The Washout Resistance of Bioactive Root-End Filling Materials
Abstract
:1. Introduction
2. Materials and Methods
- Intermediate Restorative Material (IRM; Dentsply Sirona, Charlotte, NC, USA);
- MTA Angelus White (Angelus, Londrina, Brazil);
- Biodentine (Septodont, Saint Maur-des-Fossés, Cedex, France);
- EndoCem Zr (Maruchi, Wonju, Republic of Korea);
- MTA HP (Angelus, Londrina, Brazil).
2.1. Assessment of Washout Resistance
2.1.1. Experiment 1
2.1.2. Experiment 2
2.2. Qualitative Analysis of the Marginal Adaptation of the Materials to the Walls of the Root-End Preparations and Disintegration of Fillings
2.3. Quantitative Assessment of the Volume of Washed out Material
2.4. Statistical Analysis
3. Results
3.1. Qualitative Analysis of the Marginal Adaptation of the Materials to the Walls of the-End Preparations and Disintegration of Fillings
3.2. Quantitative Assessment of Washed out Material
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, S.; Kratchman, S. Modern endodontic surgery concepts and practice: A review. J. Endod. 2006, 32, 601–623. [Google Scholar] [CrossRef] [PubMed]
- Barone, C.; Dao, T.T.; Basrani, B.B.; Wang, N.; Friedman, S. Treatment outcome in endodontics: The Toronto study–phases 3, 4, and 5: Apical surgery. J. Endod. 2010, 36, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Tsesis, I.; Rosen, E.; Taschieri, S.; Telishevsky Strauss, Y.; Ceresoli, V.; Del Fabbro, M. Outcomes of surgical endodontic treatment performed by a modern technique: An updated meta-analysis of the literature. J. Endod. 2013, 39, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Von Arx, T.; Penarrocha, M.; Jensen, S. Prognostic factors in apical surgery with root-end filling: A meta-analysis. J. Endod. 2010, 36, 957–973. [Google Scholar] [CrossRef]
- Niederman, R.; Theodosopoulou, J.N. A systematic review of in vivo retrograde obturation materials. Int. Endod. J. 2003, 36, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.B. Considerations in the selection of a root end filling materials. Oral Surg. Oral Med. Oral Pathol. 1999, 87, 398–404. [Google Scholar] [CrossRef]
- Paños-Crespo, A.; Alba Sánchez-Torres, A.; Gay-Escoda, C. Retrograde filling material in periapical surgery: A systematic review. Med. Oral Patol. Oral Cir. Bucal. 2021, 26, 422–429. [Google Scholar] [CrossRef]
- Theodosopoulou, J.N.; Niederman, R. A systematic review of in vitro retrograde obturation materials. J. Endod. 2005, 31, 341–349. [Google Scholar] [CrossRef]
- Oleszek-Listopad, J.; Sarna-Bos, K.; Szabelska, A.; Czelej-Piszcz, E.; Borowicz, J.; Szymanska, J. The use of gold and gold alloys in prosthetic dentistry—A literature review. Curr. Issues Pharm. Med. Sci. 2015, 28, 192–195. [Google Scholar] [CrossRef]
- Vajrabhaya, L.O.; Korsuwannawong, S.; Jantarat, J.; Korre, S. Biocompatibility of furcal perforation repair material using cell culture technique: Ketac Molar versus Pro-Root MTA. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2006, 102, 48–50. [Google Scholar] [CrossRef]
- Jung, S.; Mielert, J.; Kleinheinz, J.; Dammaschke, T. Human oral cells’ response to different endodontic restorative materials: An in vitro study. Head. Face. Med. 2014, 23, 10–55. [Google Scholar] [CrossRef] [PubMed]
- Torabinejad, M.; Higa, R.K.; McKendry, D.J.; Pitt Ford, T.R. Dye leakage of four root end filling materials: Effects of blood contamination. J. Endod. 1994, 20, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Katsamakis, S.; Slot, D.E.; van der Sluis, L.W.; van der Weijden, F. Histological responses of the periodontium to MTA: A systematic review. J. Clin. Periodontol. 2013, 40, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Sipert, C.R.; Hussne, R.P.; Nishiyama, C.K.; Torres, S.A. In vitro antimicrobial activity of Fill Canal, Sealapex, mineral trioxide aggregate, Portland cement and EndoRez. Int. Endod. J. 2005, 38, 539–543. [Google Scholar] [CrossRef]
- Eldeniz, A.U.; Hadimili, H.H.; Ataoglu, H.; Ørstavik, D. Antibacterial effect of selected root-end filling materials. J. Endod. 2006, 32, 345–349. [Google Scholar] [CrossRef]
- Baek, S.H.; Plenk, H.; Kim, S. Periapical tissue responses and cementum regeneration with amalgam, Super EBA, and MTA as root-end filling materials. J. Endod. 2005, 31, 444–449. [Google Scholar] [CrossRef]
- Torabinejad, M.; Hong, C.U.; Lee, S.J.; Monsef, M.; Pitt Ford, T.R. Investigation of mineral trioxide aggregate for root-end filling in dogs. J. Endod. 1995, 21, 603–608. [Google Scholar] [CrossRef]
- Torabinejad, M.; Pitt Ford, T.R.; McKendry, D.J.; Abedi, H.R.; Miller, D.A.; Kariyawasam, S.P. Histologic assessment of mineral trioxide aggregate as a root-end filling in monkeys. J. Endod. 1997, 23, 225–228. [Google Scholar] [CrossRef]
- Duarte, M.A.H.; Marciano, M.A.; Vivan, R.R.; Tanomaru Filho, M.; Tanomaru, J.M.G.; Camilleri, J. Braz Tricalcium silicate-based cements: Properties and modifications. Oral Res. 2018, 32 (Suppl. S1), 70. [Google Scholar]
- Cervino, G.; Laino, L.; D’Amico, C.; Russo, D.; Nucci, L.; Amoroso, G.; Gorassini, F.; Tepedino, M.; Terranova, A.; Gambino, D.; et al. Mineral Trioxide Aggregate Applications in endodontics: A review. Eur. J. Dent. 2020, 14, 683–691. [Google Scholar] [CrossRef]
- Parirokh, M.; Torabinejad, M. Mineral trioxide aggregate: A comprehensive literature review–part III: Clinical applications, drawbacks, and mechanism of action. J. Endod. 2010, 36, 400–413. [Google Scholar] [CrossRef] [PubMed]
- Rudawska, A.; Sarna-Boś, K.; Rudawska, A.; Olewnik-Kruszkowska, E.; Frigione, M. Biological effects and toxicity of compounds based on cured epoxy resins. Polymers 2022, 14, 4915. [Google Scholar] [CrossRef] [PubMed]
- Fagogeni, I.; Metlerska, J.; Lipski, M.; Falgowski, T.; Maciej, G.; Nowicka, A. Materials used in regenerative endodontic procedures and their impact on tooth discoloration. J. Oral Sci. 2019, 61, 379–385. [Google Scholar] [CrossRef]
- Możynska, J.; Metlerski, M.; Lipski, M.; Nowicka, A. Tooth discoloration induced by different calcium silicate-based cements: A systematic review of in vitro studies. J. Endod. 2017, 43, 1593–1601. [Google Scholar] [CrossRef]
- Lenherr, P.; Allgayer, N.; Weiger, R.; Filippi, A.; Attin, T.; Krastl, G. Tooth discoloration induced by endodontic materials: A laboratory study. Int. Endod. J. 2012, 45, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Kot, K.; Kucharski, Ł.; Marek, E.; Safranow, K.; Lipski, M. Alkalizing properties of six calcium-silicate endodontic biomaterials. Materials 2022, 18, 6482. [Google Scholar] [CrossRef]
- Kaup, M.; Schäfer, E.; Dammaschke, T. An in vitro study of different material properties of Biodentine compared to ProRoot MTA. Head Face Med. 2015, 2, 11–16. [Google Scholar] [CrossRef]
- Lipski, M.; Nowicka, A.; Kot, K.; Postek-Stefańska, L.; Wysoczańska-Jankowicz, I.; Borkowski, L.; Andersz, P.; Jarząbek, A.; Grocholewicz, K.; Sobolewska, E.; et al. Factors affecting the outcomes of direct pulp capping using Biodentine. Clin. Oral Investig. 2018, 22, 2021–2029. [Google Scholar] [CrossRef]
- Rajasekharan, S.; Martens, L.C.; Cauwels, R.G.E.C.; Anthonappa, R.P. Biodentine™ material characteristics and clinical applications: A 3 year literature review and update. Eur. Arch. Paediatr. Dent. 2018, 19, 1–22. [Google Scholar] [CrossRef]
- Harms, C.S.; Schäfer, E.; Dammaschke, T. Clinical evaluation of direct pulp capping using a calcium silicate cement-treatment outcomes over an average period of 2.3 years. Clin. Oral Investig. 2019, 23, 3491–3499. [Google Scholar] [CrossRef]
- Al-Nazhan, S.; El Mansy, I.; Al-Nazhan, N.; Al-Rowais, N.; Al-Awad, G.J. Outcomes of furcal perforation management using Mineral Trioxide Aggregate and Biodentine: A systematic review. Appl. Oral Sci. 2022, 30, e20220330. [Google Scholar] [CrossRef] [PubMed]
- Salha, M.S.; Yada, R.Y.; Farrar, D.H.; Chass, G.A.; Tian, K.V.; Bodo, E. Aluminium catalysed oligomerisation in cement-forming silicate systems. Phys. Chem. Chem. Phys. 2023, 25, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.J.N.L.; Carvalho, N.K.; Guberman, M.R.D.C.L.; Prado, M.; Senna, P.M.; Souza, E.M.; De-Deus, G. Push-out bond strength of fast-setting Mineral Trioxide Aggregate and pozzolan-based cements: ENDOCEM MTA and ENDOCEM Zr. J. Endod. 2017, 43, 801–804. [Google Scholar] [CrossRef]
- Sharma, A.; Thomas, M.S.; Shetty, N.; Srikant, N.J. Evaluation of indirect pulp capping using pozzolan-based cement (ENDOCEM-Zr®) and mineral trioxide aggregate—A randomized controlled trial. Conserv. Dent. 2020, 23, 152–157. [Google Scholar]
- Kim, M.; Yang, W.; Kim, H.; Ko, H. Comparison of the biological properties of ProRoot MTA, OrthoMTA, and Endocem MTA cements. J. Endod. 2014, 40, 1649–1653. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Park, S.J.; Lee, S.H.; Hwang, Y.C.; Yu, M.K.; Min, K.S. Biological effects and washout resistance of a newly developed fast-setting pozzolan cement. J. Endod. 2013, 39, 467–472. [Google Scholar] [CrossRef]
- Chung, C.J.; Kim, E.; Song, M.; Park, J.W.; Shin, S.J. Effects of two fast-setting calcium-silicate cements on cell viability and angiogenic factor release in human pulp-derived cells. Odontology 2016, 104, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Kang, C.M.; Song, J.S.; Shin, Y.; Kim, S.; Kim, S.O.; Choi, H.J. Biological efficacy of two mineral trioxide aggregate (MTA)-based materials in a canine model of pulpotomy. Dent. Mater. J. 2017, 31, 41–47. [Google Scholar] [CrossRef]
- Palczewska-Komsa, M.; Kaczor-Wiankowska, K.; Nowicka, A. New bioactive calcium silicate cement mineral Trioxide Aggregate Repair High Plasticity (MTA HP)—A systematic review. Materials 2021, 14, 4573. [Google Scholar] [CrossRef]
- Barczak, K.; Palczewska-Komsa, M.; Lipski, M.; Chlubek, D.; Buczkowska-Radlinska, J.; Baranowska-Bosiacka, I. The influence of new silicate cement Mineral Trioxide Aggregate (MTA Repair HP) on metalloproteinase MMP-2 and MMP-9 expression in cultured THP-1 macrophages. Int. J. Mol. Sci. 2020, 22, 295. [Google Scholar] [CrossRef]
- Galarça, A.D.; Rosa, W.L.D.O.D.; Da Silva, T.M.; Lima, G.D.S.; Carreño, N.L.V.; Pereira, T.M.; Guedes, O.A.; Borges, A.H.; da Silva, A.F.; Piva, E. Physical and biological properties of a high-plasticity tricalcium silicate cement. BioMed Res. Int. 2018, 2018, 8063262. [Google Scholar] [CrossRef]
- Jimenez-Sanchez, M.; Segura-Egea, J.; Diaz-Cuenca, A. Physicochemical parameters-hydration performance relationship of the new endodontic cement MTA Repair HP. J. Clin. Exp. Dent. 2019, 11, 739–744. [Google Scholar] [CrossRef]
- Wang, X.; Chen, L.; Xiang, H.; Ye, J. Influence of anti-washout agents on the rheological properties and injectability of a calcium phosphate cement. J. Biomed. Mater. Res. 2007, 81, 410–418. [Google Scholar] [CrossRef]
- Megahed, A.E.; Adam, I.; Farghal, O.; Sayed, M.O. Influence of mixture composition on washout resistance, fresh properties and relative strength of self compacting underwater concrete. J. Eng. Sci. 2016, 44, 244–258. [Google Scholar] [CrossRef]
- Jang, G.Y.; Park, S.J.; Heo, S.M.; Yu, M.K.; Lee, K.W.; Min, K.S. Washout resistance of fast-setting pozzolan cement under various root canal irrigants. Restor. Dent. Endod. 2013, 38, 248–252. [Google Scholar] [CrossRef]
- Sonebi, M.; Bartos, P.J.M.; Khayat, K.H. Assessment of washout resistance of underwater concrete: A comparison between CRD C61 and new MC-1 tests. Mater. Struct. 1999, 32, 273. [Google Scholar] [CrossRef]
- Formosa, L.M.; Mallia, B.; Camilleri, J. A quantitative method for determining the anti-washout characteristics of cement-based dental materials including mineral trioxide aggregate. Int. Endod. J. 2013, 46, 179–186. [Google Scholar] [CrossRef]
- Tran, D.; He, J.; Glickman, G.N.; Woodmansey, K.F. Comparative analysis of calcium silicate-based root filling materials using an open apex model. J. Endod. 2016, 42, 654–658. [Google Scholar] [CrossRef]
- Grech, L.B.; Mallia, J.; Camilleri, J. Investigation of the physical properties of tricalcium silicate cement-based root-end filling materials. Dent Mater. 2013, 29, 20–28. [Google Scholar] [CrossRef]
- Porter, M.L.; Bertó, A.; Primus, C.M.; Watanabe, I. Physical and chemical properties of new-generation endodontic materials. J. Endod. 2010, 36, 524–528. [Google Scholar] [CrossRef]
- Bortoluzzi, E.A.; Broon, N.J.; Bramante, C.M.; Garcia, R.B.; de Moraes, I.G.; Bernardineli, N. Sealing ability of MTA and radiopaque Portland cement with or without calcium chloride for root-end filling. J. Endod. 2006, 32, 897–900. [Google Scholar] [CrossRef] [PubMed]
- Manero, J.M.; Gil, F.J.; Padrós, E.; Planell, J.A. Applications of environmental scanning electron microscopy (ESEM) in biomaterials field. Microsc. Res. Tech. 2003, 61, 469–480. [Google Scholar] [CrossRef]
- Athene, M.D. The use of environmental scanning electron microscopy for imaging wet and insulationg materials. Nat. Mater. 2003, 2, 511–516. [Google Scholar]
- Kai, D.; Li, D.; Zhu, X.; Zhang, L.; Fan, H.; Zhang, X. Addition of sodium hyaluronate and the effect on performance of the injectable calcium phosphate cement. J. Mater. Sci. 2009, 20, 1595–1602. [Google Scholar] [CrossRef]
- Smith, J.B.; Loushine, R.J.; Weller, R.N.; Rueggeberg, F.A.; Whitford, G.M.; Pashley, D.H.; Tay, F.R. Metrologic evaluation of the surface of White MTA after the use of two endodontic irrigants. J. Endod. 2007, 33, 463–467. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, H.C.; Shin, S.J.; Kim, E. Comparison of gap volume after retrofilling using 4 different filling materials: Evaluation by micro–computed tomography. J. Endod. 2018, 44, 635–638. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Kim, S.; Kim, E.; Shin, S.J. Volume of voids in retrograde filling: Comparison between calcium silicate cement alone and combined with a calcium silicate–based sealer. J. Endod. 2020, 46, 97–102. [Google Scholar] [CrossRef]
- Zordan-Bronzel, C.L.; Tanomaru-Filho, M.; Torres, F.F.E.; Chávez-Andrade, G.M.; Rodrigues, E.M.; Guerreiro-Tanomaru, J.M. Physicochemical properties, cytocompatibility and antibiofilm activity of a new calcium silicate sealer. Braz. Dent. J. 2021, 32, 8–18. [Google Scholar] [CrossRef]
- Torres, F.F.E.; Zordan-Bronzel, C.L.; Guerreiro-Tanomaru, J.M.; Chávez-Andrade, G.M.; Pinto, J.C.; Tanomaru-Filho, M. Effect of immersion in distilled water or phosphate-buffered saline on the solubility, volumetric change and presence of voids within new calcium silicate-based root canal sealers. Int. Endod. J. 2020, 53, 385–391. [Google Scholar] [CrossRef]
- Zordan-Bronzel, C.L.; Esteves Torres, F.F.; Tanomaru-Filho, M.; Chávez-Andrade, G.M.; Bosso-Martelo, R.; Guerreiro-Tanomaru, J.M. Evaluation of physicochemical properties of a new calcium silicate-based sealer, Bio-C Sealer. J. Endod. 2019, 45, 1248–1252. [Google Scholar] [CrossRef]
- Chong, B.S.; Pitt Ford, T.R.; Hudson, M.B. A prospective clinical study of mineral trioxide aggregate and IRM when used as root-end filling materials in endodontic surgery. Int. Endod. J. 2003, 36, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Lindeboom, J.A.; Frenken, J.W.; Kroon, F.H.; van den Akker, H.P. A comparative prospective randomized clinical study of MTA and IRM as root-end filling materials in single-rooted teeth in endodontic surgery. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2005, 100, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, R.; Kirkevang, L.L.; Hørsted-Bindslev, P.; Wenzel, A. Randomized clinical trial of root-end resection followed by root-end filling with mineral trioxide aggregate or smoothing of the orthograde gutta-percha root filling 1-year follow-up. Int. Endod. J. 2009, 42, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Kruse, C.; Spin-Neto, R.; Christiansen, R.; Wenzel, A.; Lise-Lotte, K. Periapical bone healing after apicectomy with and without retrograde root filling with mineral trioxide aggregate: A 6-year follow-up of a randomized controlled trial. J. Endod. 2016, 42, 533–537. [Google Scholar] [CrossRef]
- Caron, G.; Azérad, J.; Faure, M.O.; Machtou, P.; Boucher, Y. Use of a new retrograde filling material (Biodentine) for endodontic surgery: Two case reports. Int. J. Oral Sci. 2014, 6, 250–253. [Google Scholar] [CrossRef]
- Pawar, A.M.; Kokate, S.R.; Shah, R.A. Management of a large periapical lesion using Biodentine as retrograde restoration with eighteen months evident follow up. J. Conserv. Dent. 2013, 16, 573–575. [Google Scholar] [CrossRef]
- Wälivaara, D.A. Periapical surgery with Biodentine™ as a retrograde root-end seal: A clinical case series study. Med. Mat. Sci. 2015, 14, 120–124. [Google Scholar]
- Bhagwat, S.; Hegde, S.; Mandke, L. An investigation into the effectiveness of periapical surgery with Biodentine™ used as a root-end filling alone or in combination with demineralized freeze-dried bone allograft and plasma rich fibrin: A 6 months follow-up of 17 cases. Endodontology 2016, 28, 11–17. [Google Scholar] [CrossRef]
Material | Manufacturer | Ingredient | Mixing |
---|---|---|---|
IRM | Dentsply Sirona, Charlotte, NC, USA | powder: zinc oxide, poly-methyl methacrylate (PMMA) powder, pigment liquid: eugenol, acetic acid | 1 spoon of powder + 1 drop of distilled water (mixed manually on glass slab using a metal spatula, 30 s) |
MTA Angelus White | Angelus, Londrina, Brazil | powder: tricalcium silicate, dicalcium silicate, tricalcium aluminate, ferroaluminate tricalcium, calcium oxide, bismuth oxide liquid: distilled water | 2 level scoops of powder + 3 drops of liquid (mixed manually on glass slab using a metal spatula, 30 s) |
Biodentine | Septodont, Saint-Maur-des-Fossés Cedex, France | powder: tricalcium silicate, dicalcium silicate, calcium carbonate and oxide filler, iron oxide shade, and zirconium oxide liquid: calcium chloride as an accelerator, hydrosoluble polymer water-reducing agent, water | 0.7 g capsule of powder + 5 drops of liquid (mixed in the trituator; 30 s; 4000–4200 rpm) |
EndoCem Zr | Maruchi, Wonju, Republic of Korea | powder: calcium oxide, silicon dioxide, aluminum oxide, magnesium oxide, ferrous oxide, zirconium oxide liquid: distilled water | 0.3 g of powder + 0.12 mL (mixed manually on glass slab using a metal spatula; 30 s) |
MTA HP | Angelus, Londrina, Brazil | powder: tricalcium silicate, dicalcium silicate, tricalcium aluminate, calcium oxide, and calcium tungstate liquid: water and plasticizer | 0.085 g capsule of powder + 2 drops of liquid (mixed manually on a glass slab using a metal spatula; 30 s) |
Experiment | Material | Score, n (%) | ||
---|---|---|---|---|
1 | 2 | 3 | ||
1 | IRM a | 45 (100) | - | - |
EndoCem Zr a | 44 (97.78) | 1 (2.22) | - | |
MTA HP a | 43 (95.56) | 2 (4.44) | - | |
MTA Angelus White a | 41 (91.11) | 4 (8.88) | - | |
Biodentine b | - | 13 (28.89) | 32 (71.11) | |
2 | IRM a | 45 (100) | - | - |
EndoCem ZR a | 45 (100) | - | - | |
MTA HP a | 44 (97.78) | 1 (2.22) | - | |
MTA Angelus White a | 44 (97.78) | 1 (2.22) | - | |
Biodentine b | - | 8 (17.78) | 37 (82.22) |
Experiment | Comparisons | Weighted Kappa | Agreement |
---|---|---|---|
1 | Evaluator 1 vs. 2 | 0.861 | Very good |
Evaluator 1 vs. 3 | 0.890 | Very good | |
Evaluator 2 vs. 3 | 0.898 | Very good | |
2 | Evaluator 1 vs. 2 | 0.924 | Very good |
Evaluator 1 vs. 3 | 0.922 | Very good | |
Evaluator 2 vs. 3 | 0.922 | Very good |
Material | Washout | ||
---|---|---|---|
Mean Volumetric Change ± SD (in mm3) | Mean Volumetric Change ± SD (in %) | Mean Depth ± SD (in mm) | |
IRM | 0.0149 a ± 0.0021 | 0.4392 a ± 0.0605 | 0.0132 a ± 0.0018 |
EndoCem Zr | 0.0180 a ± 0.0009 | 0.5300 a ± 0.0271 | 0.0159 a ± 0.0008 |
MTA HP | 0.0185 a ± 0.0029 | 0.5442 a ± 0.0885 | 0.0163 a ± 0.0026 |
MTA Angelus | 0.0305 b ± 0.0089 | 0.9004 b ± 0.2627 | 0.0270 b ± 0.0079 |
Biodentine | 0.2521 c ± 0.0338 | 7.4332 c ± 0.9967 | 0.2230 c ± 0.0299 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falkowska, J.; Chady, T.; Dura, W.; Droździk, A.; Tomasik, M.; Marek, E.; Safranow, K.; Lipski, M. The Washout Resistance of Bioactive Root-End Filling Materials. Materials 2023, 16, 5757. https://doi.org/10.3390/ma16175757
Falkowska J, Chady T, Dura W, Droździk A, Tomasik M, Marek E, Safranow K, Lipski M. The Washout Resistance of Bioactive Root-End Filling Materials. Materials. 2023; 16(17):5757. https://doi.org/10.3390/ma16175757
Chicago/Turabian StyleFalkowska, Joanna, Tomasz Chady, Włodzimierz Dura, Agnieszka Droździk, Małgorzata Tomasik, Ewa Marek, Krzysztof Safranow, and Mariusz Lipski. 2023. "The Washout Resistance of Bioactive Root-End Filling Materials" Materials 16, no. 17: 5757. https://doi.org/10.3390/ma16175757
APA StyleFalkowska, J., Chady, T., Dura, W., Droździk, A., Tomasik, M., Marek, E., Safranow, K., & Lipski, M. (2023). The Washout Resistance of Bioactive Root-End Filling Materials. Materials, 16(17), 5757. https://doi.org/10.3390/ma16175757