Properties of SiCN Films Relevant to Dental Implant Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. SiCN Coating
2.3. Characterization Techniques
2.3.1. X-ray Photoelectron Spectroscopy (XPS) Surface Composition Analysis
2.3.2. Deposition Rate Determination
2.3.3. Refractive Index Measurement
2.3.4. Contact Angles Measurement
2.3.5. Corrosion Rate Determination
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pye, A.; Lockhart, D.; Dawson, M.; Murray, C.; Smith, A. A review of dental implants and infection. J. Hosp. Infect. 2009, 72, 104–110. [Google Scholar]
- Kasemo, B.; Gold, J. Implant surfaces and interface processes. Adv. Dent. Res. 1999, 13, 8–20. [Google Scholar]
- Dong, H.; Liu, H.; Zhou, N.; Li, Q.; Yang, G.; Chen, L.; Mou, Y. Surface modified techniques and emerging functional coating of dental implants. Coatings 2020, 10, 1012. [Google Scholar]
- Chouirfa, H.; Bouloussa, H.; Migonney, V.; Falentin-Daudré, C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 2019, 83, 37–54. [Google Scholar] [CrossRef]
- Mecholsky, J.J.; Hsu, S.M.; Jadaan, O.; Griggs, J.; Neal, D.; Clark, A.E.; Xia, X.; Esquivel-Upshaw, J.F. Forensic and reliability analyses of fixed dental prostheses. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021, 109, 1360–1368. [Google Scholar]
- Fickl, S.; Kebschull, M.; Calvo-Guirado, J.L.; Hürzeler, M.; Zuhr, O. Experimental peri-implantitis around different types of implants–A clinical and radiographic study in dogs. Clin. Implant. Dent. Relat. Res. 2015, 17, e661–e669. [Google Scholar]
- Jemat, A.; Ghazali, M.J.; Razali, M.; Otsuka, Y. Surface modifications and their effects on titanium dental implants. BioMed Res. Int. 2015, 791725. [Google Scholar]
- Saini, M.; Singh, Y.; Arora, P.; Arora, V.; Jain, K. Implant biomaterials: A comprehensive review. World J. Clin. Cases WJCC 2015, 3, 52. [Google Scholar] [CrossRef]
- Esquivel-Upshaw, J.F.; Ren, F.; Carey, P.; Clark, A.E., Jr.; Batich, C.D. Quarternized Titanium-Nitride Anti-Bacterial Coating for Dental Implants. U.S. Patent App. 17/258,022, 29 July 2021. [Google Scholar]
- Calderon, P.d.S.; Rocha, F.R.G.; Xia, X.; Camargo, S.E.A.; Pascoal, A.L.d.B.; Chiu, C.W.; Ren, F.; Ghivizzani, S.; Esquivel-Upshaw, J.F. Effect of Silicon Carbide Coating on Osteoblast Mineralization of Anodized Titanium Surfaces. J. Funct. Biomater. 2022, 13, 247. [Google Scholar] [CrossRef]
- Zeng, L.; Walker, A.R.; Calderon, P.d.S.; Xia, X.; Ren, F.; Esquivel-Upshaw, J.F. The Effect of Amino Sugars on the Composition and Metabolism of a Microcosm Biofilm and the Cariogenic Potential against Teeth and Dental Materials. J. Funct. Biomater. 2022, 13, 223. [Google Scholar] [CrossRef] [PubMed]
- Camargo, S.E.A.; Roy, T.; Xia, X.; Fares, C.; Hsu, S.M.; Ren, F.; Clark, A.E.; Neal, D.; Esquivel-Upshaw, J.F. Novel coatings to minimize corrosion of titanium in oral biofilm. Materials 2021, 14, 342. [Google Scholar] [PubMed]
- Camargo, S.E.A.; Xia, X.; Fares, C.; Ren, F.; Hsu, S.M.; Budei, D.; Aravindraja, C.; Kesavalu, L.; Esquivel-Upshaw, J.F. Nanostructured Surfaces to Promote Osteoblast Proliferation and Minimize Bacterial Adhesion on Titanium. Materials 2021, 14, 4357. [Google Scholar] [PubMed]
- Hsu, S.M.; Fares, C.; Xia, X.; Rasel, M.A.J.; Ketter, J.; Afonso Camargo, S.E.; Haque, M.A.; Ren, F.; Esquivel-Upshaw, J.F. In vitro corrosion of SiC-coated anodized Ti nano-tubular surfaces. J. Funct. Biomater. 2021, 12, 52. [Google Scholar] [CrossRef] [PubMed]
- Fares, C.; Hsu, S.M.; Xian, M.; Xia, X.; Ren, F.; Mecholsky, J.J., Jr.; Gonzaga, L.; Esquivel-Upshaw, J. Demonstration of a SiC protective coating for titanium implants. Materials 2020, 13, 3321. [Google Scholar] [CrossRef]
- Kaloyeros, A.E.; Pan, Y.; Goff, J.; Arkles, B. Silicon nitride and silicon nitride-rich thin film technologies: State-of-the-art processing technologies, properties, and applications. ECS J. Solid State Sci. Technol. 2020, 9, 063006. [Google Scholar]
- Michelle Morcos, R.; Mera, G.; Navrotsky, A.; Varga, T.; Riedel, R.; Poli, F.; Müller, K. Enthalpy of formation of carbon-rich polymer-derived amorphous SiCN ceramics. J. Am. Ceram. Soc. 2008, 91, 3349–3354. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, D.; Bai, W.; Tu, J. Investigation of silicon carbon nitride nanocomposite films as a wear resistant layer in vitro and in vivo for joint replacement applications. Colloids Surf. B Biointerfaces 2017, 153, 41–51. [Google Scholar] [CrossRef]
- Xie, E.; Ma, Z.; Lin, H.; Zhang, Z.; He, D. Preparation and characterization of SiCN films. Opt. Mater. 2003, 23, 151–156. [Google Scholar] [CrossRef]
- Pandian, C.J.; Palanivel, R.; Balasundaram, U. Green synthesized nickel nanoparticles for targeted detection and killing of S. typhimurium. J. Photochem. Photobiol. B Biol. 2017, 174, 58–69. [Google Scholar] [CrossRef]
- Travlou, N.A.; Giannakoudakis, D.A.; Algarra, M.; Labella, A.M.; Rodríguez-Castellón, E.; Bandosz, T.J. S-and N-doped carbon quantum dots: Surface chemistry dependent antibacterial activity. Carbon 2018, 135, 104–111. [Google Scholar]
- Pettersson, M.; Berlind, T.; Schmidt, S.; Jacobson, S.; Hultman, L.; Persson, C.; Engqvist, H. Structure and composition of silicon nitride and silicon carbon nitride coatings for joint replacements. Surf. Coat. Technol. 2013, 235, 827–834. [Google Scholar]
- Pettersson, M.; Tkachenko, S.; Schmidt, S.; Berlind, T.; Jacobson, S.; Hultman, L.; Engqvist, H.; Persson, C. Mechanical and tribological behavior of silicon nitride and silicon carbon nitride coatings for total joint replacements. J. Mech. Behav. Biomed. Mater. 2013, 25, 41–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ermakova, E.; Rumyantsev, Y.; Shugurov, A.; Panin, A.; Kosinova, M. PECVD synthesis, optical and mechanical properties of silicon carbon nitride films. Appl. Surf. Sci. 2015, 339, 102–108. [Google Scholar]
- Jedrzejowski, P.; Cizek, J.; Amassian, A.; Klemberg-Sapieha, J.; Vlcek, J.; Martinu, L. Mechanical and optical properties of hard SiCN coatings prepared by PECVD. Thin Solid Films 2004, 447, 201–207. [Google Scholar] [CrossRef]
- Martinu, L.; Zabeida, O.; Klemberg-Sapieha, J. Plasma-enhanced chemical vapor deposition of functional coatings. In Handbook of Deposition Technologies for Films and Coatings; Elsevier: Amsterdam, The Netherlands, 2010; pp. 392–465. [Google Scholar]
- Jun, T.; Song, K.; Jeong, Y.; Woo, K.; Kim, D.; Bae, C.; Moon, J. High-performance low-temperature solution-processable ZnO thin film transistors by microwave-assisted annealing. J. Mater. Chem. 2011, 21, 1102–1108. [Google Scholar]
- Huang, H.; Winchester, K.; Suvorova, A.; Lawn, B.; Liu, Y.; Hu, X.; Dell, J.; Faraone, L. Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films. Mater. Sci. Eng. A 2006, 435, 453–459. [Google Scholar]
- Lei, X.; Kane, S.; Cogan, S.; Lorach, H.; Galambos, L.; Huie, P.; Mathieson, K.; Kamins, T.; Harris, J.; Palanker, D. SiC protective coating for photovoltaic retinal prostheses. In Silicon Carbide Technology for Advanced Human Healthcare Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 99–123. [Google Scholar]
- Kalisz, M.; Grobelny, M.; S´winiarskib, M.; Firek, P. Comparison of the structural and corrosion properties of the graphene/SiN (200) coating system deposited on titanium alloy surfaces covered with SiN transition layers. Surf. Coat. Technol. 2016, 299, 65–70. [Google Scholar]
- Beamson, G.; Briggs, D. High Resolution XPS of Organic Polymers; The Scienta ESCA300 Database; Wiley: Hoboken, NJ, USA, 1992. [Google Scholar]
- Wagner, C.; Naumkin, A.; Kraut-Vass, A.; Allison, J.; Powell, C.; Rumble, J., Jr. NIST Standard Reference Database 20, Version 3.4 (Web Version); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2003; p. 20899. [Google Scholar]
- Kozioł, A.; Grela, E.; Macegoniuk, K.; Grabowiecka, A.; Lochyn’ski, S. Synthesis of nitrogen-containing monoterpenoids with antibacterial activity. Nat. Prod. Res. 2020, 34, 1074–1079. [Google Scholar]
- Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules 2020, 25, 1909. [Google Scholar]
- Duosiken, D.; Yang, R.; Dai, Y.; Marfavi, Z.; Lv, Q.; Li, H.; Sun, K.; Tao, K. Near-infrared light-excited reactive oxygen species generation by thulium oxide nanoparticles. J. Am. Chem. Soc. 2022, 144, 2455–2459. [Google Scholar] [CrossRef]
- Dryden, M. Reactive oxygen species: A novel antimicrobial. Int. J. Antimicrob. Agents 2018, 51, 299–303. [Google Scholar] [CrossRef]
- Knight, J.D.; Miranker, A.D. Phospholipid catalysis of diabetic amyloid assembly. J. Mol. Biol. 2004, 341, 1175–1187. [Google Scholar] [CrossRef]
- Terakawa, M.S.; Lin, Y.; Kinoshita, M.; Kanemura, S.; Itoh, D.; Sugiki, T.; Okumura, M.; Ramamoorthy, A.; Lee, Y.H. Impact of membrane curvature on amyloid aggregation. Biochim. Biophys. Acta (BBA)-Biomembr. 2018, 1860, 1741–1764. [Google Scholar] [CrossRef] [PubMed]
- Lira, R.B.; Leomil, F.S.; Melo, R.J.; Riske, K.A.; Dimova, R. To close or to collapse: The role of charges on membrane stability upon pore formation. Adv. Sci. 2021, 8, 2004068. [Google Scholar] [CrossRef] [PubMed]
- Ausilio, C.; Lubrano, C.; Mariano, A.; Santoro, F. Negatively-charged supported lipid bilayers regulate neuronal adhesion and outgrowth. RSC Adv. 2022, 12, 30270–30277. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Fares, C.; Elhassani, R.; Ren, F.; Kim, M.; Hsu, S.M.; Clark, A.E.; Esquivel-Upshaw, J.F. Demonstration of SiO2/SiC-based protective coating for dental ceramic prostheses. J. Am. Ceram. Soc. 2019, 102, 6591–6599. [Google Scholar] [CrossRef]
- Pan, D.; Wan, Q.; Galli, G. The refractive index and electronic gap of water and ice increase with increasing pressure. Nat. Commun. 2014, 5, 3919. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Ji, M.; Li, L.; Wu, Y.; Yu, Q.; Chen, M. Improving wettability, antibacterial and tribological behaviors of zirconia ceramics through surface texturing. Ceram. Int. 2022, 48, 3702–3710. [Google Scholar] [CrossRef]
- Valiei, A.; Lin, N.; McKay, G.; Nguyen, D.; Moraes, C.; Hill, R.J.; Tufenkji, N. Surface wettability is a key feature in the mechano-bactericidal activity of nanopillars. ACS Appl. Mater. Interfaces 2022, 14, 27564–27574. [Google Scholar] [CrossRef]
- Zhang, X.; Bai, R.; Sun, Q.; Zhuang, Z.; Zhang, Y.; Chen, S.; Han, B. Bio-inspired special wettability in oral antibacterial applications. Front. Bioeng. Biotechnol. 2022, 10, 1001616. [Google Scholar] [CrossRef]
- Rezaei, F.; Abbasi-Firouzjah, M.; Shokri, B. Investigation of antibacterial and wettability behaviours of plasma-modified PMMA films for application in ophthalmology. J. Phys. D Appl. Phys. 2014, 47, 085401. [Google Scholar]
- Boinovich, L.B.; Modin, E.B.; Aleshkin, A.V.; Emelyanenko, K.A.; Zulkarneev, E.R.; Kiseleva, I.A.; Vasiliev, A.L.; Emelyanenko, A.M. Effective antibacterial nanotextured surfaces based on extreme wettability and bacteriophage seeding. ACS Appl. Nano Mater. 2018, 1, 1348–1359. [Google Scholar] [CrossRef]
- Wang, L.; Guo, X.; Zhang, H.; Liu, Y.; Wang, Y.; Liu, K.; Liang, H.; Ming, W. Recent Advances in Superhydrophobic and Antibacterial Coatings for Biomedical Materials. Coatings 2022, 12, 1469. [Google Scholar] [CrossRef]
- Moulder, J.; Stickle, W.; Sobol, P.; Bomben, K.; Chastain, J. Physical electronics division. In Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Minnesota, MN, USA, 1995. [Google Scholar]
- Ohring, M. Mechanical properties of thin films. In Materials Science of Thin Films; Academic Press: San Diego, CA, USA, 2002; pp. 711–781. [Google Scholar]
- Hsu, S.M.; Ren, F.; Chen, Z.; Kim, M.; Fares, C.; Clark, A.E.; Neal, D.; Esquivel-Upshaw, J.F. Novel coating to minimize corrosion of glass-ceramics for dental applications. Materials 2020, 13, 1215. [Google Scholar] [CrossRef] [Green Version]
- Reddy, A.; Norris, D.F.; Momeni, S.S.; Waldo, B.; Ruby, J.D. The pH of beverages available to the American consumer. J. Am. Dent. Assoc. 2016, 147, 255. [Google Scholar]
- Seow, W.; Thong, K. Erosive effects of common beverages on extracted premolar teeth. Aust. Dent. J. 2005, 50, 173–178. [Google Scholar]
- Kumar, N.; Amin, F.; Hashem, D.; Khan, S.; Zaidi, H.; Rahman, S.; Farhan, T.; Mahmood, S.J.; Asghar, M.A.; Zafar, M.S. Evaluating the pH of Various Commercially Available Beverages in Pakistan: Impact of Highly Acidic Beverages on the Surface Hardness and Weight Loss of Human Teeth. Biomimetics 2022, 7, 102. [Google Scholar]
- Maeda, T.; Yamaguchi, K.; Takamizawa, T.; Rikuta, A.; Tsubota, K.; Ando, S.; Miyazaki, M. pH changes of self-etching primers mixed with powdered dentine. J. Dent. 2008, 36, 606–610. [Google Scholar]
SiH4 (sccm) | NH3 (sccm) | CH4 (sccm) | Si: (%) | N: (%) | C: (%) | O: (%) | Deposition Rate (nm/min) | Contact Angle (°) | Corrosion Rate (ang/hour) | Refractive Index (n) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH 2 | pH 7 | pH 10 | ||||||||||
300 | 2 | 100 | 60.09 | 7.37 | 28.54 | 4 | 5.7 | 63.7 | 0.12 | 0.01 | 0.14 | 2.5 |
300 | 4 | 100 | 58.73 | 10.41 | 28.85 | 2.01 | 6 | 65.4 | 0.73 | 0.02 | 0.63 | 2.44 |
300 | 6 | 100 | 57.1 | 12.04 | 26.16 | 4.7 | 6.1 | 68.7 | 1.71 | 0.95 | 1.32 | 2.34 |
300 | 8 | 100 | 52.43 | 17.50 | 25.26 | 4.8 | 7 | 71 | 1.71 | 1.42 | 1.45 | 2.3 |
250 | 8 | 100 | 51.73 | 17.90 | 26.17 | 4.2 | - | - | - | - | - | - |
250 | 8 | 150 | 46.55 | 17.52 | 31.63 | 4.3 | - | - | - | - | - | - |
250 | 8 | 200 | 48.96 | 13.91 | 32.53 | 4.6 | - | - | - | - | - | - |
300 | 8 | 100 | 52.43 | 17.50 | 25.26 | 4.8 | - | - | - | - | - | - |
250 | 8 | 100 | 51.73 | 17.90 | 26.17 | 4.2 | - | - | - | - | - | - |
200 | 8 | 100 | 49.71 | 19.53 | 27.58 | 3.18 | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, X.; Chiang, C.-C.; Gopalakrishnan, S.K.; Kulkarni, A.V.; Ren, F.; Ziegler, K.J.; Esquivel-Upshaw, J.F. Properties of SiCN Films Relevant to Dental Implant Applications. Materials 2023, 16, 5318. https://doi.org/10.3390/ma16155318
Xia X, Chiang C-C, Gopalakrishnan SK, Kulkarni AV, Ren F, Ziegler KJ, Esquivel-Upshaw JF. Properties of SiCN Films Relevant to Dental Implant Applications. Materials. 2023; 16(15):5318. https://doi.org/10.3390/ma16155318
Chicago/Turabian StyleXia, Xinyi, Chao-Ching Chiang, Sarathy K. Gopalakrishnan, Aniruddha V. Kulkarni, Fan Ren, Kirk J. Ziegler, and Josephine F. Esquivel-Upshaw. 2023. "Properties of SiCN Films Relevant to Dental Implant Applications" Materials 16, no. 15: 5318. https://doi.org/10.3390/ma16155318
APA StyleXia, X., Chiang, C. -C., Gopalakrishnan, S. K., Kulkarni, A. V., Ren, F., Ziegler, K. J., & Esquivel-Upshaw, J. F. (2023). Properties of SiCN Films Relevant to Dental Implant Applications. Materials, 16(15), 5318. https://doi.org/10.3390/ma16155318