Hexagonal Boron Nitride on III–V Compounds: A Review of the Synthesis and Applications
Abstract
:1. Introduction
1.1. Crystal Structure
1.2. The Interface Properties of Various h-BN Heterostructures
2. The Application of h-BN
2.1. Heat Dissipation of h-BN
2.2. The Passivation of h-BN
2.3. h-BN/III–V LED
3. The Transfer and Preparation of h-BN
3.1. The Transfer of h-BN
3.2. Chemical Vapor Deposition (CVD)
3.2.1. The Choice of Substrates for CVD Growth
Cu Foil
Pt Substrate
Ni Foil
Nonmetallic Substrates
3.2.2. Precursors
3.2.3. Reaction Conditions
3.3. Physical Vapor-Deposition (PVD)
3.3.1. E-Beam
3.3.2. Sputtering
3.4. Co-Segregation Method
4. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Neto, A.; Guinea, F.; Peres, N.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Fal’ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Das Sarma, S.; Adam, S.; Hwang, E.H.; Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 2011, 83, 407–470. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Feng, Y.P.; Shen, Z.X. Structural and electronic properties ofh-BN. Phys. Rev. B 2003, 68, 104102. [Google Scholar] [CrossRef]
- Rokuta, E.; Hasegawa, Y.; Suzuki, K.; Gamou, Y.; Nagashima, A. Phonon Dispersion of an Epitaxial Monolayer Film of Hexagonal Boron Nitride on Ni(111). Phys. Rev. Lett. 1997, 79, 4609–4612. [Google Scholar] [CrossRef]
- Nagashima, A.; Tejima, N.; Gamou, Y.; Kawai, T.; Oshima, C. Electronic Structure of Monolayer Hexagonal Boron Nitride Physisorbed on Metal Surfaces. Phys. Rev. Lett. 1995, 75, 3918–3921. [Google Scholar] [CrossRef]
- Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404–409. [Google Scholar] [CrossRef]
- Corso, M.; Auwarter, W.; Muntwiler, M.; Tamai, A.; Greber, T.; Osterwalder, J. Boron nitride nanomesh. Science 2004, 303, 217–220. [Google Scholar] [CrossRef] [Green Version]
- Wiggins, M.D.; Aita, C.R.; Hickernell, F.S. Radio frequency sputter deposited boron nitride films. J. Vac. Sci. Technol. A Vac. Surf. Film. 1984, 2, 322–325. [Google Scholar] [CrossRef]
- Mieno, M.; Yoshida, T. Preparation of Cubic Boron Nitride Films by RF Sputtering. Jpn. J. Appl. Phys. 1990, 29, L1175–L1177. [Google Scholar] [CrossRef]
- Ohta, J.; Fujioka, H. Sputter synthesis of wafer-scale hexagonal boron nitride films via interface segregation. APL Mater. 2017, 5, 076107. [Google Scholar] [CrossRef]
- Song, L.; Ci, L.; Lu, H.; Sorokin, P.B.; Jin, C.; Ni, J.; Kvashnin, A.G.; Kvashnin, D.G.; Lou, J.; Yakobson, B.I.; et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215. [Google Scholar] [CrossRef] [PubMed]
- Dahal, R.; Li, J.; Majety, S.; Pantha, B.N.; Cao, X.K.; Lin, J.Y.; Jiang, H.X. Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material. Appl. Phys. Lett. 2011, 98, 211110. [Google Scholar] [CrossRef] [Green Version]
- Dean, C.R.; Young, A.F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K.L.; et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726. [Google Scholar] [CrossRef]
- Dobrzhinetskaya, L.F.; Wirth, R.; Yang, J.; Green, H.W.; Hutcheon, I.D.; Weber, P.K.; Grew, E.S. Qingsongite, natural cubic boron nitride: The first boron mineral from the Earth’s mantle. Am. Mineral. 2014, 99, 764–772. [Google Scholar] [CrossRef]
- Izyumskaya, N.; Demchenko, D.O.; Das, S.; Özgür, Ü.; Avrutin, V.; Morkoç, H. Recent Development of Boron Nitride towards Electronic Applications. Adv. Electron. Mater. 2017, 3, 1600485. [Google Scholar] [CrossRef]
- Reich, S.; Ferrari, A.C.; Arenal, R.; Loiseau, A.; Bello, I.; Robertson, J. Resonant Raman scattering in cubic and hexagonal boron nitride. Phys. Rev. B 2005, 71, 205201. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Li, Y.; Li, X.; Shi, Z.; Xia, H.; Xu, Z.; Qiao, G. Functionalization of hexagonal boron nitride in large scale by a low-temperature oxidation route. Mater. Lett. 2016, 175, 244–247. [Google Scholar] [CrossRef]
- Vishal, B.; Singh, R.; Chaturvedi, A.; Sharma, A.; Sreedhara, M.B.; Sahu, R.; Bhat, U.; Ramamurty, U.; Datta, R. Chemically stabilized epitaxial wurtzite-BN thin film. Superlattices Microstruct. 2018, 115, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.B.; Yang, G.W.; Zhang, C.Y.; Zhong, X.L.; Ren, Z.A. Cubic-BN nanocrystals synthesis by pulsed laser induced liquid–solid interfacial reaction. Chem. Phys. Lett. 2003, 367, 10–14. [Google Scholar] [CrossRef]
- Xu, L.Q.; Zhan, J.H.; Hu, J.Q.; Bando, Y.; Yuan, X.L.; Sekiguchi, T.; Mitome, M.; Golberg, D. High-Yield Synthesis of Rhombohedral Boron Nitride Triangular Nanoplates. Adv. Mater. 2007, 19, 2141–2144. [Google Scholar] [CrossRef]
- Batsanov, S.; Gavrilkin, S.; Kopaneva, L.; Maksimov, I.; Meyers, M.; Chen, H.; Prummer, R.; Seiko, E.; Vazyulin, V. h-BN-> w-BN phase transition under dynamic-static compression. J. Mater. Sci. Lett. 1997, 16, 1625–1627. [Google Scholar] [CrossRef]
- Arnaud, B.; Lebègue, S.; Rabiller, P.; Alouani, M. Huge Excitonic Effects in Layered Hexagonal Boron Nitride. Phys. Rev. Lett. 2006, 96, 026402. [Google Scholar] [CrossRef] [Green Version]
- Hass, J.; De Heer, W.A.; Conrad, E.H. The growth and morphology of epitaxial multilayer graphene. J. Phys. Condens. Matter 2008, 20, 323202. [Google Scholar] [CrossRef]
- Sato, T. Influence of Monovalent Anions on the Formation of Rhombohedral Boron Nitride, rBN. Proc. Jpn. Acad. 2006, 61, 459–463. [Google Scholar] [CrossRef] [Green Version]
- Bundy, F.P. Direct Conversion of Graphite to Diamond in Static Pressure Apparatus. J. Chem. Phys. 1963, 38, 1144–1149. [Google Scholar] [CrossRef]
- Hirayama, Y.; Obara, M. Ablation of BN ceramics by femtosecond and picosecond laser pulses. In Proceedings of the XIII International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, Florence, Italy, 18–22 September 2000; Volume 4184. [Google Scholar]
- SokoŁowski, M. Deposition of wurtzite type boron nitride layers by reactive pulse plasma crystallization. J. Cryst. Growth 1979, 46, 136–138. [Google Scholar] [CrossRef]
- Sōma, T.; Sawaoka, A.; Saito, S. Characterization of wurtzite type boron nitride synthesized by shock compression. Mater. Res. Bull. 1974, 9, 755–762. [Google Scholar] [CrossRef]
- Tuomisto, F.; Mäki, J.M.; Rauch, C.; Makkonen, I. On the formation of vacancy defects in III-nitride semiconductors. J. Cryst. Growth 2012, 350, 93–97. [Google Scholar] [CrossRef]
- Zdanowicz, E.; Herman, A.P.; Opolczynska, K.; Gorantla, S.; Olszewski, W.; Serafinczuk, J.; Hommel, D.; Kudrawiec, R. Toward h-BN/GaN Schottky Diodes: Spectroscopic Study on the Electronic Phenomena at the Interface. ACS Appl. Mater. Interfaces 2022, 14, 6131–6137. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.X.; Lin, J.Y. Hexagonal boron nitride for deep ultraviolet photonic devices. Semicond. Sci. Technol. 2014, 29, 084003. [Google Scholar] [CrossRef]
- Demion, A.; Verga, A.D. Nonlinear electric transport in graphene with magnetic disorder. Phys. Rev. B 2014, 90, 085412. [Google Scholar] [CrossRef] [Green Version]
- Maher, P.; Wang, L.; Gao, Y.; Forsythe, C.; Taniguchi, T.; Watanabe, K.; Abanin, D.; Papic, Z.; Cadden-Zimansky, P.; Hone, J.; et al. Bilayer graphene. Tunable fractional quantum Hall phases in bilayer graphene. Science 2014, 345, 61–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef]
- Geim, A.K. Graphene: Status and prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef] [Green Version]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef]
- Mueller, T.; Xia, F.; Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297–301. [Google Scholar] [CrossRef] [Green Version]
- Koppens, F.H.L.; Chang, D.E.; García de Abajo, F.J. Graphene Plasmonics: A Platform for Strong Light–Matter Interactions. Nano Lett. 2011, 11, 3370–3377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thongrattanasiri, S.; Koppens, F.H.L.; García de Abajo, F.J. Complete Optical Absorption in Periodically Patterned Graphene. Phys. Rev. Lett. 2012, 108, 047401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furchi, M.; Urich, A.; Pospischil, A.; Lilley, G.; Unterrainer, K.; Detz, H.; Klang, P.; Andrews, A.M.; Schrenk, W.; Strasser, G.; et al. Microcavity-Integrated Graphene Photodetector. Nano Lett. 2012, 12, 2773–2777. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.-B.; Chen, J.-J.; Wang, M.-Z.; Hu, H.; Wu, C.-Y.; Li, Q.; Wang, L.; Huang, J.-A.; Liang, F.-X. Near-Infrared Light Photovoltaic Detector Based on GaAs Nanocone Array/Monolayer Graphene Schottky Junction. Adv. Funct. Mater. 2014, 24, 2794–2800. [Google Scholar] [CrossRef]
- Li, X.; Lin, S.; Lin, X.; Xu, Z.; Wang, P.; Zhang, S.; Zhong, H.; Xu, W.; Wu, Z.; Fang, W. Graphene/h-BN/GaAs sandwich diode as solar cell and photodetector. Opt. Express 2016, 24, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.; Lee, K.; Lee, C.R.; Lee, J.S.; Kim, S.M.; Jeong, K.U.; Kim, J.S. Application of Hexagonal Boron Nitride to a Heat-Transfer Medium of an InGaN/GaN Quantum-Well Green LED. ACS Appl. Mater. Interfaces 2019, 11, 18876–18884. [Google Scholar] [CrossRef]
- Okamoto, Y.; Ando, Y.; Hataya, K.; Nakayama, T.; Miyamoto, H.; Inoue, T.; Senda, M.; Hirata, K.; Kosaki, M.; Shibata, N.; et al. Improved Power Performance for a Recessed-Gate AlGaN–GaN Heterojunction FET With a Field-Modulating Plate. IEEE Trans. Microw. Theory Tech. 2004, 52, 2536–2540. [Google Scholar] [CrossRef]
- Lee, G.-H.; Cuong, T.-V.; Yeo, D.-K.; Cho, H.; Ryu, B.-D.; Kim, E.-M.; Nam, T.-S.; Suh, E.-K.; Seo, T.-H.; Hong, C.-H. Hexagonal Boron Nitride Passivation Layer for Improving the Performance and Reliability of InGaN/GaN Light-Emitting Diodes. Appl. Sci. 2021, 11, 9321. [Google Scholar] [CrossRef]
- Whiteside, M.; Arulkumaran, S.; Chng, S.S.; Shakerzadeh, M.; Teo, H.T.E.; Ng, G.I. On the recovery of 2DEG properties in vertically ordered h-BN deposited AlGaN/GaN heterostructures on Si substrate. Appl. Phys. Express 2020, 13, 065508. [Google Scholar] [CrossRef]
- Ren, B.; Liao, M.; Sumiya, M.; Li, J.; Wang, L.; Liu, X.; Koide, Y.; Sang, L. Layered boron nitride enabling high-performance AlGaN/GaN high electron mobility transistor. J. Alloy. Compd. 2020, 829, 154542. [Google Scholar] [CrossRef]
- Gerbedoen, J.C.; Soltani, A.; Mattalah, M.; Moreau, M.; Thevenin, P.; De Jaeger, J.C. AlGaN/GaN MISHEMT with hBN as gate dielectric. Diam. Relat. Mater. 2009, 18, 1039–1042. [Google Scholar] [CrossRef]
- Moon, S.; Chang, S.J.; Kim, Y.; Okello, O.F.N.; Kim, J.; Kim, J.; Jung, H.W.; Ahn, H.K.; Kim, D.S.; Choi, S.Y.; et al. Van der Waals Heterostructure of Hexagonal Boron Nitride with an AlGaN/GaN Epitaxial Wafer for High-Performance Radio Frequency Applications. ACS Appl. Mater. Interfaces 2021, 13, 59440–59449. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.-H.; Brown, J.; Fu, K.; Zhou, J.; Hatch, K.; Yang, C.; Montes, J.; Qi, X.; Fu, H.; Nemanich, R.J.; et al. AlGaN/GaN metal–insulator–semiconductor high electron mobility transistors (MISHEMTs) using plasma deposited BN as gate dielectric. Appl. Phys. Lett. 2021, 118, 072102. [Google Scholar] [CrossRef]
- Yang, X.; Shan, C.-X.; Jiang, M.-M.; Qin, J.-M.; Hu, G.-C.; Wang, S.-P.; Ma, H.-A.; Jia, X.-P.; Shen, D.-Z. Intense electroluminescence from ZnO nanowires. J. Mater. Chem. C 2015, 3, 5292–5296. [Google Scholar] [CrossRef]
- Deng, G.; Zhang, Y.; Yu, Y.; Han, X.; Wang, Y.; Shi, Z.; Dong, X.; Zhang, B.; Du, G.; Liu, Y. High-Performance Ultraviolet Light-Emitting Diodes Using n-ZnO/p-hBN/p-GaN Contact Heterojunctions. ACS Appl. Mater. Interfaces 2020, 12, 6788–6792. [Google Scholar] [CrossRef] [PubMed]
- Laleyan, D.A.; Zhao, S.; Woo, S.Y.; Tran, H.N.; Le, H.B.; Szkopek, T.; Guo, H.; Botton, G.A.; Mi, Z. AlN/h-BN Heterostructures for Mg Dopant-Free Deep Ultraviolet Photonics. Nano Lett. 2017, 17, 3738–3743. [Google Scholar] [CrossRef]
- Bernardi, M.; Palummo, M.; Grossman, J.C. Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials. Nano Lett. 2013, 13, 3664–3670. [Google Scholar] [CrossRef]
- Terrones, H.; Lopez-Urias, F.; Terrones, M. Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Sci. Rep. 2013, 3, 1549. [Google Scholar] [CrossRef]
- Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A.P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S.J.; Geim, A.K.; Tartakovskii, A.I.; et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 2015, 14, 301–306. [Google Scholar] [CrossRef]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef]
- Lee, K.; Gatensby, R.; McEvoy, N.; Hallam, T.; Duesberg, G.S. High-performance sensors based on molybdenum disulfide thin films. Adv. Mater. 2013, 25, 6699–6702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shewchun, J.; Temple, V.A.K. Theoretical tunneling current characteristics of the SIS (semiconductor-insulator-semiconductor) diode. J. Appl. Phys. 1972, 43, 5051–5061. [Google Scholar] [CrossRef]
- Shewchun, J.; Dubow, J.; Myszkowski, A.; Singh, R. The operation of the semiconductor-insulator-semiconductor (SIS) solar cell: Theory. J. Appl. Phys. 1978, 49, 855–864. [Google Scholar] [CrossRef]
- Jeong, H.; Bang, S.; Oh, H.M.; Jeong, H.J.; An, S.-J.; Han, G.H.; Kim, H.; Kim, K.K.; Park, J.C.; Lee, Y.H.; et al. Semiconductor–Insulator–Semiconductor Diode Consisting of Monolayer MoS2, h-BN, and GaN Heterostructure. ACS Nano 2015, 9, 10032–10038. [Google Scholar] [CrossRef] [PubMed]
- Whiteside, M.; Arulkumaran, S.; Ng, G.I. Demonstration of vertically-ordered h-BN/AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors on Si substrate. Mater. Sci. Eng. B 2021, 270, 115224. [Google Scholar] [CrossRef]
- Zhang, C.; Fu, L.; Zhao, S.; Zhou, Y.; Peng, H.; Liu, Z. Controllable co-segregation synthesis of wafer-scale hexagonal boron nitride thin films. Adv. Mater. 2014, 26, 1776–1781. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Jang, A.R.; Jeong, H.Y.; Lee, Z.; Kang, D.J.; Shin, H.S. Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil. Nano Lett. 2013, 13, 1834–1839. [Google Scholar] [CrossRef]
- Iwasaki, T.; Endo, K.; Watanabe, E.; Tsuya, D.; Morita, Y.; Nakaharai, S.; Noguchi, Y.; Wakayama, Y.; Watanabe, K.; Taniguchi, T.; et al. Bubble-Free Transfer Technique for High-Quality Graphene/Hexagonal Boron Nitride van der Waals Heterostructures. ACS Appl. Mater. Interfaces 2020, 12, 8533–8538. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Liu, X.; Jia, C. Recent Advances in Metal-Organic Chemical Vapor Deposition. Sch. Mater. Sci. Eng. 2012, 26, 5. [Google Scholar]
- Lee, K.H.; Shin, H.J.; Lee, J.; Lee, I.Y.; Kim, G.H.; Choi, J.Y.; Kim, S.W. Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano Lett. 2012, 12, 714–718. [Google Scholar] [CrossRef]
- Tay, R.Y.; Griep, M.H.; Mallick, G.; Tsang, S.H.; Singh, R.S.; Tumlin, T.; Teo, E.H.; Karna, S.P. Growth of large single-crystalline two-dimensional boron nitride hexagons on electropolished copper. Nano Lett. 2014, 14, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Lu, C.; Song, Y.; Ji, Q.; Song, X.; Li, Q.; Zhang, Y.; Zhang, L.; Kong, J.; Liu, Z. Recent progress in the tailored growth of two-dimensional hexagonal boron nitride via chemical vapour deposition. Chem. Soc. Rev. 2018, 47, 4242–4257. [Google Scholar] [CrossRef] [PubMed]
- Koepke, J.C.; Wood, J.D.; Chen, Y.; Schmucker, S.W.; Liu, X.; Chang, N.N.; Nienhaus, L.; Do, J.W.; Carrion, E.A.; Hewaparakrama, J.; et al. Role of Pressure in the Growth of Hexagonal Boron Nitride Thin Films from Ammonia-Borane. Chem. Mater. 2016, 28, 4169–4179. [Google Scholar] [CrossRef]
- Song, X.; Gao, J.; Nie, Y.; Gao, T.; Sun, J.; Ma, D.; Li, Q.; Chen, Y.; Jin, C.; Bachmatiuk, A.; et al. Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation. Nano Res. 2015, 8, 3164–3176. [Google Scholar] [CrossRef]
- Stehle, Y.; Meyer, H.M.; Unocic, R.R.; Kidder, M.; Polizos, G.; Datskos, P.G.; Jackson, R.; Smirnov, S.N.; Vlassiouk, I.V. Synthesis of Hexagonal Boron Nitride Monolayer: Control of Nucleation and Crystal Morphology. Chem. Mater. 2015, 27, 8041–8047. [Google Scholar] [CrossRef]
- Gao, Y.; Ren, W.; Ma, T.; Liu, Z.; Zhang, Y.; Liu, W.B.; Ma, L.P.; Ma, X.; Cheng, H.M. Repeated and controlled growth of monolayer, bilayer and few-layer hexagonal boron nitride on Pt foils. ACS Nano 2013, 7, 5199–5206. [Google Scholar] [CrossRef]
- Shi, Y.; Hamsen, C.; Jia, X.; Kim, K.K.; Reina, A.; Hofmann, M.; Hsu, A.L.; Zhang, K.; Li, H.; Juang, Z.Y.; et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 2010, 10, 4134–4139. [Google Scholar] [CrossRef]
- Chou, H.; Majumder, S.; Roy, A.; Catalano, M.; Zhuang, P.; Quevedo-Lopez, M.; Colombo, L.; Banerjee, S.K. Dependence of h-BN Film Thickness as Grown on Nickel Single-Crystal Substrates of Different Orientations. ACS Appl. Mater. Interfaces 2018, 10, 44862–44870. [Google Scholar] [CrossRef]
- Jeong, H.; Kim, D.Y.; Kim, J.; Moon, S.; Han, N.; Lee, S.H.; Okello, O.F.N.; Song, K.; Choi, S.Y.; Kim, J.K. Wafer-scale and selective-area growth of high-quality hexagonal boron nitride on Ni(111) by metal-organic chemical vapor deposition. Sci. Rep. 2019, 9, 5736. [Google Scholar] [CrossRef] [Green Version]
- Snure, M.; Paduano, Q.; Kiefer, A. Effect of surface nitridation on the epitaxial growth of few-layer sp2 BN. J. Cryst. Growth 2016, 436, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Vuong, P.; Sundaram, S.; Ottapilakkal, V.; Patriarche, G.; Largeau, L.; Srivastava, A.; Mballo, A.; Moudakir, T.; Gautier, S.; Voss, P.L.; et al. Influence of Sapphire Substrate Orientation on the van der Waals Epitaxy of III-Nitrides on 2D Hexagonal Boron Nitride: Implication for Optoelectronic Devices. ACS Appl. Nano Mater. 2022, 5, 791–800. [Google Scholar] [CrossRef]
- Tay, R.Y.; Tsang, S.H.; Loeblein, M.; Chow, W.L.; Loh, G.C.; Toh, J.W.; Ang, S.L.; Teo, E.H.T. Direct growth of nanocrystalline hexagonal boron nitride films on dielectric substrates. Appl. Phys. Lett. 2015, 10, 101901. [Google Scholar] [CrossRef]
- Jang, A.R.; Hong, S.; Hyun, C.; Yoon, S.I.; Kim, G.; Jeong, H.Y.; Shin, T.J.; Park, S.O.; Wong, K.; Kwak, S.K.; et al. Wafer-Scale and Wrinkle-Free Epitaxial Growth of Single-Orientated Multilayer Hexagonal Boron Nitride on Sapphire. Nano Lett. 2016, 16, 3360–3366. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Nitta, S.; Pristovsek, M.; Liu, Y.; Liao, Y.; Kushimoto, M.; Honda, Y.; Amano, H. Scalable synthesis of multilayer h-BN on AlN by metalorganic vapor phase epitaxy: Nucleation and growth mechanism. 2D Mater. 2019, 7, 015004. [Google Scholar] [CrossRef]
- Chubarov, M.; Pedersen, H.; Högberg, H.; Filippov, S.; Engelbrecht, J.A.A.; O’Connel, J.; Henry, A. Boron nitride: A new photonic material. Phys. B Condens. Matter 2014, 439, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.M.; Hsu, A.; Park, M.H.; Chae, S.H.; Yun, S.J.; Lee, J.S.; Cho, D.H.; Fang, W.; Lee, C.; Palacios, T.; et al. Synthesis of large-area multilayer hexagonal boron nitride for high material performance. Nat. Commun. 2015, 6, 8662. [Google Scholar] [CrossRef] [Green Version]
- Adams, A.C.; Capio, C.D. The Chemical Deposition of Boron-Nitrogen Films. J. Electrochem. Soc. 1980, 127, 399–405. [Google Scholar] [CrossRef]
- Nakamura, K. Preparation of Boron Nitride Thin Films by Chemical Vapor Deposition. Mater. Sci. Forum 1990, 54–55, 111–140. [Google Scholar] [CrossRef]
- Singhal, R.; Echeverria, E.; McIlroy, D.N.; Singh, R.N. Synthesis of hexagonal boron nitride films on silicon and sapphire substrates by low-pressure chemical vapor deposition. Thin Solid Film. 2021, 733, 138812. [Google Scholar] [CrossRef]
- Zhang, C.; Hao, X.; Wu, Y.; Du, M. Synthesis of vertically aligned boron nitride nanosheets using CVD method. Mater. Res. Bull. 2012, 47, 2277–2281. [Google Scholar] [CrossRef]
- Nonogaki, R.; Yamada, S.; Tokura, K.; Ozawa, M.; Wada, T. Effect of the ion impact on the structure of boron nitride films prepared by plasma enhanced chemical vapour deposition. Plasma Sources Sci. Technol. 2001, 10, 176. [Google Scholar] [CrossRef]
- Bresnehan, M.S.; Hollander, M.J.; Wetherington, M.; LaBella, M.; Trumbull, K.A.; Cavalero, R.; Snyder, D.W.; Robinson, J.A. Integration of Hexagonal Boron Nitride with Quasi-freestanding Epitaxial Graphene: Toward Wafer-Scale, High-Performance Devices. ACS Nano 2012, 6, 5234–5241. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.K.; Hsu, A.; Jia, X.; Kim, S.M.; Shi, Y.; Dresselhaus, M.; Palacios, T.; Kong, J. Synthesis and Characterization of Hexagonal Boron Nitride Film as a Dielectric Layer for Graphene Devices. ACS Nano 2012, 6, 8583–8590. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wu, B.; Chen, J.; Liu, H.; Hu, P.; Liu, Y. Monolayer Hexagonal Boron Nitride Films with Large Domain Size and Clean Interface for Enhancing the Mobility of Graphene-Based Field-Effect Transistors. Adv. Mater. 2014, 26, 1559–1564. [Google Scholar] [CrossRef] [PubMed]
- Umehara, N.; Masuda, A.; Shimizu, T.; Kuwahara, I.; Kouno, T.; Kominami, H.; Hara, K. Influences of growth parameters on the film formation of hexagonal boron nitride thin films grown on sapphire substrates by low-pressure chemical vapor deposition. Jpn. J. Appl. Phys. 2016, 55, 05FD09. [Google Scholar] [CrossRef]
- Choi, B.J. Chemical vapor deposition of hexagonal boron nitride films in the reduced pressure. Mater. Res. Bull. 1999, 34, 2215–2220. [Google Scholar] [CrossRef]
- Tsuda, O.; Watanabe, K.; Taniguchi, T. Band-Edge Luminescence at Room Temperature of Boron Nitride Synthesized by Thermal Chemical Vapor Phase Deposition. Jpn. J. Appl. Phys. 2007, 46, L287–L290. [Google Scholar] [CrossRef]
- Sugino, T.; Kawasaki, S.; Tanioka, K.; Shirafuji, J. Electron emission from boron nitride coated Si field emitters. Appl. Phys. Lett. 1997, 71, 2704–2706. [Google Scholar] [CrossRef]
- Seiler, D.G.; Diebold, A.C.; Shaffner, T.J.; McDonald, R.; Zollner, S.; Khosla, R.P.; Secula, E.M. Characterization and Metrology for ULSI Technology: 2003; American Institute of Physics: Melville, NY, USA, 2003. [Google Scholar]
- Tian, J.-Z.; Xia, F.-L.; Ma, X.-X.; Sun, Y.; Sun, M.-R. Microstructure of nitrogen ion implantation into boron film using PBll technique. Sch. Mater. Sci. Eng. 2000, 8, 5. [Google Scholar]
- Sutter, P.; Lahiri, J.; Zahl, P.; Wang, B.; Sutter, E. Scalable synthesis of uniform few-layer hexagonal boron nitride dielectric films. Nano Lett. 2013, 13, 1193–1199. [Google Scholar] [CrossRef]
- Nose, K.; Oba, H.; Yoshida, T. Electric conductivity of boron nitride thin films enhanced by in situ doping of zinc. Appl. Phys. Lett. 2006, 89, 956. [Google Scholar] [CrossRef]
- Hao, G.D.; Taniguchi, M.; Inoue, S.I. Highly Deep Ultraviolet-Transparent h-BN Film Deposited on an Al0.7Ga0.3N Template by Low-Temperature Radio-Frequency Sputtering. Materials 2019, 12, 4046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Wen, X.; Tan, C.; Li, N.; Li, R.; Huang, X.; Tian, H.; Yao, Z.; Liao, P.; Yu, S.; et al. Synthesis of centimeter-scale high-quality polycrystalline hexagonal boron nitride films from Fe fluxes. Nanoscale 2021, 13, 11223–11231. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Wang, X.; Li, Q.; Yang, P.; Lu, G.; Jiang, R.; Wang, H.; Zhang, C.; Cong, C.; Liu, Z.; et al. Vapor-liquid-solid growth of large-area multilayer hexagonal boron nitride on dielectric substrates. Nat. Commun. 2020, 11, 849. [Google Scholar] [CrossRef] [PubMed]
c-BN | h-BN | r-BN | w-BN | |
---|---|---|---|---|
Hybrid approach | Sp3 | Sp3 | Sp2 | Sp2 |
Crystal system | Cubic | Hexagonal | Tripartite | Hexagonal |
Lattice constant (nm) | a = 0.362 | a = 0.251 c = 0.666 | a = 0.255 c = 0.421 | a = 0.250 c = 0.999 |
Density(g/cm3) | 2.28 | 3.45 | 3.48 | 2.28 |
h-BN | Graphite | |
---|---|---|
Lattice constant (nm) | a = 0.2504 c = 0.6661 | a = 0.2456 c = 0.6696 |
Density (g/cm3) | 2.0–2.2 | 2.3 |
Electrical conductivity | Insulators | Conductor |
Thermal conductivity | High | High |
Band gap (eV) | 5.9 | 0 |
h-BN | GaN | AlN | |
---|---|---|---|
Lattice constant (nm) | a = 0.2504 c = 0.6661 | a = 0.3112 c = 0.4982 | a = 0.3186 c = 0.5186 |
Band gap (eV) | 5.9 | 6.1 | 3.4 |
Band gap type | Direct band gap | Direct band gap | Direct band gap |
Thermal conductivity (W/m·K) | 600 | 285 | 130 |
Hole concentration (cm−3) | 1018–2.7 × 1019 | 1012 | 1017–1018 |
Electron concentration (cm−3) | 2 × 1019 | 7.3 × 1014 | 3 × 1019 |
Electron mobility (cm2/V·s) | 48 | 426 | 440 |
Hole mobility (cm2/V·s) | 2–26 | <5 | 10 |
Substrates | Precursor | Key Parameter | Layer | Ref. |
---|---|---|---|---|
Cu foil | Ammonia borane | Cu morphology | 6–8 layers | [71] |
Ni film | Borazine | Precursor dosage | 5–50 nm | [78] |
Pt foil | Ammonia borane | Repeated growth | Monolayer | [68] |
SiO2 | Ammonia borane | Growth time | Few-layers | [83] |
Sapphire | Ammonia borane | Epitaxial growth | Few-layers | [84] |
AlN | TEB | Temperature | Monolayer | [85] |
Precursors | Quality | Growth Conditions | Ref. |
---|---|---|---|
Borazine and H2 | Large-area, multilayer h-BN film with strong cathodoluminescence and high mechanical strength | CVD growth at 1100 °C for 30 min on Fe foil | [87] |
BCl3, NH3, N2, and H2 | The maximum thickness was about 10 nm | APCVD growth at 1000 °C | [91] |
BF3 and NH3 | The h-BN was obtained when no self-biss was applied to the substrate | PECVD growth in a temperature range of 583–793 k | [92] |
Ammoina borane | Single and multilayers were grown on various substrates | APCVD and LPCVD growth in a temperature range of 700–1100 °C | [71,93,94,95] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Peng, Y.; Saleem, M.F.; Chen, Z.; Sun, W. Hexagonal Boron Nitride on III–V Compounds: A Review of the Synthesis and Applications. Materials 2022, 15, 4396. https://doi.org/10.3390/ma15134396
Yang Y, Peng Y, Saleem MF, Chen Z, Sun W. Hexagonal Boron Nitride on III–V Compounds: A Review of the Synthesis and Applications. Materials. 2022; 15(13):4396. https://doi.org/10.3390/ma15134396
Chicago/Turabian StyleYang, Yufei, Yi Peng, Muhammad Farooq Saleem, Ziqian Chen, and Wenhong Sun. 2022. "Hexagonal Boron Nitride on III–V Compounds: A Review of the Synthesis and Applications" Materials 15, no. 13: 4396. https://doi.org/10.3390/ma15134396
APA StyleYang, Y., Peng, Y., Saleem, M. F., Chen, Z., & Sun, W. (2022). Hexagonal Boron Nitride on III–V Compounds: A Review of the Synthesis and Applications. Materials, 15(13), 4396. https://doi.org/10.3390/ma15134396