Optimization of Heat Treatment Parameters of AlSi7Mg Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Tensile Strength Rm of the Tested Alloy
3.2. Elongation A5 of the Tested Alloy
3.3. Hardness HBW10/1000/30 of the Tested Alloy
3.4. Microstructure
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, R.; Takata, N.; Suzuki, A.; Kobashi, M.; Okada, Y.; Furukawa, Y. Precipitation Hardening at Elevated Temperatures above 400 °C and Subsequent Natural Age Hardening of Commercial Al–Si–Cu Alloy. Materials 2021, 14, 7155. [Google Scholar] [CrossRef]
- Ding, L.; Jia, Z.; Zhang, Z.; Sanders, R.E.; Liu, Q.; Yang, G. The natural aging and precipitation hardening behaviour of Al-Mg-Si-Cu alloys with different Mg/Si ratios and Cu additions. Mater. Sci. Eng. 2015, 627, 119–126. [Google Scholar] [CrossRef]
- Smallman, R.E.; Ngan, A.H.W. Precipitation Hardening. In Modern Physical Metallurgy, 8th ed.; Butterworth-Heinemann: Oxford, UK, 2014; pp. 499–527. [Google Scholar]
- Manente, A.; Timelli, G. Optimizing the Heat Treatment Process of Cast Aluminium Alloys. In Recent Trends in Processing and Degradation of Aluminium Alloys; Ahmad, Z., Ed.; InTech: Rijeka, Croatia, 2011; pp. 197–220. [Google Scholar] [CrossRef] [Green Version]
- Górny, Z. Odlewnicze Stopy Metali Nieżelaznych; WNT: Warsaw, Poland, 1992; pp. 181–203. [Google Scholar]
- Kaufman, J.G.; Rooy, E. Aluminum Alloy, Casting, Properties, Processes and Applications; ASM International: Ohio, OH, USA, 2004; pp. 27–31. [Google Scholar]
- Tavitas-Mediano, F.J. Precipitation-hardening in cast Al–Si–Cu–Mg alloys. J. Mater. Sci. 2010, 45, 641–651. [Google Scholar] [CrossRef]
- Sjölander, E.; Seifeddine, S. The heat treatment of Al–Si–Cu–Mg casting alloys. J. Mater. Process. Technol. 2010, 210, 1249–1259. [Google Scholar] [CrossRef] [Green Version]
- Tuncay, T. The effect of modification and grain refining on the microstructure and mechanical properties of A356 alloy. Acta Phys. Pol. 2017, 131, 89–91. [Google Scholar] [CrossRef]
- Garat, M.; Laslaz, G.; Jacob, S.; Meyer, P.; Guerin, P.H.; Adam, R. State of the art use of Sb, Na and Sr modified Al-Si casting alloys. AFS Trans. 1992, 146, 821–832. [Google Scholar]
- Sigworth, G.K. The Modification of Al-Si Casting Alloys: Important Practical and Theoretical Aspects. Int. Met. 2008, 2, 19–40. [Google Scholar] [CrossRef]
- Poniewierski, Z. Crystallization, Structure and Properties of Silumins; WNT: Warsaw, Poland, 1989; p. 81. [Google Scholar]
- Faraji, M.; Todd, I.; Jones, H. Effect of Phosphorus and Strontium Additions on Formation Temperature and Nucleation Density of Primary Silicon in Al-19 Wt Pct Si Alloy and Their Effect on Eutectic Temperature. Metall. Mater. Trans. 2009, 40, 1710–1715. [Google Scholar] [CrossRef] [Green Version]
- Zuo, M.; Zhao, D.; Teng, X.; Geng, H.; Zhang, Z. Effect of P and Sr complex modification on Si phase in hypereutectic Al-30Si alloys. Mater. Des. 2013, 47, 857–864. [Google Scholar] [CrossRef]
- Qiu, C.; Miao, S.; Li, X.; Xia, X.; Ding, J.; Wang, Y.; Zhao, W. Synergistic effect of Sr and La on the microstructure and mechanical properties of A356.2 alloy. Mater. Des. 2017, 114, 563–571. [Google Scholar] [CrossRef]
- Öztürk, I.; Ağaoğlu, G.H.; Erzi, E.; Dispinar, D.; Orhan, G. Effects of strontium addition on the microstructure and corrosion behavior of A356 aluminum alloy. J. Alloys Compd. 2018, 763, 384–391. [Google Scholar] [CrossRef]
- Yan, P.; Mao, W.; Fan, J.; Wang, B. Simultaneous Refinement of Primary Si and Modification of Eutectic Si in A390 Alloy Assisting by Sr-Modifier and Serpentine Pouring Channel Process. Materials 2019, 12, 3109. [Google Scholar] [CrossRef] [Green Version]
- Liao, H.; Sun, Y.; Sun, G. Correlation between mechanical properties and amount of dendritic α-Al phase in as-cast near-eutectic Al-11,6% Si alloys modified with strontium. Mater. Sci. Eng. 2002, 335, 62–66. [Google Scholar] [CrossRef]
- Hegde, S.; Prabhu, K.N. Modification of eutectic silicon in Al-Si alloys. J. Mater. Sci. 2008, 43, 3009–3027. [Google Scholar] [CrossRef]
- Timpel, M.; Wanderka, N.; Schlesiger, R.; Yamamoto, T.; Lazarev, N.; Isheim, D.; Schmitz, G.; Matsumura, S.; Banhart, J. The role of strontium in modifying aluminium–silicon alloys. Acta Mater. 2012, 60, 3920–3928. [Google Scholar] [CrossRef]
- Czekaj, E.; Fajkiel, A.; Gazda, A. Short-lived ultra high temperature silicon spheroidization treatment. Arch. Foundry 2005, 5, 51–68. [Google Scholar]
- Pezda, J. Heat treatment of EN AC-AlSi13Cu2Fe silumin and its effect on change of hardness of the alloy. Arch. Foundry Eng. 2011, 10, 131–134. [Google Scholar]
- Jarco, A.; Pezda, J. Effect of Heat Treatment Process and Optimization of Its Parameters on Mechanical Properties and Microstructure of the AlSi11(Fe) Alloy. Materials 2021, 14, 2391. [Google Scholar] [CrossRef]
- ASTM Standard B917/B917M-2001; Standard Practice for Heat Treatment of Aluminum-Alloy Castings from All Processes; ASTM International: West Conshohocken, PA, USA, 2001.
- Kotzin, E.L. Metalcaster's Reference & Guide; American Foundrymen’s Society: Des Plaines, IL, USA, 1989. [Google Scholar]
- Roy, M.J.; Maijer, D.M. Response of A356 to warm rotary forming and subsequent T6 heat treatment. Mater. Sci. Eng. 2014, 611, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Morri, A. Empirical models of mechanical behaviour of Al-Si-Mg cast alloys for high performance engine applications. Metall. Sci. Technol. 2010, 28, 2–12. [Google Scholar]
- Lu, S.P.; Du, R.; Liu, J.P.; Chen, L.C.; Wu, S.S. A new fast heat treatment process for cast A356 alloy motorcycle wheel hubs. China Foundry 2018, 15, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Pezda, J. Effect of Shortened Heat Treatment on the Hardness and Microstructure of 320.0 Aluminium Alloy. Arch. Foundry Eng. 2014, 14, 27–30. [Google Scholar] [CrossRef] [Green Version]
- Emamy, M.; Malekan, M.; Pourmonshi, A.H.; Tavigi, K. The influence of heat treatment on the structure and tensile properties of thin-section A356 aluminum alloy casts refined by Ti, B and Zr. J. Mater. Res. 2017, 32, 3540–3547. [Google Scholar] [CrossRef]
- Casari, D.; Ludwig, T.H.; Merlin, M.; Arnberg, L.; Garagnani, G.L. The effect of Ni and V trace elements on the mechanical properties of A356 aluminium foundry alloy in as-cast and T6 heat treated conditions. Mater. Sci. Eng. 2014, 610, 414–426. [Google Scholar] [CrossRef]
- Zhu, M.; Jian, Z.; Yang, G.; Zhou, Y. Effects of T6 heat treatment on the microstructure, tensile properties, and fracture behavior of the modified A356 alloys. Mater. Des. 2012, 36, 243–249. [Google Scholar] [CrossRef]
- Merlin, M.; Garagnani, G.L. Mechanical and microstructural characterisation of A356 castings realised with full and empty cores. Metall. Sci. Technol. 2009, 27, 21–30. [Google Scholar]
- Möller, H.; Govender, G.; Stumpf, W. Application of shortened heat treatment cycles on A356 automotive brake calipers with respective globular and dendritic microstructures. Trans. Nonferr. Met. Soc. China 2010, 20, 1780–1785. [Google Scholar] [CrossRef] [Green Version]
- Winterbottom, W.L. Semi-solid forming applications: High volume automotive products. Metall. Sci. Technol. 2000, 18, 5–10. [Google Scholar]
- Czekaj, E.; Zych, J.; Kwak, Z.; Garbacz-Klempka, A. Quality Index of the AlSi7Mg0.3 Aluminium Casting Alloy Depending on the Heat Treatment Parameters. Arch. Foundry Eng. 2016, 16, 25–28. [Google Scholar] [CrossRef]
- Birol, Y. Impact of grain size on mechanical properties of AlSi7Mg0.3 alloy. Mater. Sci. Eng. 2013, 559, 394–400. [Google Scholar] [CrossRef]
- Pisarek, B.; Rapiejko, C.; Szymczak, T.; Pacyniak, T. Effect of Alloy Additions on the Structure and Mechanical Properties of the AlSi7Mg0.3 alloy. Arch. Foundry Eng. 2017, 17, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Kimura, T.; Nakamoto, T. Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting. Mater. Des. 2016, 89, 1294–1301. [Google Scholar] [CrossRef]
- Pezda, J. Prediction of Mechanical Properties of AlSi13Cu2Fe Alloy Using the ATND Methods. Mater. Res. 2016, 19, 252–257. [Google Scholar] [CrossRef] [Green Version]
- ISO 6892-1:2016; Metallic Materials—Tensile Testing, Part 1: Method of Test at Room Temperature; International Organization for Standardization: Geneva, Switzerland, July 2016.
- ISO 6506-1:2014; Metallic Materials—Brinell Hardness Test—Part 1: Test Method, International Organization for Standardization: Geneva, Switzerland, October 2014.
- Möller, H.; Govender, G.; Stumpf, W.E. Investigation of the T4 and T6 Heat Treatment Cycles of Semi-Solid Processed Aluminium Alloy A356. Open Mater. Sci. J. 2008, 2, 11–18. [Google Scholar] [CrossRef]
- Azimi, H.; Nourouzi, S.; Jamaati, R. Effects of Ti particles and T6 heat treatment on the microstructure and mechanical properties of A356 alloy fabricated by compocasting. Mater. Sci. Eng. 2021, 818, 141443. [Google Scholar] [CrossRef]
- Liu, G.; Gao, J.; Che, C.; Lu, Z.; Yi, W.; Zhang, L. Optimization of casting means and heat treatment routines for improving mechanical and corrosion resistance properties of A356-0.54Sc casting alloy. Mater. Today Commun. 2020, 24, 101227. [Google Scholar] [CrossRef]
- Pedersen, L.; Arnberg, L. The effect of solution heat treatment and quenching rates on mechanical properties and microstructures in AlSiMg foundry alloys. Metall. Mater. Trans. 2001, 32, 525–532. [Google Scholar] [CrossRef]
- Ragab, K.A.; Bournane, M.; Samuel, A.M.; Al-Ahmari, A.M.A.; Samuel, F.H.; Doty, H.W. Mechanical characterisation and quality index of A356-type aluminium castings heat treated using fluidised bed quenching. Mater. Sci. Technol. 2013, 29, 412–425. [Google Scholar] [CrossRef]
- Shivkumar, S.; Ricci, S.; Steenhoff, B.; Apelian, D.; Sigworth, G. An experimental study to optimize the heat treatment of A356 alloy. AFS Trans. 1989, 97, 791–810. [Google Scholar]
- Zhang, D.L.; Zheng, L. The Quench Sensitivity of Cast Al-7 Wt Pct Si-0.4 Wt Pct Mg Alloy. Metall. Mater. Trans. 1996, 27, 3983–3991. [Google Scholar] [CrossRef]
- Peng, J.; Tang, X.; He, J.; Xu, D. Effect of heat treatment on microstructure and tensile properties of A356 alloys. Trans. Nonferr. Met. Soc. China 2011, 21, 1950–1956. [Google Scholar] [CrossRef]
- Yıldırım, M.; Özyürek, D. The effects of Mg amount on the microstructure and mechanical properties of Al–Si–Mg alloys. Mater. Des. 2013, 51, 767–774. [Google Scholar] [CrossRef]
- Wang, T.; Zheng, Y.; Chen, Z.; Zhao, Y.; Kang, H. Effects of Sr on the microstructure and mechanical properties of in situ TiB2 reinforced A356 composite. Mater. Des. 2014, 64, 185–193. [Google Scholar] [CrossRef]
- Apelian, D.; Shivkumar, S.; Sigworth, G. Fundamental aspects of heat treatment of cast Al−Si−Mg alloys. AFS Trans. 1989, 97, 727–742. [Google Scholar]
- Kordas, P.; Zyska, A. The effect of heat treatment on mechanical properties of squeeze castings from AlSi7Mg alloys. In Proceedings of the 26th International Conference on Metallurgy and Materials, Brno, Czech Republic, 24–26 May 2017; pp. 2694–9296. [Google Scholar]
- Ishak, M.; Amir, A.; Ahmad, A.H. Effect of Solution Treatment Temperature on Microstructure and Mechanical Properties of A356 Alloy. IREME 2014, 8, 289–295. [Google Scholar]
- Zhang, D.; Zheng, L.; StJohn, D. Effect of a short solution treatment time on microstructure and mechanical properties of modified Al–7wt.% Si–0.3 wt.% Mg alloy. J. Light Met. 2002, 2, 27–36. [Google Scholar] [CrossRef]
- Yan, W.; Fu, G.; Xu, Y.; Lai, W.; Chen, H. Effect of sr addition on the microstructure and properties of the A356 AL alloy. Mater. Technol. 2021, 55, 443–448. [Google Scholar] [CrossRef]
- Ogris, E.; Wahlen, A.; Lüchinger, H.; Uggowitzer, P.J. On the silicon spheroidization in Al–Si alloys. J. Light Met. 2002, 2, 263–269. [Google Scholar] [CrossRef]
- Rometsch, P.; Arnberg, L.; Zhang, D. Modelling dissolution of Mg2Si and homogenisation in Al-Si-Mg casting alloys. Int. J. Cast Met. Res. 1999, 12, 1–8. [Google Scholar] [CrossRef]
- Wang, Q.G. Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357. Metall. Mater. Trans. 2003, 34, 2887–2899. [Google Scholar] [CrossRef]
- Rometsch, P.A.; Schaffer, G.B. An age hardening model for Al–7Si–Mg casting alloys. Mater. Sci. Eng. 2002, 325, 424–434. [Google Scholar] [CrossRef]
- Lim, Y.P.; Yeo, W.H.; Masita, A. Effect of heat treatment on gravity die-cast Sc-A356 aluminium alloy. Manuf. Rev. 2017, 4, 1–4. [Google Scholar] [CrossRef]
- Ceschini, L.; Morri, A.; Morri, A.; Pivetti, G. Predictive equations of the tensile properties based on alloy hardness and microstructure for an A356 gravity die cast cylinder head. Mater. Des. 2011, 32, 1367–1375. [Google Scholar] [CrossRef]
- Menargues, S.; Martín, E.; Baile, M.T.; Picas, J.A. New short T6 heat treatments for aluminium silicon alloys obtained by semisolid forming. Mater. Sci. Eng. 2015, 621, 236–242. [Google Scholar] [CrossRef]
- Tash, M.; Samuel, F.H.; Mucciardi, F.; Dothy, H.W. Effect of metallurgical parameters on the hardness and microstructural characterization of as-cast and heat-treated 356 and 319 aluminum alloys. Mater. Sci. Eng. 2007, 443, 185–201. [Google Scholar] [CrossRef]
- Sebaie, O.E.; Samuel, A.; Samuel, F.; Doty, H. The Effects of Mischmetal, Cooling Rate and Heat Treatment on the Eutectic Si Particle Characteristics of A319.1, A356.2 and A413.1 Al-Si Casting Alloys. Mater. Sci. Eng. 2008, 480, 342–355. [Google Scholar] [CrossRef]
- Piątkowski, J.; Bińczyk, F.; Smoliński, A. The complex modification of AlSi7Mg alloy. Arch. Foundry 2004, 4, 381–386. [Google Scholar]
- Orłowicz, W.; Mróz, M.; Tupaj, M. Effect of modification with sodium or strontium on microstructure and mechanical properties of AlSi7Mg alloy. Arch. Foundry 2006, 6, 381–386. [Google Scholar]
- Lados, D.A.; Apelian, D.; Wang, L.B. Solution treatment effects on microstructure and mechanical properties of Al−(1 to 13 pct)Si−Mg cast alloys. Metall. Mater. Trans. 2003, 42, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Ogris, E. Development of Al–Si–Mg Alloys for Semi-Solid Processing and Silicon Spheroidization Treatment (SST) for Al–Si Cast Alloys. Ph.D. Thesis, Swiss Federal Institute of Technology Zurich, Zürich, Switzerland, 2002. [Google Scholar]
- Caceres, C.H.; Wang, Q.G. Solidification conditions, heat treatment and the tensile ductility of Al−7Si−0.4Mg casting alloys. AFS Trans. 1996, 104, 1039–1043. [Google Scholar]
- Tiryakioglu, M. Si particle size and aspect ratio distributions in an Al–7% Si–0.6% Mg alloy during solution treatment. Mater. Sci. Eng. 2008, 473, 1–6. [Google Scholar] [CrossRef]
Si | Fe | Cu | Mn | Mg | Cr | Ni | Zn | Ti | Al |
---|---|---|---|---|---|---|---|---|---|
7.5 | 0.6 | 0.25 | 0.2 | 0.3 | 0.07 | 0.1 | 0.3 | 0.04 | balance |
Solution Treatment | Artificial Aging | Combination No | ||
---|---|---|---|---|
Temperature (ts), °C | Time (τs), h | Temperature (ta), °C | Time (τa), h | |
465 | 0.5 | 165 | 2 | 1 |
235 | 8 | 2 | ||
325 | 5 | 3 | ||
1.5 | 165 | 8 | 4 | |
235 | 5 | 5 | ||
325 | 2 | 6 | ||
3 | 165 | 5 | 7 | |
235 | 2 | 8 | ||
325 | 8 | 9 | ||
520 | 0.5 | 165 | 8 | 10 |
235 | 5 | 11 | ||
325 | 2 | 12 | ||
1.5 | 165 | 5 | 13 | |
235 | 2 | 14 | ||
325 | 8 | 15 | ||
3 | 165 | 2 | 16 | |
235 | 8 | 17 | ||
325 | 5 | 18 | ||
550 | 0.5 | 165 | 5 | 19 |
235 | 2 | 20 | ||
325 | 8 | 21 | ||
1.5 | 165 | 2 | 22 | |
235 | 8 | 23 | ||
325 | 5 | 24 | ||
3 | 165 | 8 | 25 | |
235 | 5 | 26 | ||
325 | 2 | 27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pezda, J. Optimization of Heat Treatment Parameters of AlSi7Mg Alloy. Materials 2022, 15, 1163. https://doi.org/10.3390/ma15031163
Pezda J. Optimization of Heat Treatment Parameters of AlSi7Mg Alloy. Materials. 2022; 15(3):1163. https://doi.org/10.3390/ma15031163
Chicago/Turabian StylePezda, Jacek. 2022. "Optimization of Heat Treatment Parameters of AlSi7Mg Alloy" Materials 15, no. 3: 1163. https://doi.org/10.3390/ma15031163
APA StylePezda, J. (2022). Optimization of Heat Treatment Parameters of AlSi7Mg Alloy. Materials, 15(3), 1163. https://doi.org/10.3390/ma15031163