Surface Properties of Eggshell Powder and Its Influence on Cement Hydration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. X-ray Diffraction Analysis (XRD)
2.3. Thermogravimetric Analysis (TGA)
2.4. Fourier-Transform Infrared (FTIR) Spectroscopy Analysis
2.5. Zeta Potential Test
2.6. SEM Analysis
3. Results and Discussion
3.1. Chemical Compositions of EP
3.1.1. XRD Analysis
3.1.2. TGA Analysis
3.1.3. FTIR Analysis
3.2. Zeta Potential Test
3.2.1. Effect of Ca2+ Concentration
3.2.2. Effect of Na+ and K+ Concentration
3.2.3. Effect of SO42− Concentration
3.3. Morphology of Hydration Products on the Surface of EP, QP and LP
3.4. Chemical Properties of Hydration Products
3.4.1. XRD Analysis
3.4.2. TGA Analysis
3.4.3. FTIR Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barcelo, L.; Kline, J.; Walenta, G.; Gartner, E. Cement and carbon emissions. Mater. Struct. 2013, 47, 1055–1065. [Google Scholar] [CrossRef]
- Meyer, C. The greening of the concrete industry. Cem. Concr. Compos. 2009, 31, 601–605. [Google Scholar] [CrossRef]
- Patel, M.K. Energy Technology Transitions for Industry: Strategies for the Next Industrial Revolution; International Energy Agency: Paris, France, 2009. [Google Scholar]
- Adeyanju, E.; Okeke, C.A. Exposure effect to cement dust pollution: A mini review. SN Appl. Sci. 2019, 1, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Yüksel, İ.; Bilir, T. Usage of industrial by-products to produce plain concrete elements. Constr. Build. Mater. 2007, 21, 686–694. [Google Scholar] [CrossRef]
- Sun, C.; Chen, L.; Xiao, J.; Liu, Q.; Zuo, J. Low-Carbon and Fundamental Properties of Eco-Efficient Mortar with Recycled Powders. Materials 2021, 14, 7503. [Google Scholar] [CrossRef]
- Zhou, Y.; Gao, H.; Hu, Z.; Qiu, Y.; Guo, M.; Huang, X.; Hu, B. Ductile, durable, and reliable alternative to FRP bars for reinforcing seawater sea-sand recycled concrete beams: Steel/FRP composite bars. Constr. Build. Mater. 2021, 269, 121264. [Google Scholar] [CrossRef]
- Liang, Z.; Hu, Z.; Zhou, Y.; Wu, Y.; Zhou, X.; Hu, B.; Guo, M. Improving recycled aggregate concrete by compression casting and nano-silica. Nanotechnol. Rev. 2022, 11, 1273–1290. [Google Scholar] [CrossRef]
- Argın, G.; Uzal, B. Enhancement of pozzolanic activity of calcined clays by limestone powder addition. Constr. Build. Mater. 2021, 284, 122789. [Google Scholar] [CrossRef]
- Celik, K.; Hay, R.; Hargis, C.W.; Moon, J. Effect of volcanic ash pozzolan or limestone replacement on hydration of Portland cement. Constr. Build. Mater. 2019, 197, 803–812. [Google Scholar] [CrossRef]
- He, Z.; Cai, R.; Chen, E.; Tang, S. The investigation of early hydration and pore structure for limestone powder wastes blended cement pastes. Constr. Build. Mater. 2019, 229, 116923. [Google Scholar] [CrossRef]
- Huang, W.; Kazemi-Kamyab, H.; Sun, W.; Scrivener, K. Effect of cement substitution by limestone on the hydration and microstructural development of ultra-high performance concrete (UHPC). Cem. Concr. Compos. 2017, 77, 86–101. [Google Scholar] [CrossRef]
- Zhu, X.; Kang, X.; Deng, J.; Yang, K.; Jiang, S.; Yang, C. Chemical and physical effects of high-volume limestone powder on sodium silicate-activated slag cement (AASC). Constr. Build. Mater. 2021, 292, 123257. [Google Scholar] [CrossRef]
- Zhou, Y.; Weng, Y.; Li, L.; Hu, B.; Huang, X.; Zhu, Z. Recycled GFRP Aggregate Concrete Considering Aggregate Grading: Compressive Behavior and Stress–Strain Modeling. Polymers 2022, 14, 581. [Google Scholar] [CrossRef]
- Dwiwedi, S.K.; Srivastava, A.K.; Chopkar, M.K. Wear Study of Chicken Eggshell-Reinforced Al6061 Matrix Composites. Trans. Indian Inst. Met. 2018, 72, 73–84. [Google Scholar] [CrossRef]
- Francis, A.A.; Rahman, M.K.A. The environmental sustainability of calcined calcium phosphates production from the milling of eggshell wastes and phosphoric acid. J. Clean. Prod. 2016, 137, 1432–1438. [Google Scholar] [CrossRef]
- Wei, Z.; Xu, C.; Li, B. Application of waste eggshell as low-cost solid catalyst for biodiesel production. Bioresour Technol. 2009, 100, 2883–2885. [Google Scholar] [CrossRef]
- Shiferaw, N.; Habte, L.; Thenepalli, T.; Ahn, J.W. Effect of Eggshell Powder on the Hydration of Cement Paste. Materials 2019, 12, 2483. [Google Scholar] [CrossRef] [Green Version]
- Witoon, T. Characterization of calcium oxide derived from waste eggshell and its application as CO2 sorbent. Ceram. Int. 2011, 37, 3291–3298. [Google Scholar] [CrossRef]
- Nandhini, K.; Karthikeyan, J. Effective utilization of waste eggshell powder in cement mortar. Mater. Today Proc. 2022, 61, 428–432. [Google Scholar] [CrossRef]
- Chen, Y.K.; Sun, Y.; Wang, K.Q.; Kuang, W.Y.; Yan, S.R.; Wang, Z.H.; Lee, H.S. Utilization of bio-waste eggshell powder as a potential filler material for cement: Analyses of zeta potential, hydration and sustainability. Constr. Build. Mater. 2022, 325, 126220. [Google Scholar] [CrossRef]
- Yang, D.; Zhao, J.; Ahmad, W.; Amin, M.N.; Aslam, F.; Khan, K.; Ahmad, A. Potential use of waste eggshells in cement-based materials: A bibliographic analysis and review of the material properties. Constr. Build. Mater. 2022, 344, 128143. [Google Scholar] [CrossRef]
- Wei, C.B.; Othman, R.; Ying, C.Y.; Jaya, R.P.; Ing, D.S.; Mangi, S.A. Properties of mortar with fine eggshell powder as partial cement replacement. Mater. Today Proc. 2020, 46, 1574–1581. [Google Scholar]
- Chong, B.W.; Othman, R.; Ramadhansyah, P.J.; Doh, S.I.; Li, X. Properties of concrete with eggshell powder: A review. Phys. Chem. Earth Parts 2020, 120, 102951. [Google Scholar] [CrossRef]
- Niyasom, S.; Tangboriboon, N. Development of biomaterial fillers using eggshells, water hyacinth fibers, and banana fibers for green concrete construction. Constr. Build. Mater. 2021, 283, 122627. [Google Scholar] [CrossRef]
- Sathiparan, N. Utilization prospects of eggshell powder in sustainable construction material-A review. Constr. Build. Mater. 2021, 293, 123465. [Google Scholar] [CrossRef]
- Teara, A.; Ing, D.S. Mechanical properties of high strength concrete that replace cement partly by using fly ash and eggshell powder. Phys. Chem. Earth Parts 2020, 120, 102942. [Google Scholar] [CrossRef]
- Tiong, H.Y.; Lim, S.K.; Lee, Y.L.; Ong, C.F.; Yew, M.K. Environmental impact and quality assessment of using eggshell powder incorporated in lightweight foamed concrete. Constr. Build. Mater. 2020, 244, 118341. [Google Scholar] [CrossRef]
- Ou, X.; Chen, S.; Jiang, J.; Qin, J.; Tan, Z. Analysis of Engineering Characteristics and Microscopic Mechanism of Red Mud–Bauxite Tailings Mud Foam Light Soil. Materials 2022, 15, 1782. [Google Scholar] [CrossRef]
- Jhatial, A.A.; Sohu, S.; Memon, M.J.; Bhatti, N.U.K.; Memon, D. Eggshell powder as partial cement replacement and its effect on the workability and compressive strength of concrete. Int. J. Adv. Appl. Sci. 2019, 6, 71–75. [Google Scholar]
- Jaber, H.A.; Mahdi, R.S.; Hassan, A.K. Influence of eggshell powder on the Portland cement mortar properties. Mater. Today Proc. 2020, 20, 391–396. [Google Scholar] [CrossRef]
- Ofuyatan, O.M.; Adeniyi, A.G.; Ijie, D.; Ighalo, J.O.; Oluwafemi, J. Development of high-performance self compacting concrete using eggshell powder and blast furnace slag as partial cement replacement. Constr. Build. Mater. 2020, 256, 119403. [Google Scholar] [CrossRef]
- Pliya, P.; Cree, D. Limestone derived eggshell powder as a replacement in Portland cement mortar. Constr. Build. Mater. 2015, 95, 1–9. [Google Scholar] [CrossRef]
- Dewangan, V.K.; Kumar, T.S.; Doble, M.; Varghese, V.D. Development of macroporous eggshell derived apatite bone cement for non-load bearing defect repair in orthopedics. Ceram. Int. 2022, in press. [Google Scholar] [CrossRef]
- Amin, M.; Attia, M.M.; Agwa, I.S.; Elsakhawy, Y.; el-Hassan, K.A.; Abdelsalam, B.A. Effects of sugarcane bagasse ash and nano eggshell powder on high-strength concrete properties. Case Stud. Constr. Mater. 2022, 17, e01528. [Google Scholar] [CrossRef]
- Kumar, P.C.; Shanthala, T.; Aparna, K.; Babu, S.V. Experimental Investigation on the Combined Effect of Fly Ash and Eggshell Powder as Partial Replacement of Cement. In Sustainable Building Materials and Construction; Springer: Singapore, 2022; pp. 371–378. [Google Scholar]
- Grzeszczyk, S.; Kupka, T.; Kałamarz, A.; Sudoł, A.; Jurowski, K.; Makieieva, N.; Oleksowicz, K.; Wrzalik, R. Characterization of eggshell as limestone replacement and its influence on properties of modified cement. Constr. Build. Mater. 2022, 319, 126006. [Google Scholar] [CrossRef]
- Balaz, M. Ball milling of eggshell waste as a green and sustainable approach: A review. Adv. Colloid Interface Sci. 2018, 256, 256–275. [Google Scholar] [CrossRef]
- Hincke, M.T.; Nys, Y.; Gautron, J.; Mann, K.; Rodriguez-Navarro, A.B.; McKee, M.D. The eggshell: Structure, composition and mineralization. Front. Biosci. Landmark 2012, 17, 1266–1280. [Google Scholar] [CrossRef] [Green Version]
- Intharapat, P.; Kongnoo, A.; Kateungngan, K. The Potential of Chicken Eggshell Waste as a Bio-filler Filled Epoxidized Natural Rubber (ENR) Composite and its Properties. J. Polym. Environ. 2012, 21, 245–258. [Google Scholar] [CrossRef]
- Nys, Y.; Gautron, J.; Garcia-Ruiz, J.M.; Hincke, M.T. Avian eggshell mineralization: Biochemical and functional characterization of matrix proteins. Comptes. Rendus. Palevol. 2004, 3, 549–562. [Google Scholar] [CrossRef]
- Shah, A.H.; Zhang, Y.; Xu, X.; Dayo, A.Q.; Li, X.; Wang, S.; Liu, W. Reinforcement of stearic acid treated egg shell particles in epoxy thermosets: Structural, thermal, and mechanical characterization. Materials 2018, 11, 1872. [Google Scholar] [CrossRef] [Green Version]
- ASTM C305-20; Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. ASTM West Conshohocken: Conshohocken, PA, USA, 2014.
- Millán-Corrales, G.; González-López, J.R.; Palomo, A.; Fernandez-Jiménez, A. Replacing fly ash with limestone dust in hybrid cements. Constr. Build. Mater. 2020, 243, 118169. [Google Scholar] [CrossRef]
- Kang, S.K.; Jeong, S.M.; Kim, S.D. Quantitative X-ray Diffraction Analysis for Sulfation of Limestone in Flue Gas Desulfurization. Idustrial Eng. Chem. Res. 2000, 39, 2496–2504. [Google Scholar] [CrossRef]
- Gunasekaran, S.; Anbalagan, G.; Pandi, S. Raman and infrared spectra of carbonates of calcite structure. J. Raman Spectrosc. 2006, 37, 892–899. [Google Scholar] [CrossRef]
- Ferraz, E.; Gamelas, J.A.F.; Coroado, J.; Monteiro, C.; Rocha, F. Eggshell waste to produce building lime: Calcium oxide reactivity, industrial, environmental and economic implications. Mater. Struct. 2018, 51, 115. [Google Scholar] [CrossRef]
- Stumm, W. Chemistry of the Solid-Water Interface; Wiley: New York, NY, USA, 1992. [Google Scholar]
- Anderson, M.A.; Rubin, A.J. Adsorption of Inorganics at Solid-Liquid Interfaces. Soil Sci. 1982, 133, 257–258. [Google Scholar] [CrossRef]
- Darweesh, H.H.; Abou-El-Anwar, E.A.; Mekky, H.S. Addition of limestone at the expense of gypsum in Portland cement. Interceram-Int. Ceram. Rev. 2018, 67, 18–27. [Google Scholar] [CrossRef]
- Yu, P.; Kirkpatrick, R.J.; Poe, B.; McMillan, P.F.; Cong, X. Structure of calcium silicate hydrate (C-S-H): Near-, Mid-, and Far-infrared spectroscopy. J. Am. Ceram. Soc. 1999, 82, 742–748. [Google Scholar] [CrossRef]
- Ouyang, X.; Koleva, D.A.; Ye, G.; van Breugel, K. Insights into the mechanisms of nucleation and growth of C-S-H on fillers. Mater. Struct. 2017, 50, 213. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, X.; Koleva, D.A.; Ye, G.; van Breugel, K. Understanding the adhesion mechanisms between C-S-H and fillers. Cem. Concr. Res. 2017, 100, 275–283. [Google Scholar] [CrossRef]
- Ouyang, X.; Wang, L.; Xu, S.; Ma, Y.; Ye, G. Surface characterization of carbonated recycled concrete fines and its effect on the rheology, hydration and strength development of cement paste. Cem. Concr. Compos. 2020, 114, 103809. [Google Scholar] [CrossRef]
- Xing, Z.; Bai, L.; Ma, Y.; Wang, D.; Li, M. Mechanism of magnesium oxide hydration based on the multi-rate model. Materials 2018, 11, 1835. [Google Scholar] [CrossRef] [Green Version]
- Garrault-Gauffinet, S.; Nonat, A. Experimental investigation of calcium silicate hydrate (C-S-H) nucleation. J. Cryst. Growth 1999, 200, 565–574. [Google Scholar] [CrossRef]
- Mosaddegh, E. Ultrasonic-assisted preparation of nano eggshell powder: A novel catalyst in green and high efficient synthesis of 2-aminochromenes. Ultrason. Sonochem. 2013, 20, 1436–1441. [Google Scholar] [CrossRef]
- Panchal, M.; Raghavendra, G.; Prakash, M.O.; Ojha, S. Effects of environmental conditions on erosion wear of eggshell particulate epoxy composites. Silicon 2018, 10, 627–634. [Google Scholar] [CrossRef]
Type | CaCO3 | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | Na2O |
---|---|---|---|---|---|---|---|---|
EP | 97.37 | 0.37 | 0.06 | 0.41 | - | 0.85 | 0.10 | 0.27 |
QP | - | 98.50 | 0.89 | 0.15 | - | - | 0.45 | - |
LP | 96.09 | 0.15 | - | 0.15 | - | - | 0.01 | 0.02 |
Type | N | C | H | S | O |
---|---|---|---|---|---|
EP | 0.1 | 12.31 | 2.52 | 0 | - |
Mixture | Cement (%) | EP (%) | QP (%) | LP(%) | w/b |
---|---|---|---|---|---|
EP40 | 60 | 40 | - | - | 0.4 |
QP40 | 60 | - | 40 | - | 0.4 |
LP40 | 60 | - | - | 40 | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Che, D.; Ouyang, X.; Niu, Y. Surface Properties of Eggshell Powder and Its Influence on Cement Hydration. Materials 2022, 15, 7633. https://doi.org/10.3390/ma15217633
He Y, Che D, Ouyang X, Niu Y. Surface Properties of Eggshell Powder and Its Influence on Cement Hydration. Materials. 2022; 15(21):7633. https://doi.org/10.3390/ma15217633
Chicago/Turabian StyleHe, Yinghou, Dehao Che, Xiaowei Ouyang, and Yanfei Niu. 2022. "Surface Properties of Eggshell Powder and Its Influence on Cement Hydration" Materials 15, no. 21: 7633. https://doi.org/10.3390/ma15217633
APA StyleHe, Y., Che, D., Ouyang, X., & Niu, Y. (2022). Surface Properties of Eggshell Powder and Its Influence on Cement Hydration. Materials, 15(21), 7633. https://doi.org/10.3390/ma15217633