Quad-Level Cell Switching with Excellent Reliability in TiN/AlOx:Ti/TaOx/TiN Memory Device
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Waser, R.; Dittmann, R.; Staikov, G.; Szot, K. Redox-Based Resistive Switching Memories—Nanoionic Mechanisms Prospects, and Challenges. Adv. Mater. 2009, 21, 2632. [Google Scholar] [CrossRef]
- Ahn, S.-E.; Lee, M.-J.; Park, Y.; Kang, B.S.; Lee, C.B.; Kim, K.H.; Seo, S.; Suh, D.-S.; Kim, D.-C.; Hur, J.; et al. Write current reduction in transition metal oxide based resistance change memory. Adv. Mater. 2008, 20, 924. [Google Scholar] [CrossRef]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The fourth circuit element. Nature 2008, 453, 80. [Google Scholar] [CrossRef] [PubMed]
- Mikolajick, T.; Salinga, M.; Kund, M.; Kever, T. Nonvolatile Memory Concepts Based on Resistive Switching in Inorganic Materials. Adv. Eng. Mater. 2009, 11, 235. [Google Scholar] [CrossRef]
- Liu, J.-C.; Wu, T.-Y.; Hou, T.-H. Optimizing Incremental Step Pulse Programming for RRAM through Device-Circuit Co-Design. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 617–621. [Google Scholar] [CrossRef]
- Suh, K.; Suh, B.; Um, Y.; Kim, J.; Choi, Y.; Koh, Y.; Lee, S.; Kwon, S.; Choi, B.; Yum, J.; et al. A 3.3 V 32 Mb NAND Flash Memory with Incremental Step Pulse Programming Scheme. IEEE ISSCC Dig. Tech. Pap. 1995, 30, 128–129. [Google Scholar]
- Gao, L.; Chen, P.-Y.; Yu, S. Programming protocol optimization for analog weight tuning in resistive memories. IEEE Electron Device Lett. 2015, 36, 1157–1159. [Google Scholar] [CrossRef]
- Liu, S.; Zou, X. QLC NAND study and enhanced Gray coding methods for sixteen-level-based program algorithms. Microelectron. J. 2017, 66, 58–66. [Google Scholar] [CrossRef]
- Jeong, G.I.; You, S.W.; Hyun, C.S.; Lee, D.H. Evaluation of Data Encoding Method Enhancing Program Performance of NAND Flash Memory. In Proceedings of the Korea Information Processing Society Conference, Seoul, Korea, 14–15 May 2021; pp. 43–46. [Google Scholar]
- Jeong, D.S.; Thomas, R.; Katiyar, R.S.; Scott, J.F.; Kohlstedt, H.; Petraru, A.; Hwang, C.S. Emerging memories: Resistive switching mechanisms and current status. Rep. Prog. Phys. 2012, 75, 076502. [Google Scholar] [CrossRef]
- Chang, T.-C.; Chang, K.-C.; Tsai, T.-M.; Chu, T.-J.; Sze, S.M. Resistance random access memory Mater. Today 2016, 19, 254. [Google Scholar]
- Wong, H.-S.P.; Lee, H.-Y.; Yu, S.; Chen, Y.-S.; Wu, Y.; Chen, P.-S.; Lee, B.; Chen, F.T.; Tsai, M.-J. Metal-oxide RRAM. Proc. IEEE 2012, 100, 1951. [Google Scholar] [CrossRef]
- Lee, M.; Lee, C.B.; Lee, D.; Lee, S.R.; Chang, M.; Hur, J.H.; Kim, Y.; Kim, C.; Seo, D.H.; Seo, S.; et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. Nat. Mater. 2011, 10, 625. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.J.; Zhang, M.-X.; Strachan, J.P.; Miao, F.M.; Pickett, M.D.; Kelley, R.D.; Ribeiro, G.M.; Williams, R.S. High switching endurance in TaOx memristive devices. Appl. Phys. Lett. 2010, 97, 232102. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.H.; Lee, J.H.; Seok, J.Y.; Song, S.J.; Yoon, J.H.; Yoon, K.J.; Lee, M.H.; Kim, K.M.; Lee, H.D.; Ryu, S.W.; et al. Improved endurance of resistive switching TiO2 thin film by hourglass shaped Magnéli filaments. Appl. Phys. Lett. 2011, 98, 262901. [Google Scholar]
- Yang, Y.; Sheridan, P.; Lu, W. Complementary resistive switching in tantalum oxide-based resistive memory devices. Appl. Phys. Lett. 2012, 100, 203112. [Google Scholar] [CrossRef]
- Torrezan, A.C.; Strachan, J.P.; Medeiros-Ribeiro, G.; Williams, R.S. Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 2011, 22, 485203. [Google Scholar] [CrossRef]
- Jo, S.H.; Kim, K.-H.; Lu, W. High-Density Crossbar Arrays Based on a Si Memristive System. Nano Lett. 2009, 9, 870. [Google Scholar] [CrossRef]
- Linn, E.; Rosezin, R.; Kugeler, C.; Waser, R. Memory window engineering of Ta2O5-x oxide-based resistive switches via incorporation of various insulating frames. Nat. Mater. 2010, 9, 403. [Google Scholar] [CrossRef]
- Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat Mater. 2007, 6, 833–840. [Google Scholar] [CrossRef]
- Yanagida, T.; Nagashima, K.; Oka, K.; Kanai, M.; Klamchuen, A.; Park, B.H.; Kawai, T. Scaling effect on unipolar and bipolar resistive switching of metal oxides. Sci. Rep. 2013, 3, 1–6. [Google Scholar] [CrossRef]
- Lee, M.J.; Park, Y.D.; Suh, D.; Lee, E.-H.; Seo, S.; Kim, D.-C.; Jung, R.J.; Kang, B.-S.; Ahn, S.-E.; Lee, C.B.; et al. Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory. Adv. Mater. 2007, 19, 3919–3923. [Google Scholar] [CrossRef]
- Yang, J.J.; Pickett, M.D.; Li, X.; Ohlberg, D.A.A.; Stewart, D.R.; Williams, R.S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 2008, 3, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Sawa, A. Resistive switching in transition metal oxides. Mater. Today. 2008, 11, 28–36. [Google Scholar] [CrossRef]
- Nail, C.; Molas, G.; Blaise, P.; Piccolboni, G.; Sklenard, B.; Cagli, C.; Bernard, M.; Roule, A.; Azzaz, M.; Vianello, E.; et al. Understanding RRAM endurance, retention and window margin trade-off using experimental results and simulations. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016. [Google Scholar]
- Wei, Z.; Takagi, T.; Kanzawa, Y.; Katoh, Y.; Ninomiya, T.; Kawai, K.; Muraoka, S.; Mitani, S.; Katayama, K.; Fujji, S.; et al. Retention Model for High-Density ReRAM. In Proceedings of the 2012 4th IEEE International Memory Workshop, Milan, Italy, 20–23 May 2012. [Google Scholar]
- Ielmini, D. Resistive switching memories based on metal oxides: Mechanisms, reliability and scaling. Semicond. Sci. Technol. 2016, 31, 063002. [Google Scholar] [CrossRef]
- Clima, S.; Chen, Y.Y.; Chen, C.Y.; Goux, L.; Govoreanu, B.; Degraeve, R.; Fantini, A.; Jurczak, M.; Pourtois, G. First-principles thermodynamics and defect kinetics guidelines for engineering a tailored RRAM device. J. Appl. Phys. 2016, 119, 225107. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Komura, M.; Degraeve, R.; Govoreanu, B.; Goux, L.; Fantini, A.; Raghavan, N.; Clima, S.; Zhang, L.; Belmonte, A.; et al. Improvement of data retention in HfO2/Hf 1T1R RRAM cell under low operating current. In Proceedings of the 2013 IEEE International Electron Devices Meeting, Washington, DC, USA, 9–11 December 2013. [Google Scholar]
- Lee, D.K.; Kim, G.H.; Shon, S.; Yang, M.K. Role of an Interfacial Layer in Ta2O5-Based Resistive Switching Devices for Improved Endurance and Reliable Multibit Operation. Phys. Status Solidi RRL 2020, 14, 1900646. [Google Scholar] [CrossRef]
- Zhao, L.; Clima, S.; Magyari-Köpe, B.; Jurczak, M.; Nishi, Y. Ab initio modeling of oxygen-vacancy formation in doped-HfOx RRAM: Effects of oxide phases, stoichiometry, and dopant concentrations. Appl. Phys. Lett. 2015, 107, 013504. [Google Scholar] [CrossRef]
- Park, S.-G.; Yang, M.; Ju, H.; Seong, D.; Lee, J.M.; Kim, E.; Jung, S.; Zhang, L.; Shin, Y.; Baek, I.; et al. A non-linear ReRAM cell with sub-1Ua ultralow operating current for high density vertical resistive memory (VRRAM). In Proceedings of the IEEE Int. Electron Devices Meeting (IEDM), San Francisco, CA, USA, 10–13 December 2012. [Google Scholar]
- Crowley, M.; Al-Shamma, A.; Bosch, D.; Farmwald, M.; Fasoli, L.; Ilkbahar, A.; Johnson, M.; Kleveland, B.; Lee, T.; Liu, T.-Y.; et al. 512 Mb PROM with 8 Layers of Antifuses/Diode Cells. In Proceedings of the 2003 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 13 February 2003; pp. 284–285. [Google Scholar]
- Kawahara, A.; Azuma, R.; Ikeda, Y.; Kawai, K.; Katoh, Y.; Hayakawa, Y.; Tsuji, K.; Yoneda, S.; Himeno, A.; Shimakawa, K.; et al. An 8 Mb Multi-Layered Cross-Point ReRAM Macro with 443 MB/s Write Throughput. IEEE J. Solid-State Circuits 2012, 48, 432–433. [Google Scholar] [CrossRef]
- Chevallier, C.J.; Siau, C.H.; Lim, S.F.; Namala, S.R.; Matsuoka, M.; Bateman, B.L.; Rinerson, D. A 0.13 μm 64 Mb Multi-Layered Conductive Metal-Oxide Memories. In Proceedings of the 2010 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 7–11 February 2010; pp. 260–261. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, H.J.; Seo, H.K.; Lee, S.Y.; Park, M.; Park, S.-G.; Yang, M.K. Quad-Level Cell Switching with Excellent Reliability in TiN/AlOx:Ti/TaOx/TiN Memory Device. Materials 2022, 15, 2402. https://doi.org/10.3390/ma15072402
Shin HJ, Seo HK, Lee SY, Park M, Park S-G, Yang MK. Quad-Level Cell Switching with Excellent Reliability in TiN/AlOx:Ti/TaOx/TiN Memory Device. Materials. 2022; 15(7):2402. https://doi.org/10.3390/ma15072402
Chicago/Turabian StyleShin, Hee Ju, Hyun Kyu Seo, Su Yeon Lee, Minsoo Park, Seong-Geon Park, and Min Kyu Yang. 2022. "Quad-Level Cell Switching with Excellent Reliability in TiN/AlOx:Ti/TaOx/TiN Memory Device" Materials 15, no. 7: 2402. https://doi.org/10.3390/ma15072402
APA StyleShin, H. J., Seo, H. K., Lee, S. Y., Park, M., Park, S. -G., & Yang, M. K. (2022). Quad-Level Cell Switching with Excellent Reliability in TiN/AlOx:Ti/TaOx/TiN Memory Device. Materials, 15(7), 2402. https://doi.org/10.3390/ma15072402