Evaluation of the Sublimation Process of Some Purine Derivatives: Sublimation Rate, Activation Energy, Mass Transfer Coefficients and Phenomenological Models
Abstract
:1. Introduction
2. Materials and Methods
- is the individual mass transfer coefficient (m3/m2·s);
- hp is the height of the purine derivatives layer (m);
- Dp is the diffusion coefficient of purine derivative vapors in air for which values from the literature were used (m2/s) [13].
- P—working pressure in the equipment, which was assumed to be atmospheric pressure (1.013 × 105 Pa);
- R—universal gas constant (8.314 J/mol·K);
- T—temperature of the driving gas expressed in K.
- —density of the entrainer calculated at the working temperature;
- —viscosity of the entrainer calculated at working temperature;
- —the rate of the entrainer (0.003 m/s).
3. Results and Discussion
3.1. Thermal Behavior
3.2. Kinetic Study of the Sublimation of Purine Derivatives
- (1)
- The transfer of thermal energy in the solid;
- (2)
- The breaking of intermolecular bonds in the crystal lattice, leading to the formation of free molecules;
- (3)
- Vapor transport to the surface and its entrainment.
3.3. Evaluation of Global Mass Transfer Coefficients
3.4. Establishing the Phenomenological Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Cuong, N.T.; Tai, T.B.; Ha, V.T.T.; Nguyen, M.T. Thermochemical parameters of caffeine, theophylline, and xanthine. J. Chem. Thermodyn. 2010, 42, 437–440. [Google Scholar] [CrossRef]
- Wang, R.; Xue, J.; Meng, L.; Lee, J.-W.; Zhao, Z.; Sun, P.; Cai, L.; Huang, T.; Wang, Z.; Wang, Z.-K.; et al. Caffeine improves the performance and thermal stability of perovskite solar cells. Joule 2019, 3, 1464–1477. [Google Scholar] [CrossRef]
- Mohammed, H. Synthesis, identification, and biological study for some complexes of azo dye having theophylline. Sci. World J. 2021, 2021, 9943763. [Google Scholar] [CrossRef] [PubMed]
- Dichi, E.; Legendre, B.; Sghaier, M. Physico-chemical characterisation of a new polymorph of caffeine. J. Therm. Anal. Calorim. 2014, 115, 1551–1561. [Google Scholar] [CrossRef]
- Soetaredjo, F.E.; Ismadji, S.; Liauw, M.Y.; Angkawijaya, A.E.; Ju, Y.-H. Catechin sublimation pressure and solubility in supercritical carbon dioxide. Fluid Phase Equilibria 2013, 358, 220–225. [Google Scholar] [CrossRef] [Green Version]
- Ruz, V.; González, M.M.; Winant, D.; Rodríguez, Z.; Van den Mooter, G. Characterization of the sublimation and vapor pressure of 2-(2-Nitrovinyl) furan (G-0) using thermogravimetric analysis: Effects of complexation with cyclodextrins. Molecules 2015, 20, 15175–15191. [Google Scholar] [CrossRef] [Green Version]
- Ramos, F.; Ledo, J.M.; Flores, H.; Camarillo, E.A.; Carvente, J.; Amador, M.P. Evaluation of sublimation enthalpy by thermogravimetry: Analysis of the diffusion effects in the case of methyl and phenyl substituted hydantoins. Thermochim. Acta 2017, 655, 181–193. [Google Scholar] [CrossRef]
- Karakaya, C.; Ricote, S.; Albin, D.; Sánchez-Cortezón, E.; Linares-Zea, B.; Kee, R.J. Thermogravimetric analysis of InCl3 sublimation at atmospheric pressure. Thermochim. Acta 2015, 622, 5–63. [Google Scholar] [CrossRef]
- Shahbazi, S.; Stratz, S.A.; Auxier, J.D.; Hanson, D.E.; Marsh, M.L.; Hall, H.L. Characterization and thermogravimetric analysis of lanthanide hexafluoroacetylacetone chelates. J. Radioanal. Nucl. Chem. 2017, 311, 617–626. [Google Scholar] [CrossRef] [Green Version]
- Flores, H.; Ramos, F.; Camarillo, E.A.; Santiago, O.; Perdomo, G.; Notario, R.; Cabrera, S. Isothermal thermogravimetric study for determining sublimation enthalpies of some hydroxyflavones. J. Chem. Eng. Data 2018, 63, 1925–1936. [Google Scholar] [CrossRef]
- Vieyra-Eusebio, M.T.; Rojas, A. Vapor pressures and sublimation enthalpies of nickelocene and cobaltocene measured by thermogravimetry. J. Chem. Eng. Data 2011, 56, 5008–5018. [Google Scholar] [CrossRef]
- Griesser, U.J.; Szelagiewicz, M.; Hofmeier, U.C.; Pitt, C.; Cianferani, S. Vapor pressure and heat of sublimation of crystal polymorphs. J. Therm. Anal. Calorim. 1999, 57, 45–60. [Google Scholar] [CrossRef]
- Project Report, Experimental Studies on Measuring the Diffusion Coefficient of Various Solids with Varying Geometries in Air. Available online: http://ethesis.nitrkl.ac.in/7675/1/2015_Experimental_studies_Utkarsh.pdf (accessed on 11 September 2022).
- Schnitzler, E.; Kobelnik, M.; Sotelo, G.F.C.G.; Ionashiro, B.M. Thermoanalytical study of purine derivatives compounds. Eclética Química São Paulo 2004, 29, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Kwasniewska-Sip, P.; Bartkowiak, M.; Cofta, G.; Nowak, P.B. Resistance of scots pine (Pinus sylvestris L.) after treatment with caffeine and thermal modification against Aspergillus niger, “Antifungal & pine”. Bioresources 2019, 14, 1890–1898. [Google Scholar]
- Rodrigues, K.M.S.; Parra, D.; Oliveira, F.M.J.A.; Bustillos, O.V.; Lugão, A.B. Study of theophilline stability on polymer matrix. In Proceedings of the International Nuclear Atlantic Conference—INAC 2007, Santos, SP, Brazil, 30 September– 5 October 2007. [Google Scholar]
- Wesolowski, M.; Szynkaruk, P. Thermal decomposition of purine derivatives used in medicine. J. Therm. Anal. Calorim. 2001, 65, 599–605. [Google Scholar] [CrossRef]
- Wesolowski, M.; Szynkaruk, P. Thermal decomposition of methylxanthines interpretation of the results by PCA. J. Therm. Anal. Calorim. 2008, 93, 739–746. [Google Scholar] [CrossRef]
- Circioban, D.; Dehelean, C.; Suta, L.-M.; Murariu, M.; Vlase, G.; Nita, L.; Soica, C.; Fulias, A. Synthesis and physico-chemical characterization of theophylline-succinic acid binary adduct. Rev. Chim. 2015, 66, 1982–1985. [Google Scholar]
- Rojek, B.; Wesolowski, M. Compatibility study of theophylline with excipients using thermogravimetry supported by kinetic analysis. J. Therm. Anal. Calorim. 2021, 143, 227–236. [Google Scholar] [CrossRef]
- Singh, P.; Athar, M.; Kumari, K.; Katyal, A.; Chandra, R. Energy optimization and QSAR properties of thiazolidine-2,4- dione and its analogues. J. Pharm. Appl. Chem. 2016, 2, 129–140. [Google Scholar] [CrossRef]
- Krongauz, V.V.; Ling, M.T.K.; Woo, L.; Purohit, U. Kinetics of dihydro-dibenz[b,f]azepine derivatives sublimation. Thermochim. Acta 2007, 457, 35–40. [Google Scholar] [CrossRef]
- Buzyurov, A.V.; Nagrimanov, R.N.; Zaitsau, D.H.; Mukhametzyanov, T.A.; Abdelaziz, A.; Solomonov, B.N.; Schick, C. Application of the Flash DSC 1 and 2+ for vapor pressure determination above solids and liquids. Thermochim. Acta 2021, 706, 179067. [Google Scholar] [CrossRef]
- Abdelaziz, A.; Zaitsau, D.H.; Buzyurov, A.; Minakov, A.A.; Verevkin, S.P.; Schick, C. Fast scanning calorimetry: Sublimation thermodynamics of low volatile and thermally unstable compounds. Thermochim. Acta 2019, 676, 249–262. [Google Scholar] [CrossRef]
Caffeine | Theophylline |
---|---|
Molecular mass = 194.19 g/mol Surface = 361.94 Å2 (grid) Volume = 568.14 Å3 Hydration energy = −9372.16 J/mol Total energy = 11,731.94 J/mol RMS gradient = 320.75 J/Å·mol | Molecular mass = 180.17 g/mol Surface = 336.99 Å2 (grid) Volume = 518.04 Å3 Hydration energy = −22,468.08 J/mol Total energy = 92,675.6 J/mol RMS gradient = 306.65 J/Å·mol |
Substance | Caffeine | Theophylline |
---|---|---|
Ea, kJ/mol | 108.439 | 123.820 |
lnA | 24.956 | 25.686 |
r2 | 0.9681 | 0.9880 |
Caffeine | Theophylline | ||
---|---|---|---|
Temperatura, [°C] | Temperatura, [°C] | ||
130 | 6.374 | 170 | 2.887 |
140 | 13.599 | 180 | 6.368 |
150 | 27.990 | 190 | 13.578 |
160 | 55.724 | 200 | 28.036 |
Sample | Temperature (⸰C) | Model Parameters | |||
---|---|---|---|---|---|
a | b | c | d | ||
Caffeine | 130 | 49.5 | 1 | 0.66 | 0.33 |
140 | 119 | 1 | 0.66 | 0.33 | |
150 | 240 | 1 | 0.66 | 0.33 | |
160 | 482 | 1 | 0.66 | 0.33 | |
Theophylline | 170 | 29 | 1 | 0.66 | 0.33 |
180 | 53 | 1 | 0.66 | 0.33 | |
190 | 114.6 | 1 | 0.66 | 0.33 | |
200 | 222 | 1 | 0.66 | 0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cleminte, C.-I.; Ionita, D.; Lisa, C.; Cristea, M.; Mamaligă, I.; Lisa, G. Evaluation of the Sublimation Process of Some Purine Derivatives: Sublimation Rate, Activation Energy, Mass Transfer Coefficients and Phenomenological Models. Materials 2022, 15, 7376. https://doi.org/10.3390/ma15207376
Cleminte C-I, Ionita D, Lisa C, Cristea M, Mamaligă I, Lisa G. Evaluation of the Sublimation Process of Some Purine Derivatives: Sublimation Rate, Activation Energy, Mass Transfer Coefficients and Phenomenological Models. Materials. 2022; 15(20):7376. https://doi.org/10.3390/ma15207376
Chicago/Turabian StyleCleminte, Cerasela-Ionela, Daniela Ionita, Cătălin Lisa, Mariana Cristea, Ioan Mamaligă, and Gabriela Lisa. 2022. "Evaluation of the Sublimation Process of Some Purine Derivatives: Sublimation Rate, Activation Energy, Mass Transfer Coefficients and Phenomenological Models" Materials 15, no. 20: 7376. https://doi.org/10.3390/ma15207376
APA StyleCleminte, C.-I., Ionita, D., Lisa, C., Cristea, M., Mamaligă, I., & Lisa, G. (2022). Evaluation of the Sublimation Process of Some Purine Derivatives: Sublimation Rate, Activation Energy, Mass Transfer Coefficients and Phenomenological Models. Materials, 15(20), 7376. https://doi.org/10.3390/ma15207376