Studies on the Ageing of Cement Stabilized Rammed Earth Material in Different Exposure Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Specimen Preparation
2.2.2. Curing Conditions
2.2.3. Cutting Specimens for Strength Tests
2.2.4. UCS Calculation
- fc—compressive strength of single specimen
- N—destructive force recorded during test
- D—diameter of specimen (arithmetic mean of 3 measurements)
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arrigoni, A.; Beckett, C.; Ciancio, D.; Dotelli, G. Life cycle analysis of environmental impact vs. durability of stabilised rammed earth. Constr. Build. Mater. 2017, 142, 128–136. [Google Scholar] [CrossRef]
- Bui, Q.B.; Morel, J.C.; Reddy, B.V.V.; Ghayad, W. Durability of rammed earth walls exposed for 20 years to natural weathering. Build. Environ. 2009, 44, 912–919. [Google Scholar] [CrossRef]
- de Azevedo, A.R.G.; Amin, M.; Hadzima-Nyarko, M.; Agwa, I.S.; Zeyad, A.M.; Tayeh, B.A.; Adesina, A. Possibilities for the application of agro-industrial wastes in cementitious materials: A brief review of the Brazilian perspective. Clean. Mater. 2022, 3, 100040. [Google Scholar] [CrossRef]
- Prusty, J.K.; Patro, S.K.; Basarkar, S.S. Concrete using agro-waste as fine aggregate for sustainable built environment–A review. Int. J. Sustain. Built Environ. 2016, 5, 312–333. [Google Scholar] [CrossRef] [Green Version]
- Ismail, Z.Z.; Jaeel, A.J. A novel use of undesirable wild giant reed biomass to replace aggregate in concrete. Constr. Build. Mater. 2014, 67, 68–73. [Google Scholar] [CrossRef]
- Khan, A.; Gupta, R.; Garg, M. Determining material characteristics of “Rammed Earth” using Non-Destructive Test methods for structural design. Structures 2019, 20, 399–410. [Google Scholar] [CrossRef]
- Guettala, A.; Abibsi, A.; Houari, H. Durability study of stabilized earth concrete under both laboratory and climatic conditions exposure. Constr. Build. Mater. 2006, 20, 119–127. [Google Scholar] [CrossRef]
- Hall, M.; Damms, P.; Djerbib, Y. Stabilised rammed earth and the building regulations (2000): Part A-Structural stability. Build. Eng. 2004, 79, 18–21. [Google Scholar]
- Jayasinghe, C.; Kamaladasa, N. Compressive strength characteristics of cement stabilized rammed earth walls. Constr. Build. Mater. 2007, 21, 1971–1976. [Google Scholar] [CrossRef]
- Miccoli, L.; Müller, U.; Fontana, P. Mechanical behaviour of earthen materials: A comparison between earth block masonry, rammed earth and cob. Constr. Build. Mater. 2014, 61, 327–339. [Google Scholar] [CrossRef]
- Silva, R.A.; Oliveira, D.V.; Miranda, T.; Cristelo, N.; Escobar, M.C.; Soares, E. Rammed earth construction with granitic residual soils: The case study of northern Portugal. Constr. Build. Mater. 2013, 47, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Galán-Marín, C.; Rivera-Gómez, C.; Petric, J. Clay-based composite stabilized with natural polymer and fibre. Constr. Build. Mater. 2010, 24, 1462–1468. [Google Scholar] [CrossRef]
- Bui, Q.B.; Morel, J.C.; Hans, S.; Walker, P. Effect of moisture content on the mechanical characteristics of rammed earth. Constr. Build. Mater. 2014, 54, 163–169. [Google Scholar] [CrossRef]
- Reddy, B.V.V.; Kumar, P.P. Embodied energy in cement stabilised rammed earth walls. Energy Build. 2010, 42, 380–385. [Google Scholar] [CrossRef]
- Raj, S.; Sharma, A.K.; Anand, K.B. Performance appraisal of coal ash stabilized rammed earth. J. Build. Eng. 2018, 18, 51–57. [Google Scholar] [CrossRef]
- Meimaroglou, N.; Mouzakis, C. Cation Exchange Capacity (CEC), texture, consistency and organic matter in soil assessment for earth construction: The case of earth mortars. Constr. Build. Mater. 2019, 221, 27–39. [Google Scholar] [CrossRef]
- Narloch, P.L.; Woyciechowski, P.; Jęda, P. The Influence of Loam Type and Cement Content on the Compressive Strength of Rammed Earth. Arch. Civ. Eng. 2015, 61, 73–88. [Google Scholar] [CrossRef] [Green Version]
- Ciancio, D.; Jaquin, P.; Walker, P. Advances on the assessment of soil suitability for rammed earth. Constr. Build. Mater. 2013, 42, 40–47. [Google Scholar] [CrossRef]
- ISO 1920-4; Testing of Concrete—Part 4: Strength of Hardened Concrete. The International Organization for Standardization, Vernier: Geneva, Switzerland, 2020.
- ACI 318-19; Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute: Farmington Hills, MI, USA, 2019. [CrossRef]
- NZS 3104: 2003; Specification for Concrete Production. Standards New Zealand: Wellington, New Zealand, 2003.
- Luo, Y.; Zhou, P.; Ni, P.; Peng, X.; Ye, J. Degradation of rammed earth under soluble salts attack and drying-wetting cycles: The case of Fujian Tulou, China. Appl. Clay Sci. 2021, 212, 106202. [Google Scholar] [CrossRef]
- Heathcote, K.A. Durability of earthwall buildings. Constr. Build. Mater. 1995, 9, 185–189. [Google Scholar] [CrossRef]
- Lepakshi, R.; Reddy, B.V.V. Shear strength parameters and Mohr-Coulomb failure envelopes for cement stabilised rammed earth. Constr. Build. Mater. 2020, 249, 118708. [Google Scholar] [CrossRef]
- França, B.R.; Azevedo, A.R.G.; Monteiro, S.N.; Da Costa, F.; Filho, G.; Marvila, M.T.; Alexandre, J.; Zanelato, E.B. Durability of soil-Cement blocks with the incorporation of limestone residues from the processing of marble. Mater. Res. 2018, 21, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Yang, M.; Ni, P.; Peng, X.; Yuan, X. Degradation of rammed earth under wind-driven rain: The case of Fujian Tulou, China. Constr. Build. Mater. 2020, 261, 119989. [Google Scholar] [CrossRef]
- Wu, F.; Yu, Q.; Liu, C. Creep characteristics and constitutive model of bio-based concrete in aqueous environment. Constr. Build. Mater. 2022, 320, 126213. [Google Scholar] [CrossRef]
- Leon, P.; Woyciechowski, P.; Rosicki, Ł.; Cichocki, D.; Lądowej, W.I.; Warszawska, P. Ziemia ubijana stabilizowana cementem jako materiał konstrukcyjny–ocena nasiąkliwości. Przegląd Bud. 2015, 86, 22–25. [Google Scholar]
- Traoré, L.B.; Ouellet-Plamondon, C.; Fabbri, A.; McGregor, F.; Rojat, F. Experimental assessment of freezing-thawing resistance of rammed earth buildings. Constr. Build. Mater. 2021, 274, 121917. [Google Scholar] [CrossRef]
- Serrano, S.; de Gracia, A.; Cabeza, L.F. Adaptation of rammed earth to modern construction systems: Comparative study of thermal behavior under summer conditions. Appl. Energy 2016, 175, 180–188. [Google Scholar] [CrossRef] [Green Version]
- Narloch, P.; Protchenko, K.; Cichocki, D. Hydro-thermal Analysis of Building Envelope Walls with Cement- Stabilized Rammed Earth Structural Layer and Different Thermal Insulators and Their Positioning in Humid Continental Climate Hydro-thermal Analysis of Building Envelope Walls with Cement-Stabi. IOP Conf. Ser. Mater. Sci. Eng. 2019, 661, 012078. [Google Scholar] [CrossRef] [Green Version]
- Reddy, B.V.V.; Leuzinger, G.; Sreeram, V.S. Low embodied energy cement stabilised rammed earth building-A case study. Energy Build. 2014, 68, 541–546. [Google Scholar] [CrossRef]
- Soudani, L.; Woloszyn, M.; Fabbri, A.; Morel, J.C.; Grillet, A.C. Energy evaluation of rammed earth walls using long term in-situ measurements. Sol. Energy 2017, 141, 70–80. [Google Scholar] [CrossRef]
- Rodríguez-Mariscal, J.D.; Canivell, J.; Solís, M. Evaluating the performance of sonic and ultrasonic tests for the inspection of rammed earth constructions. Constr. Build. Mater. 2021, 299, 123854. [Google Scholar] [CrossRef]
- Beckett, C.T.S.; Jaquin, P.A.; Morel, J.C. Weathering the storm: A framework to assess the resistance of earthen structures to water damage. Constr. Build. Mater. 2020, 242, 118098. [Google Scholar] [CrossRef]
- Canivell, J.; Martin-del-Rio, J.J.; Alejandre, F.J.; García-Heras, J.; Jimenez-Aguilar, A. Considerations on the physical and mechanical properties of lime-stabilized rammed earth walls and their evaluation by ultrasonic pulse velocity testing. Constr. Build. Mater. 2018, 191, 826–836. [Google Scholar] [CrossRef]
- Anysz, H.; Brzozowski, Ł.; Kretowicz, W.; Narloch, P. Feature importance of stabilised rammed earth components affecting the compressive strength calculated with explainable artificial intelligence tools. Materials 2020, 13, 2317. [Google Scholar] [CrossRef]
- Arto, I.; Gallego, R.; Cifuentes, H.; Puertas, E.; Gutiérrez-Carrillo, M.L. Fracture behavior of rammed earth in historic buildings. Constr. Build. Mater. 2021, 289, 123167. [Google Scholar] [CrossRef]
- Pavan, G.S.; Ullas, S.N.; Rao, K.S.N. Interfacial behavior of cement stabilized rammed earth: Experimental and numerical study. Constr. Build. Mater. 2020, 257, 119327. [Google Scholar] [CrossRef]
- Narloch, P.L.; Lidner, M.; Kunicka, E.; Bielecki, M. Flexural tensile strength of construction elements made out of cement stabilized rammed earth. Procedia Eng. 2015, 111, 589–595. [Google Scholar] [CrossRef]
- Meek, A.H.; Beckett, C.T.S.; Carsana, M.; Ciancio, D. Corrosion protection of steel embedded in cement-stabilised rammed earth. Constr. Build. Mater. 2018, 187, 942–953. [Google Scholar] [CrossRef]
- Lepakshi, R.; Reddy, B.V.V. Bond strength of rebars in cement stabilised rammed earth. Constr. Build. Mater. 2020, 255, 119405. [Google Scholar] [CrossRef]
- Lepakshi, R.; Reddy, B.V.V. Bond Strength of Rebars in Cement-Stabilised Rammed Earth BT Earthen Dwellings and Structures: Current Status in Their Adoption; Reddy, B.V.V., Mani, M., Walker, P., Eds.; Springer: Singapore, 2019; pp. 39–50. ISBN 978-981-13-5883-8. [Google Scholar]
- Kaliszuk-Wietecka, A.; Leon, P. Konstrukcyjne zastosowanie surowej ziemi jako materiału budowlanego. Przegląd Bud. 2014, 85, 21–23. [Google Scholar]
- Woyciechowski, P.; Narloch, P.L.; Cichocki, D. Shrinkage characteristics of cement stabilized rammed earth. MATEC Web Conf. 2017, 117, 00178. [Google Scholar] [CrossRef] [Green Version]
- Kariyawasam, K.K.G.K.D.; Jayasinghe, C. Cement stabilized rammed earth as a sustainable construction material. Constr. Build. Mater. 2016, 105, 519–527. [Google Scholar] [CrossRef]
- Narloch, P.; Woyciechowski, P.; Kotowski, J.; Gawriuczenkow, I.; Wójcik, E. The effect of soil mineral composition on the compressive strength of cement stabilized rammed earth. Materials 2020, 13, 324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogala, W.; Anysz, H.; Narloch, P. Designing the Composition of Cement-Stabilized Rammed Earth with the Association Analysis Application. Materials 2021, 14, 1390. [Google Scholar] [CrossRef] [PubMed]
- Ávila, F.; Puertas, E.; Gallego, R. Characterization of the mechanical and physical properties of unstabilized rammed earth: A review. Constr. Build. Mater. 2020, 270, 121435. [Google Scholar] [CrossRef]
- Saeid, G.; Vahab, T. Durability of Rammed Earth Materials. Int. J. Geomech. 2020, 20, 4020201. [Google Scholar] [CrossRef]
- Narloch, P.L.; Woyciechowski, P.; Dmowska, E.; Halemba, K. Durability Assessment of Monolithic Rammed Earth Walls. Arch. Civ. Eng. 2015, 61, 73–88. [Google Scholar] [CrossRef] [Green Version]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Błażejczyk, K.; Baranowski, J.; Jendritzky, G.; Błażejczyk, A.; Bröde, P.; Fiala, D. Regional features of the bioclimate of central and southern europe against the background of the köppen-geiger climate classification. Geogr. Pol. 2015, 88, 439–453. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Zhong, H.; Bao, F.; Guo, Z.; Ni, P. Insights into natural and carbonation curing of ancient Chinese rammed earth mixed with brown sugar. Constr. Build. Mater. 2022, 317, 125969. [Google Scholar] [CrossRef]
- Martín-del-Rio, J.J.; Canivell, J.; Torres-González, M.; Mascort-Albea, E.J.; Romero-Hernández, R.; Alducin-Ochoa, J.M.; Alejandre-Sánchez, F.J. Analysis of the materials and state of conservation of the medieval rammed earth walls of Seville (Spain). J. Build. Eng. 2021, 44, 103381. [Google Scholar] [CrossRef]
- Cid-Falceto, J.; Mazarrón, F.R.; Cañas, I. Assessment of compressed earth blocks made in Spain: International durability tests. Constr. Build. Mater. 2012, 37, 738–745. [Google Scholar] [CrossRef]
- Anysz, H.; Narloch, P. Designing the composition of cement stabilized rammed earth using artificial neural networks. Materials 2019, 12, 1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narloch, P.; Hassanat, A.; Tarawneh, A.S.; Anysz, H.; Kotowski, J.; Almohammadi, K. Predicting compressive strength of cement-stabilized rammed earth based on SEM images using computer vision and deep learning. Appl. Sci. 2019, 9, 5131. [Google Scholar] [CrossRef] [Green Version]
- Narloch, P.; Woyciechowski, P. Assessing Cement Stabilized Rammed Earth Durability in A Humid Continental Climate. Buildings 2020, 10, 26. [Google Scholar] [CrossRef] [Green Version]
Source | Shape of the Specimen | Stabilizer Type | Compressive Strength [MPa] | Seasoning Conditions |
---|---|---|---|---|
[7] | Cube | Cement 46 MPa, Lime ND (1) | 15.40–21.50 | Natural exposure, Period length ND (1) |
[8] | ND (1) | None | 0.90–1.45 | Min. 28 days at 20 °C, 75% RH (2) |
[9] | Wall-panel | ND (1) | 1.82–3.71 | Natural exposure, Period length ND (1) |
[10] | Block/wall | ND (1) | 3.73 | 28 days at 23 °C, 50% RH (2) |
[11] | Cylinder | None | 0.25–0.43 | 27–35 days after attaining equilibrium water content; 20 °C, 57% RH (2) |
[12] | Beam | Natural polymer and fibre | 2.23–4.44 | According to UNE-EN 196-1 2005, UNE-EN 1015-2 and UNE-EN 12190 1998 |
[13] | Cylinder | None | 0.75–2.00 | Normal atmosphere, when desired moisture reached wrapped in plastic film for a week |
[14] | Prism | Ordinary Portland | 3.38–5.44 | Cured for 28 days, air dried for two weeks, dried at 50 °C to constant weight in an oven, soaked for 48 h in water, ca. 45 days |
[15] | Prism | Ordinary Portland cement of M53 grade | 2.00–2.33 | Cured under water jug for 28 days |
[16] | Beam | None | 0.60–7.20 | 28 days at 23 ± 5 °C, 50 ± 15% RH (2) |
[17] | Cube | Portland cement CEM I 42.5 R | 1.72–4.99 | 28 days at 20 °C, 95% RH (2) |
[18] | Cylinder | ND (1) | 2.52–6.68 | 1 day in formwork, 7 days in impermeable membrane, ambient condition for next 20 days (maximum mean monthly temperature 18 °C and minimum 7 °C; mean RH 68% (2)) |
Specimen Series | Soil Mixture | Cement Addition (%) | Water Content (%) (Equal to OMC) |
---|---|---|---|
703-6% | 703 | 6 | 10 |
613-6% | 613 | 6 | 10 |
523-6% | 523 | 6 | 9 |
433-6% | 433 | 6 | 9 |
703-9% | 703 | 9 | 10 |
613-9% | 613 | 9 | 10 |
523-9% | 523 | 9 | 9 |
433-9% | 433 | 9 | 9 |
Year | Avg. Wind Speed [km/h] | Avg. Temperature [C] | Avg. Relative Humidity [%] | Precipitation [mm] | Number of Days with Avg. Temperature below Zero |
---|---|---|---|---|---|
2019 | 3.58 | 10.93 | 72.07 | 390.20 | 28 |
2018 | 3.42 | 10.51 | 72.97 | 235.20 | 61 |
2017 | 3.53 | 9.45 | 77.51 | 339.80 | 42 |
2016 | 3.41 | 9.84 | 75.15 | 277.90 | 35 |
2015 | 3.51 | 10.39 | 71.79 | 172.00 | 30 |
2014 | 3.22 | 9.87 | 76.22 | 251.30 | 41 |
Avg. | 3.45 | 10.17 | 74.29 | 277.73 | 39.50 |
Mixture | Storing Conditions | Cement Content [%] | Standard Deviation | Standard Error | Confidence Intervals |
---|---|---|---|---|---|
433 | Indoor | 6 | 0.483 | 0.1527 | 0.280 |
523 | Indoor | 6 | 0.924 | 0.2922 | 0.535 |
613 | Indoor | 6 | 0.558 | 0.1765 | 0.323 |
703 | Indoor | 6 | 0.803 | 0.2539 | 0.465 |
523 | Outdoor | 6 | 0.924 | 0.2922 | 0.535 |
613 | Outdoor | 6 | 0.690 | 0.2182 | 0.399 |
433 | Outdoor | 6 | 0.386 | 0.1221 | 0.223 |
703 | Outdoor | 6 | 0.428 | 0.1353 | 0.248 |
433 | Indoor | 9 | 0.523 | 0.1654 | 0.303 |
523 | Indoor | 9 | 0.552 | 0.1746 | 0.319 |
613 | Indoor | 9 | 0.071 | 0.0225 | 0.041 |
703 | Indoor | 9 | 0.853 | 0.2697 | 0.494 |
523 | Outdoor | 9 | 0.542 | 0.1714 | 0.314 |
613 | Outdoor | 9 | 0.690 | 0.2182 | 0.399 |
433 | Outdoor | 9 | 0.441 | 0.1395 | 0.255 |
703 | Outdoor | 9 | 1.09 | 0.3447 | 0.631 |
Mixture Type and Cement Content | Outside Layer Description | Core Description | Visual Rating |
---|---|---|---|
703-9% | Smooth, no discoloration, no particle visible, homogenous | Homogenous | 5 |
613-9% | Smooth, minimal graining, discoloration, visible watermarks, visible layers, few particles missing | Few visible particles, slightly uneven edge, visible layers | 4 |
523-9% | Visible layers, minimal discoloration, minimal watermarks, rugged | Visible particles, uneven edge, visible layers | 4 |
433-9% | Rugged, minimal discoloration, visible layers, uneven, graining | Visible particles, loose particles on outside layer, uneven edge | 3 |
703-6% | Smooth, no discoloration, no particle visible, homogenous, few cracks on edges | Homogenous | 5 |
613-6% | Visible layers, minimal discoloration, minimal watermarks, graining, rugged, multiple cracks on edges, numerous particles missing | Few visible particles, slightly uneven edge, visible layers | 4 |
523-6% | Visible layers, minimal discoloration, minimal watermarks, graining, rugged, multiple cracks on edges, numerous particles missing | Visible particles, uneven edge, visible layer | 4 |
433-6% | Rugged, minimal discoloration, visible layers, uneven, visible erosion, multiple cracks on edges, numerous particles missing | Visible particles, loose particles on outside layer, uneven edge | 2 |
- | Mixture | 703 | 613 | 523 | 433 | 703 | 433 | 703 | 613 | 703 | 433 | 703 | 613 | 703 | 433 | 703 | 613 | ||
Mixture | - | Cement | 9% | 9% | 9% | 9% | 6% | 6% | 6% | 6% | 9% | 9% | 9% | 9% | 6% | 6% | 6% | 6% | |
Cement | - | Curingcondition | IN | IN | IN | IN | IN | IN | IN | IN | OUT | OUT | OUT | OUT | OUT | OUT | OUT | OUT | |
Curing condition | UCS [MPa} | 9.56 | 10.93 | 11.13 | 11.60 | 8.14 | 10.11 | 8.50 | 9.50 | 9.03 | 9.06 | 9.45 | 9.10 | 6.74 | 6.97 | 7.18 | 8.04 | ||
703 | 9% | IN | 9.56 | - | 0.87 | 0.86 | 0.82 | 1.17 | 0.95 | 1.12 | 1.01 | 1.06 | 1.06 | 1.01 | 1.05 | 1.42 | 1.37 | 1.33 | 1.19 |
613 | 9% | IN | 10.93 | 1.14 | - | 0.98 | 0.94 | 1.34 | 1.08 | 1.29 | 1.15 | 1.21 | 1.21 | 1.16 | 1.20 | 1.62 | 1.57 | 1.52 | 1.36 |
523 | 9% | IN | 11.13 | 1.16 | 1.02 | - | 0.96 | 1.37 | 1.10 | 1.31 | 1.17 | 1.23 | 1.23 | 1.18 | 1.22 | 1.65 | 1.60 | 1.55 | 1.38 |
433 | 9% | IN | 11.6 | 1.21 | 1.06 | 1.04 | - | 1.43 | 1.15 | 1.36 | 1.22 | 1.28 | 1.28 | 1.23 | 1.27 | 1.72 | 1.66 | 1.62 | 1.44 |
703 | 6% | IN | 8.14 | 0.85 | 0.74 | 0.73 | 0.70 | - | 0.81 | 0.96 | 0.86 | 0.90 | 0.90 | 0.86 | 0.89 | 1.21 | 1.17 | 1.13 | 1.01 |
433 | 6% | IN | 10.11 | 1.06 | 0.92 | 0.91 | 0.87 | 1.24 | - | 1.19 | 1.06 | 1.12 | 1.12 | 1.07 | 1.11 | 1.50 | 1.45 | 1.41 | 1.26 |
703 | 6% | IN | 8.5 | 0.89 | 0.78 | 0.76 | 0.73 | 1.04 | 0.84 | - | 0.89 | 0.94 | 0.94 | 0.90 | 0.93 | 1.26 | 1.22 | 1.18 | 1.06 |
613 | 6% | IN | 9.5 | 0.99 | 0.87 | 0.85 | 0.82 | 1.17 | 0.94 | 1.12 | - | 1.05 | 1.05 | 1.01 | 1.04 | 1.41 | 1.36 | 1.32 | 1.18 |
703 | 9% | OUT | 9.03 | 0.94 | 0.83 | 0.81 | 0.78 | 1.11 | 0.89 | 1.06 | 0.95 | - | 1.00 | 0.96 | 0.99 | 1.34 | 1.30 | 1.26 | 1.12 |
433 | 9% | OUT | 9.06 | 0.95 | 0.83 | 0.81 | 0.78 | 1.11 | 0.90 | 1.07 | 0.95 | 1.00 | - | 0.96 | 1.00 | 1.34 | 1.30 | 1.26 | 1.13 |
703 | 9% | OUT | 9.45 | 0.99 | 0.86 | 0.85 | 0.81 | 1.16 | 0.93 | 1.11 | 0.99 | 1.05 | 1.04 | - | 1.04 | 1.40 | 1.36 | 1.32 | 1.18 |
613 | 9% | OUT | 9.1 | 0.95 | 0.83 | 0.82 | 0.78 | 1.12 | 0.90 | 1.07 | 0.96 | 1.01 | 1.00 | 0.96 | - | 1.35 | 1.31 | 1.27 | 1.13 |
703 | 6% | OUT | 6.74 | 0.71 | 0.62 | 0.61 | 0.58 | 0.83 | 0.67 | 0.79 | 0.71 | 0.75 | 0.74 | 0.71 | 0.74 | - | 0.97 | 0.94 | 0.84 |
433 | 6% | OUT | 6.97 | 0.73 | 0.64 | 0.63 | 0.60 | 0.86 | 0.69 | 0.82 | 0.73 | 0.77 | 0.77 | 0.74 | 0.77 | 1.03 | - | 0.97 | 0.87 |
703 | 6% | OUT | 7.18 | 0.75 | 0.66 | 0.65 | 0.62 | 0.88 | 0.71 | 0.84 | 0.76 | 0.80 | 0.79 | 0.76 | 0.79 | 1.07 | 1.03 | - | 0.89 |
613 | 6% | OUT | 8.04 | 0.84 | 0.74 | 0.72 | 0.69 | 0.99 | 0.80 | 0.95 | 0.85 | 0.89 | 0.89 | 0.85 | 0.88 | 1.19 | 1.15 | 1.12 | - |
Legend: | |||||||||||||||||||
UCS ratio between different mixtures, same cement content types, same curing condition | |||||||||||||||||||
UCS ratio between same mixtures, different cement content, same curing condition | |||||||||||||||||||
UCS ratio between same mixtures, same cement content, different curing condition | |||||||||||||||||||
Extreme values of UCS ratio | |||||||||||||||||||
IN | Indoor seasoned specimens | ||||||||||||||||||
OUT | Outdoor seasoned specimens |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosicki, Ł.; Narloch, P. Studies on the Ageing of Cement Stabilized Rammed Earth Material in Different Exposure Conditions. Materials 2022, 15, 1090. https://doi.org/10.3390/ma15031090
Rosicki Ł, Narloch P. Studies on the Ageing of Cement Stabilized Rammed Earth Material in Different Exposure Conditions. Materials. 2022; 15(3):1090. https://doi.org/10.3390/ma15031090
Chicago/Turabian StyleRosicki, Łukasz, and Piotr Narloch. 2022. "Studies on the Ageing of Cement Stabilized Rammed Earth Material in Different Exposure Conditions" Materials 15, no. 3: 1090. https://doi.org/10.3390/ma15031090
APA StyleRosicki, Ł., & Narloch, P. (2022). Studies on the Ageing of Cement Stabilized Rammed Earth Material in Different Exposure Conditions. Materials, 15(3), 1090. https://doi.org/10.3390/ma15031090