Distribution
4. Discussion
4.1. Effect of Grain Orientation on Deformation Mechanism of Columnar Single Crystals
4.2. Effect of Misorientation Angle on Deformation Mechanism of Columnar Grains
4.3. Effect of Grain Boundary Morphology on Deformation Mechanism
5. Conclusions
- (1)
- The Schmid factor and number of activated slip systems played an important role in the stress value and distribution of single crystals. The effective stresses in the 0 ° and 90 ° grains with a high number of activated slip systems were smaller and more uniform than in the 15°, 30°, 45°, 60°, and 75° grains.
- (2)
- When the grain boundaries of columnar grains had low misorientation angles, such as 5~15°, the local stresses in their vicinity were smaller and more uniform, with small difference in the shear stresses of the activated slip systems between the adjacent grains. However, the local stresses in the vicinity of the grain boundaries with high misorientation angles, such as 30~60°, increased sharply due to the large difference between adjacent grains in terms of the shear stresses of the activated slip systems.
- (3)
- The grain boundary morphologies had a great influence on the local stress distribution of the polycrystalline grains. The local stress of the triple-junction GBs in the EGs was the largest, while that of the transverse GBs in the BLGs was the smallest, which was mainly related to the number of activated slip systems in the vicinity of the grain boundaries.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, S.Y.; Hong, S.; Li, M.P.; Qing, X.Y.; Guo, L.P.; Guo, Y.H.; Wang, C.P.; Liu, X.J. Microstructure, Martensitic Transformation and Shape Memory Effect of Polycrystalline Cu-Al-Mn-Fe Alloys. Sci. China Technol. Sci. 2021, 64, 400–406. [Google Scholar] [CrossRef]
- Imran, M.; Zhang, X. Recent Developments on the Cyclic Stability in Elastocaloric Materials. Mater. Des. 2020, 195, 109030. [Google Scholar] [CrossRef]
- Horikawa, H.; Ichinose, S.; Morii, K.; Miyazaki, S.; Otsuka, K. Orientation Dependence of Β1 → Β11 Stress-Induced Martensitic Transformation in a Cu-Al-Ni Alloystress-Induced Martensitic Transformation in a Cu-Al-Ni Alloy. Metall. Trans. A 1989, 20, 779–780. [Google Scholar] [CrossRef] [Green Version]
- Omori, T.; Kawata, S.; Kainuma, R. Orientation Dependence of Superelasticity and Stress Hysteresis in Cu-Al-Mn Alloy. Mater. Trans. 2020, 61, 55–60. [Google Scholar] [CrossRef]
- Pfetzing-Micklich, J.; Somsen, C.; Dlouhy, A.; Begau, C.; Hartmaier, A.; Wagner, M.F.X.; Eggeler, G. On the Crystallographic Anisotropy of Nanoindentation in Pseudoelastic NiTi. Acta Mater. 2013, 61, 602–616. [Google Scholar] [CrossRef]
- Su, T.H.; Lu, N.H.; Chen, C.H.; Chen, C.S. On the Decrease in Transformation Stress in a Bicrystal Cu-Al-Mn Shape-Memory Alloy during Cyclic Compressive Deformation. Materials 2021, 14, 4439. [Google Scholar] [CrossRef] [PubMed]
- Ueland, S.M.; Schuh, C.A. Grain Boundary and Triple Junction Constraints during Martensitic Transformation in Shape Memory Alloys. J. Appl. Phys. 2013, 114, 053503. [Google Scholar] [CrossRef]
- Sutou, Y.; Omori, T.; Kainuma, R.; Ishida, K.; Ono, N. Enhancement of Superelasticity in Cu-Al-Mn-Ni Shape-Memory Alloys by Texture Control. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2002, 33, 2817–2824. [Google Scholar] [CrossRef]
- Ueland, S.M.; Chen, Y.; Schuh, C.A. Oligocrystalline Shape Memory Alloys. Adv. Funct. Mater. 2012, 22, 2094–2099. [Google Scholar] [CrossRef]
- Liu, J.L.; Huang, H.Y.; Xie, J.X. The Roles of Grain Orientation and Grain Boundary Characteristics in the Enhanced Superelasticity of Cu71.8Al17.8Mn10.4 Shape Memory Alloys. Mater. Des. 2014, 64, 427–433. [Google Scholar] [CrossRef]
- Xie, J.X.; Liu, J.L.; Huang, H.Y. Structure Design of High-Performance Cu-Based Shape Memory Alloys. Rare Met. 2015, 34, 607–624. [Google Scholar] [CrossRef]
- Yao, P.S.; Huang, H.Y.; Su, Y.J.; Xie, J.X. Two-Way Shape Memory Effect Induced by Tensile Deformation in Columnar-Grained Cu71.7Al18.1Mn10.2 Alloy. Materials 2018, 11, 2109. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.J.; Tu, K.N.; Chen, C. Tensile Properties of <111>-Oriented Nanotwinned Cu with Different Columnar Grain Structures. Materials 2020, 13, 1310. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.C.; Tang, X.Z.; Mao, Y.; Guo, Y.F. The Plastic Deformation Mechanisms of Hcp Single Crystals with Different Orientations: Molecular Dynamics Simulations. Materials 2021, 14, 733. [Google Scholar] [CrossRef]
- Sausto, F.; Patriarca, L.; Foletti, S.; Beretta, S.; Vacchieri, E. Strain Localizations in Notches for a Coarse-Grained Ni-Based Superalloy: Simulations and Experiments. Materials 2021, 14, 564. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Zhang, K.; Hu, G.; Lan, Y.; Chang, Y. Investigation of Yield Surfaces Evolution for Polycrystalline Aluminum after Pre-Cyclic Loading by Experiment and Crystal Plasticity Simulation. Materials 2020, 13, 3069. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, M.G.; Achuthan, A.; Bednarcyk, B.A.; Arnold, S.M.; Pineda, E.J. A Multiscale Computational Model Combining a Single Crystal Plasticity Constitutive Model with the Generalized Method of Cells (GMC) for Metallic Polycrystals. Materials 2016, 9, 335. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Marthinsen, K.; Holmedal, B.; Aukrust, T.; Segatori, A. Coupled FEM and Alamel-Type Polycrystal Plasticity Modelling Applied to Extrusion of Aluminium Alloys; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; Volume 2. [Google Scholar]
- Hu, L.; Jiang, S.; Zhou, T.; Tu, J.; Shi, L.; Chen, Q.; Yang, M. Multiscale Modeling of Polycrystalline NiTi Shape Memory Alloy under Various Plastic Deformation Conditions by Coupling Microstructure Evolution and Macroscopic Mechanical Response. Materials 2017, 10, 1172. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Marthinsen, K.; Holmedal, B.; Aukrust, T.; Segatori, A. Through Thickness Variations of Deformation Texture in Round Profile Extrusions of 6063-Type Aluminium Alloy: Experiments, FEM and Crystal Plasticity Modelling. Mater. Sci. Eng. A 2018, 722, 20–29. [Google Scholar] [CrossRef]
- Kishi, D.; Mayama, T.; Mine, Y.; Takashima, K. Crystallographic Study of Plasticity and Grain Boundary Separation in FeCo Alloy Using Small Single- and Bi-Crystalline Specimens. Scr. Mater. 2018, 142, 1–5. [Google Scholar] [CrossRef]
- Aşik, E.E.; Perdahcioğlu, E.S.; van den Boogaard, T. An RVE-Based Study of the Effect of Martensite Banding on Damage Evolution in Dual Phase Steels. Materials 2020, 13, 1795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Lu, C.; Tieu, K. A Crystal Plasticity FEM Investigation of a Cu Single Crystal Processed by Accumulative Roll-Bonding. J. Mater. Res. Technol. 2019, 8, 5057–5065. [Google Scholar] [CrossRef]
- Lim, H.; Battaile, C.C.; Bishop, J.E.; Foulk, J.W. Investigating Mesh Sensitivity and Polycrystalline RVEs in Crystal Plasticity Finite Element Simulations. Int. J. Plast. 2019, 121, 101–115. [Google Scholar] [CrossRef]
- Zhou, Y.; Fan, Q.; Liu, X.; Wang, D.; Zhu, X. Experimental Study and Crystal Plasticity Finite Element Simulations of Nano-Indentation-Induced Lattice Rotation and the Underlying Mechanism in TC6 Single α-Grain. Mater. Des. 2020, 188, 108423. [Google Scholar] [CrossRef]
- Needleman, A.; Asaro, R.J.; Lemonds, J.; Peirce, D. Finite Element Analysis of Crystalline Solids. Comput. Methods Appl. Mech. Eng. 1985, 52, 689–708. [Google Scholar] [CrossRef]
- Asaro, R.J.; Needleman, A. Overview No. 42 Texture Development and Strain Hardening in Rate Dependent Polycrystals. Acta Metall. 1985, 33, 923–953. [Google Scholar] [CrossRef]
- Zhao, Q.; Abdel Wahab, M.; Ling, Y.; Liu, Z. Grain-Orientation Induced Stress Formation in AA2024 Monocrystal and Bicrystal Using Crystal Plasticity Finite Element Method. Mater. Des. 2021, 206, 109794. [Google Scholar] [CrossRef]
- Chen, P.; Mao, S.C.; Liu, Y.; Wang, F.; Zhang, Y.F.; Zhang, Z.; Han, X.D. In-Situ EBSD Study of the Active Slip Systems and Lattice Rotation Behavior of Surface Grains in Aluminum Alloy during Tensile Deformation. Mater. Sci. Eng. A 2013, 580, 114–124. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, H.; Xie, J. Anisotropic Deformation Behavior of Continuous Columnar-Grained CuNi10Fe1Mn Alloy. Jinshu Xuebao/Acta Metall. Sin. 2015, 51, 40–48. [Google Scholar] [CrossRef]
- Xie, J.X.; Wang, Y.; Huang, H.Y. Extreme Plastic Extensibility and Ductility Improvement Mechanisms of Continuous Columnar-Grained Copper and Copper Alloys. Zhongguo Youse Jinshu Xuebao/Chin. J. Nonferrous Met. 2011, 21, 2324–2336. [Google Scholar] [CrossRef]
Slip Plane | (111) | 11) | 1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Slip direction | 1] | ] | 10] | [101] | [110] | 1] | [011] | [110] | ] | [011] | [101] | 10] |
Slip System | h0 (MPa) | τ0 (MPa) | τs (MPa) | n |
---|---|---|---|---|
{111} <110> | 200.8 | 110.8 | 200.8 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, C.; Xu, L.; Feng, X.; Huang, Q.; Li, Y.; Zhang, Z.; Yang, Y. Influence of Grain Orientation and Grain Boundary Features on Local Stress State of Cu-8Al-11Mn Alloy Investigated Using Crystal Plasticity Finite Element Method. Materials 2022, 15, 6950. https://doi.org/10.3390/ma15196950
Zheng C, Xu L, Feng X, Huang Q, Li Y, Zhang Z, Yang Y. Influence of Grain Orientation and Grain Boundary Features on Local Stress State of Cu-8Al-11Mn Alloy Investigated Using Crystal Plasticity Finite Element Method. Materials. 2022; 15(19):6950. https://doi.org/10.3390/ma15196950
Chicago/Turabian StyleZheng, Ce, Lijun Xu, Xiaohui Feng, Qiuyan Huang, Yingju Li, Zhongwu Zhang, and Yuansheng Yang. 2022. "Influence of Grain Orientation and Grain Boundary Features on Local Stress State of Cu-8Al-11Mn Alloy Investigated Using Crystal Plasticity Finite Element Method" Materials 15, no. 19: 6950. https://doi.org/10.3390/ma15196950
APA StyleZheng, C., Xu, L., Feng, X., Huang, Q., Li, Y., Zhang, Z., & Yang, Y. (2022). Influence of Grain Orientation and Grain Boundary Features on Local Stress State of Cu-8Al-11Mn Alloy Investigated Using Crystal Plasticity Finite Element Method. Materials, 15(19), 6950. https://doi.org/10.3390/ma15196950