Diamond Structures for Tuning of the Finesse Coefficient of Photonic Devices
Abstract
:1. Introduction
2. Mathematical Investigation
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alizadeh, N.; Ghoorchian, A. Hybrid Optoelectrochemical Sensor for Superselective Detection of 2,4,6-Trinitrotoluene Based on Electrochemical Reduced Meisenheimer Complex. Anal. Chem. 2018, 90, 10360–10368. [Google Scholar] [CrossRef] [PubMed]
- Eynaki, H.; Kiani, M.A.; Golmohammadi, H. Nanopaper-Based Screen-Printed Electrodes: A Hybrid Sensing Bioplatform for Dual Opto-Electrochemical Sensing Applications. Nanoscale 2020, 12, 18409–18417. [Google Scholar] [CrossRef] [PubMed]
- Sabri, N.; Aljunid, S.A.; Salim, M.S.; Ahmad, R.B.; Kamaruddin, R. Toward Optical Sensors: Review and Applications. J. Phys. Conf. Ser. 2013, 423, 012064. [Google Scholar] [CrossRef]
- Pevec, S.; Donlagić, D. Multiparameter Fiber-Optic Sensors: A Review. Opt. Eng. 2019, 58, 072009. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.; Lalam, N.; Badar, M.; Liu, B.; Chorpening, B.T.; Buric, M.P.; Ohodnicki, P.R. Distributed Optical Fiber Sensing: Review and Perspective. Appl. Phys. Rev. 2019, 6, 041302. [Google Scholar] [CrossRef]
- Caldas, P.; Rego, G. Optical Fiber Interferometers Based on Arc-Induced Long Period Gratings at INESC TEC. Sensors. 2021, 21, 7400. [Google Scholar] [CrossRef]
- Santos, J.L.; Leite, A.P.; Jackson, D.A. Optical Fiber Sensing with a Low-Finesse Fabry–Perot Cavity. Appl. Opt. 1992, 31, 7361–7366. [Google Scholar] [CrossRef]
- Salvatori, S.; Ponticelli, G.S.; Pettinato, S.; Genna, S.; Guarino, S. High-Pressure Sensors Based on Laser-Manufactured Sintered Silicon Carbide. Appl. Sci. 2020, 10, 7095. [Google Scholar] [CrossRef]
- Guillen Bonilla, J.T.; Guillen Bonilla, H.; Rodríguez Betancourtt, V.M.; Sánchez Morales, M.E.; Reyes Gómez, J.; Casillas Zamora, A.; Guillen Bonilla, A. Low-Finesse Fabry–Pérot Interferometers Applied in the Study of the Relation between the Optical Path Difference and Poles Location. Sensors 2020, 20, 453. [Google Scholar] [CrossRef] [Green Version]
- Guillen Bonilla, J.T.; Guillen Bonilla, A.; Rodríguez Betancourtt, V.M.; Guillen Bonilla, H.; Casillas Zamora, A. A Theoretical Study and Numerical Simulation of a Quasi-Distributed Sensor Based on the Low-Finesse Fabry-Perot Interferometer: Frequency-Division Multiplexing. Sensors 2017, 17, 859. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Torres, D.; Lopez-Aldaba, A.; Elosua, C.; Auguste, J.L.; Jamier, R.; Roy, P.; Lopez-Amo, M.; Arregui, F.J. Comparison between Different Structures of Suspended-Core Microstructured Optical Fibers for Volatiles Sensing. Sensors 2018, 18, 2523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismail, N.; Kores, C.C.; Geskus, D.; Pollnau, M. Fabry-Perot Resonator: Spectral Line Shapes, Generic and Related Airy Distributions, Linewidths, Finesses, and Performance at Low or Frequency-Dependent Reflectivity. Opt. Express 2016, 24, 16366–16389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bitarafan, M.H.; DeCorby, R.G. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information. Sensors 2017, 17, 1748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hindle, F.; Bocquet, R.; Pienkina, A.; Cuisset, A.; Mouret, G. Terahertz Gas Phase Spectroscopy Using a High-Finesse Fabry-Perot Cavity. Optica 2019, 6, 1449–1454. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Yu, J.; Zhang, A.; Han, B.; Hu, H.; Zhang, L.; Yang, E. Investigation of a Rate-Selectable All-Optical Packet Clock Recovery System. IEEE Photonics Technol. Lett. 2008, 20, 466–468. [Google Scholar] [CrossRef]
- Wachter, G.; Kuhn, S.; Minniberger, S.; Salter, C.; Asenbaum, P.; Millen, J.; Schneider, M.; Schalko, J.; Schmid, U.; Felgner, A.; et al. Silicon Microcavity Arrays with Open Access and a Finesse of Half a Million. Light Sci. Appl. 2019, 8, 37. [Google Scholar] [CrossRef]
- Bitou, Y.; Sato, O.; Telada, S. Three-Spherical-Mirror Test for Radius of Curvature Measurement Using a Fabry-Pérot Cavity. Opt. Express 2019, 27, 13664–13674. [Google Scholar] [CrossRef]
- Li, C.; Yang, W.; Wang, M.; Yu, X.; Fan, J.; Xiong, Y.; Yang, Y.; Li, L. A Review of Coating Materials Used to Improve the Performance of Optical Fiber Sensors. Sensors 2020, 20, 4215. [Google Scholar] [CrossRef]
- Auciello, O.; Aslam, D.M. Review on Advances in Microcrystalline, Nanocrystalline and Ultrananocrystalline Diamond Films-Based Micro/Nano-Electromechanical Systems Technologies. J. Mater. Sci. 2021, 56, 7171–7230. [Google Scholar] [CrossRef]
- Mani, N.; Rifai, A.; Houshyar, S.; Booth, M.A.; Fox, K. Diamond in Medical Devices and Sensors: An Overview of Diamond Surfaces. Med. Devices Sens. 2020, 3, e10127. [Google Scholar] [CrossRef]
- Liao, M. Progress in Semiconductor Diamond Photodetectors and MEMS Sensors. Funct. Diam. 2021, 1, 29–46. [Google Scholar] [CrossRef]
- Yence, M.; Cetinkaya, A.; Ozcelikay, G.; Kaya, S.I.; Ozkan, S.A. Boron-Doped Diamond Electrodes: Recent Developments and Advances in View of Electrochemical Drug Sensors. Crit. Rev. Anal. Chem. 2021, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Tsukanov, A.V. Integrated Optical-Controlled Diamond Sensors. Russ. Microelectron. 2017, 46, 225–242. [Google Scholar] [CrossRef]
- Majchrowicz, D.; Kosowska, M.; Sankaran, K.J.; Struk, P.; Wąsowicz, M.; Sobaszek, M.; Haenen, K.; Jędrzejewska-Szczerska, M. Nitrogen-Doped Diamond Film for Optical Investigation of Hemoglobin Concentration. Materials 2018, 11, 109. [Google Scholar] [CrossRef] [Green Version]
- Szczerska, M.; Kosowska, M.; Listewnik, P.; Rycewicz, M.; Bechelany, M.; Fleger, Y.; Fixler, D.; Jakóbczyk, P. Diamond Protection for Reusable ZnO Coated Fiber-Optic Measurement Head in Optoelectrochemical Investigation of Bisphenol A. Measurement 2022, 189, 110495. [Google Scholar] [CrossRef]
- Milewska, D.; Karpienko, K.; Jędrzejewska-Szczerska, M. Application of Thin Diamond Films in Low-Coherence Fiber-Optic Fabry Pérot Displacement Sensor. Diam. Relat. Mater. 2016, 64, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Born, M. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1999; ISBN 978-0-521-64222-4. [Google Scholar]
- Pedrotti, F.L.; Pedrotti, L.S.; Pedrott, L.M. Introduction to Optics, 3rd ed.; Addison-Wesley: Upper Saddle River, NJ, USA, 2006; ISBN 978-0-13-149933-1. [Google Scholar]
- Kosowska, M.; Pawłowska, S.; Sankaran, K.J.; Majchrowicz, D.; Haenen, K.; Dholakia, K.; Szczerska, M. Incorporation of Nitrogen in Diamond Films—A New Way of Tuning Parameters for Optical Passive Elements. Diam. Relat. Mater. 2021, 111, 108221. [Google Scholar] [CrossRef]
- Bogdanowicz, R.; Fabiańska, A.; Golunski, L.; Sobaszek, M.; Gnyba, M.; Ryl, J.; Darowicki, K.; Ossowski, T.; Janssens, S.D.; Haenen, K.; et al. Influence of the Boron Doping Level on the Electrochemical Oxidation of the Azo Dyes at Si/BDD Thin Film Electrodes. Diam. Relat. Mater. 2013, 39, 82–88. [Google Scholar] [CrossRef]
- Bogdanowicz, R.; Ficek, M.; Sobaszek, M.; Nosek, A.; Gołuński, Ł.; Karczewski, J.; Jaramillo-Botero, A.; Goddard, W.A., III; Bockrath, M.; Ossowski, T. Growth and Isolation of Large Area Boron-Doped Nanocrystalline Diamond Sheets: A Route toward Diamond-on-Graphene Heterojunction. Adv. Funct. Mater. 2019, 29, 1805242. [Google Scholar] [CrossRef]
- Kosowska, M.; Majchrowicz, D.; Sankaran, K.J.; Ficek, M.; Haenen, K.; Szczerska, M. Doped Nanocrystalline Diamond Films as Reflective Layers for Fiber-Optic Sensors of Refractive Index of Liquids. Materials 2019, 12, 2124. [Google Scholar] [CrossRef] [Green Version]
Parameter | A | B | C | D |
---|---|---|---|---|
Finesse coefficient | 0.4891 | 0.3094 | 0.3653 | 4.4383 |
Minimal value | 0.6716 | 0.7637 | 0.7324 | 0.2253 |
A | B | C | D | |
---|---|---|---|---|
Reflective surface | Silver | Boron-doped diamond | Nitrogen-doped diamond | Nanocrystalline diamond sheet and silver |
Cavity length | 100 µm | 100 µm | 150 µm | 180 µm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosowska, M.; Mallik, A.K.; Rycewicz, M.; Haenen, K.; Szczerska, M. Diamond Structures for Tuning of the Finesse Coefficient of Photonic Devices. Materials 2022, 15, 2552. https://doi.org/10.3390/ma15072552
Kosowska M, Mallik AK, Rycewicz M, Haenen K, Szczerska M. Diamond Structures for Tuning of the Finesse Coefficient of Photonic Devices. Materials. 2022; 15(7):2552. https://doi.org/10.3390/ma15072552
Chicago/Turabian StyleKosowska, Monika, Awadesh K. Mallik, Michał Rycewicz, Ken Haenen, and Małgorzata Szczerska. 2022. "Diamond Structures for Tuning of the Finesse Coefficient of Photonic Devices" Materials 15, no. 7: 2552. https://doi.org/10.3390/ma15072552
APA StyleKosowska, M., Mallik, A. K., Rycewicz, M., Haenen, K., & Szczerska, M. (2022). Diamond Structures for Tuning of the Finesse Coefficient of Photonic Devices. Materials, 15(7), 2552. https://doi.org/10.3390/ma15072552