Current State of Application of Machine Learning for Investigation of MgO-C Refractories: A Review
Abstract
:1. Introduction
2. Machine Learning Algorithms—An Overview
3. Machine Learning in Investigation of MgO-C Materials
3.1. Application of ML in Laboratory-Scale Examinations
3.1.1. Oxidation Mechanism of MgO-C Refractories
3.1.2. Optimization of Carbon Content in MgO-C Refractories
3.1.3. Corrosion Resistance of MgO-C Refractories
3.1.4. Thermomechanical Properties of MgO-C Refractories
4. Application of ML in Industrial-Scale Examinations
5. Benefits and Limitations of the Application of ML Techniques for the Investigation of MgO-C Refractories
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Routschka, G.; Wuthnow, H. Handbook of Refractory Materials Design, Properties, Testings, 4th ed.; Vulkan-Verlag Gmbh: Essen, Germany, 2012; pp. 92–98. [Google Scholar]
- Dai, Y.; Li, J.; Yan, W.; Shi, C. Corrosion mechanism and protection of BOF refractory for high silicon hot metal steelmaking process. J. Mater. Res Technol. 2020, 9, 4292–4308. [Google Scholar] [CrossRef]
- Guoguang, Z.; Husken, R.; Cappel, J. Experiance with long BOF campaign life and TBM bottom stirring technology. Stahl Und Eisen. 2012, 132, 61–78. [Google Scholar]
- Husken, R.; Pottie, P.; Guoguang, Z.; Cappel, J. Overcoming the conflict between long BOF refractory service time and efficient bottom stirring: A case study at Meishan Steel in China. In 45⁰ Seminário de Aciaria—Internacional; Porto Alegre, Brazil, 2014; Volume 45, pp. 724–735. Available online: https://abmproceedings.com.br/en/article/overcoming-the-conflict-between-long-bof-refractory-lifetime-and-efficient-bottom-stirring-a-case-study-at-meishan-steel-in-china (accessed on 5 September 2023). [CrossRef]
- Folco, L.; Kranjc, A. Steel Ladle Lining management: Comparison between different maintenance technologies to increase performance, reduce refractory consumption and waste disposal of used materials. In Proceedings of the Unified International Conference on Refractories UITECR 2023, Frankfurt, Germany, 26–29 September 2023; pp. 351–354. [Google Scholar]
- Otunniyi, I.O.; Theko, Z.V.; Mokoena, B.L.E.; Maramba, B. Major deteminantion of service life in magnesia-graphite slagline refractory lining in secondary steelmaking ladle furnace. In IOP Conference Series: Materials Science and Engineering, Proceedings of the Conference of the South African Advanced Materials Initiative (CoSAAMI 2019), Riverside Sun, Vanderbijlpark, South Africa, 22–25 October 2019; IOP Publishing: Bristol, UK, 2023; Volume 655, p. 012003. [Google Scholar] [CrossRef]
- Sun, C.H.; Zhu, L.L.; Yan, H.; Zhao, W.; Liu, J.X.; Ren, L.; Zhao, X.T.; Tong, X.S.; Yu, S.W. A novel route to enhance high-temperature mechanical property and thermal schock resistance of low-carbon MgO-C bricks by introducing ZrSiO4. Pol. J. Iron. Steel Res. Int. 2023. [Google Scholar] [CrossRef]
- Korostelev, A.A.; S’emshchikov, N.S.; Semin, A.E.; Kotel’nikov, G.I.; Murzin, I.S.; Emel’yanov, V.V.; Kolokolov, E.A.; Belonozhko, S.S. Increase in EAF lining life with use of hot-briquetted iron in charge. Refract. Ind. Ceram. 2018, 59, 107–114. [Google Scholar] [CrossRef]
- Gubta, R.B. Innovation in Steel Ladle Life to 157 Heats at Rourkela Steel Plant through Optimization of Refractory Material & Service Conditions. Int. J. Eng. Res. Technol. 2017, 6, 767–771. [Google Scholar] [CrossRef]
- Ewais, E.M.M. Carbon based refractories. J. Ceram. Soc. Jpn. 2004, 112, 517–532. [Google Scholar] [CrossRef]
- Luz, A.P.; Souza, T.M.; Pagliosa, C.; Brito, M.A.M.; Pandolfelli, V.C. In situ hot elastic modulus evolution of MgO-C refractories containing Al, Si or Al-Mg antioxidants. Ceram. Int. 2016, 42, 9836–9843. [Google Scholar] [CrossRef]
- Xiao, J.; Chen, J.; Wei, Y.; Zhang, Y.; Zhang, S.; Li, N. Oxidation behaviors of MgO-C refractories with different Si/SiC ratio in the 1100–1500 °C range. Ceram. Int. 2019, 45, 21099–21107. [Google Scholar] [CrossRef]
- Gao, S.; Xu, L.; Chen, M.; Wang, N. Effect of Fe addition on the microstructure and oxidation behavior of MgO–C refractory. Mater. Chem. Phys. 2019, 238, 121935. [Google Scholar] [CrossRef]
- Atzenhofer, C.; Harmuth, H. Phase formation in MgO-C refractories with different antioxidants. J. Eur. Ceram. Soc. 2021, 41, 7330–7338. [Google Scholar] [CrossRef]
- Yang, P.; Xiao, G.; Ding, D.; Ren, Y.; Yang, S.; Lv, L.; Hou, X.; Gao, Y. Antioxidant properties of low-carbon magnesia-carbon refractories containing AlB2–Al–Al2O3 composites. Ceram. Int. 2022, 48, 1375–1381. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, J.; Deng, C.; Yu, C. Improved thermal shock stability and oxidation resistance of low-carbon MgO–C refractories with introduction of SiC whiskers. Ceram. Int. 2023, 49, 26871–26878. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, J.; Zhang, Y.; Yan, W.; Zhang, S.; Li, N. Elucidating the role of Ti3AlC2 and Ti3SiC2 in oxidation mechanisms of MgO–C refractories. Ceram. Int. 2023, 49, 11257–11265. [Google Scholar] [CrossRef]
- Chen, Y.; Deng, C.; Wang, X.; Yu, C.; Ding, J.; Zhu, H. Evolution of c-ZrN nanopowders in low-carbon MgO–C refractories and their properties. J. Eur. Ceram. Soc. 2021, 41, 963–977. [Google Scholar] [CrossRef]
- Chandra, K.S.; Sarkar, D. Oxidation resistance, residual strength, and microstructural evolution in Al2O3-MgO–C refractory composites with YAG nanopowder. J. Eur. Ceram. Soc. 2021, 41, 3782–3797. [Google Scholar] [CrossRef]
- Zhong, H.; Han, B.; Wei, J.; Wang, X.; Liu, X.; Miao, Z.; Li, N. The microstructure evolution and performance enhancement of MgO-C refractories by the addition of MA90 spinel micro-powder. J. Eur. Ceram. Soc. 2023, 44, 523–543. [Google Scholar] [CrossRef]
- Ren, X.; Ma, B.; Liu, H.; Wang, Z.; Deng, C.; Liu, G.; Yu, J. Designing low-carbon MgO–Al2O3–La2O3–C refractories with balanced performance for ladle furnaces. J. Eur. Ceram. Soc. 2022, 42, 3986–3995. [Google Scholar] [CrossRef]
- Chen, Q.; Zhu, T.; Li, Y.; Cheng, Y.; Liao, N.; Pan, L.; Liang, X.; Wang, Q.; Sang, S. Enhanced performance of low-carbon MgO–C refractories with nano-sized ZrO2–Al2O3 composite powder. Ceram. Int. 2021, 47, 20178–20186. [Google Scholar] [CrossRef]
- Li, W.; Deng, C.; Chen, Y.; Wang, X.; Yu, C.; Ding, J.; Zhu, H. Application of Cr3C2/C composite powders synthesized via molten-salt method in low-carbon MgO–C refractories. Ceram. Int. 2022, 48, 15227–15235. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, J.; Yu, C.; Lou, X.; Wu, Z.; Deng, C. Application of SiC whiskers synthesized from waste rice husk in low-carbon MgO–C refractories. J. Phys. Chem. Solids 2023, 177, 111304. [Google Scholar] [CrossRef]
- Luo, J.-Y.; Ren, X.-M.; Chong, X.-C.; Ding, D.-H.; Ma, B.-Y.; Xiao, G.-Q.; Yu, J.-K. Recent progress in synthesis of composite powders and their applications in low-carbon refractories. J. Iron Steel Res. Int. 2022, 29, 1041–1051. [Google Scholar] [CrossRef]
- Guo, W.; Zhu, T.; Zhao, X.; Li, Y.; Chen, Q.; Xu, X.; Xu, Y.; Dai, Y.; Yan, W. Improved slag corrosion resistance of MgO–C refractories with calcium magnesium aluminate aggregate and silicon carbide: Corrosion behavior and thermodynamic simulation. J. Eur. Ceram. Soc. 2023, 44, 496–509. [Google Scholar] [CrossRef]
- Han, J.S.; Heo, J.H.; Park, J.H. Interfacial reaction between magnesia refractory and ‘FeO’-rich slag: Formation of magnesiowüstite layer. Ceram. Int. 2019, 45, 10481–10491. [Google Scholar] [CrossRef]
- Liu, J.; Sheng, H.; Yang, X.; He, Z.; Hou, X. Research on the Wetting and Corrosion Behavior Between Converter Slag with Different Alkalinity and MgO-C Refractories. Oxid. Met. 2022, 97, 157–166. [Google Scholar] [CrossRef]
- Yehorov, A.; Ma, G.; Volkova, O. Interaction between MgO–C-bricks and ladle slag with a 1:1 CaO/Al2O3 ratio and varying SiO2 content. Ceram. Int. 2021, 47, 11677–11686. [Google Scholar] [CrossRef]
- Guo, M.; Parada, S.; Jones, P.; Boydens, E.; Dyck, J.; Blanpain, B.; Wollants, P. Interaction of Al2O3-rich slag with MgO-C refractories during VOD refining-MgO and spinel layer formation at the slag/refractory interface. J. Eur. Ceram. Soc. 2009, 29, 1053–1060. [Google Scholar] [CrossRef]
- Heo, S.H.; Lee, K.; Chung, Y. Reactive wetting phenomena of MgO-C refractories in contact with CaO-SiO2 slag. Trans. Nonferrous Met. Soc. (Engl. Ed.) 2012, 22, s870–s875. [Google Scholar] [CrossRef]
- Liu, Z.; Yuan, L.; Jin, E.; Yang, X.; Yu, J. Wetting, spreading and corrosion behavior of molten slag on dense MgO and MgO-C refractory. Ceram. Int. 2019, 45, 718–724. [Google Scholar] [CrossRef]
- Lao, Y.; Li, G.; Gao, Y.; Yuan, C. Wetting and corrosion behavior of MgO substrates by CaO–Al2O3–SiO2–(MgO) molten slags. Ceram. Int. 2022, 48, 14799–14812. [Google Scholar] [CrossRef]
- Han, B.; Wang, C.; Yang, Q.; Changmin, K.; Chen, F.; Li, N. Corrosive Interaction between MgO-C Refractories and Vanadium-Recovery Slag. Interceram-Inter. Ceram. Rev. 2014, 63, 99–103. [Google Scholar] [CrossRef]
- Borisenko, O.N.; Semchenko, G.D.; Il’icheva, T.V. Slag resistance of periclase-carbon refractories based on modified phenol fomaldehyde resin. Refract. Ind. Ceram. 2010, 51, 41–44. [Google Scholar]
- Liu, Y.; Wang, Q.; Li, G.; Zhang, J.; Yan, W.; Huang, A. Role of graphite on the corrosion resistance improvement of MgO–C bricks to MnO-rich slag. Ceram. Int. 2020, 46, 7517–7522. [Google Scholar] [CrossRef]
- Benavidez, E.; Brandaleze, E.; Musante, L.; Galliano, P. Corrosion Study of MgO-C Bricks in Contact with a Steelmaking Slag. Procedia Mater. Sci. 2015, 8, 228–235. [Google Scholar] [CrossRef]
- Lee, S.; Chung, Y. The effect of C content in MgO–C on dissolution behavior in CaO–SiO2–Al2O3 slag. Ceram. Int. 2022, 48, 26984–26991. [Google Scholar] [CrossRef]
- Bai, R.; Liu, S.; Mao, F.X.; Zhang, Y.Y.; Yang, X.; He, Z. Wetting and corrosion behavior between magnesia–carbon refractory and converter slags with different MgO contents. J. Iron Steel Res. Int. 2022, 29, 1073–1079. [Google Scholar] [CrossRef]
- Gehre, P.; Preisker, T.; Brachhold, N.; Guhl, S.; Wöhrmeyer, C.; Parr, C.; Aneziris, C.G. Thermodynamic calculation and microscopic examination of liquid phase formation in MgO–C refractories contain calcium magnesium aluminate. Mater. Chem. Phys. 2020, 256, 123723. [Google Scholar] [CrossRef]
- Preisker, T.; Gehre, P.; Schmidt, G.; Aneziris, C.G.; Wöhrmeyer, C.; Parr, C. Kinetics of the formation of protective slag layers on MgO–MgAl2O4–C ladle bricks determined in laboratory. Ceram. Int. 2020, 46, 452–459. [Google Scholar] [CrossRef]
- Wöhrmeyer, C.; Gao, S.; Ping, Z.; Parr, C.; Aneziris, C.G.; Gehre, P. Corrosion Mechanism of MgO–CMA–C Ladle Brick with High Service Life. Steel Res. Int. 2020, 91, 1900436. [Google Scholar] [CrossRef]
- Ludwig, M.; Śnieżek, E.; Jastrzębska, I.; Prorok, R.; Sułkowski, M.; Goławski, C.; Fischer, C.; Wojteczko, K.; Szczerba, J. Recycled magnesia-carbon aggregate as the component of new type of MgO-C refractories. Constr. Build. Mater. 2021, 272, 121912. [Google Scholar] [CrossRef]
- Moritz, K.; Kerber, F.; Dudczig, S.; Schmidt, G.; Schemmel, T.; Schwarz, M.; Jansen, H.; Aneziris, C.G. Recyclate-containing magnesia-carbon refractories—Influence on the non-metallic inclusions in steel. Open Ceram. 2023, 16, 100450. [Google Scholar] [CrossRef]
- Horckmans, L.; Nielsen, P.; Dierckx, P.; Ducastel, A. Recycling of refractory bricks used in basic steelmaking: A review. Resour. Conserv. Recycl. 2019, 140, 297–304. [Google Scholar] [CrossRef]
- Moritz, K.; Brachhold, N.; Küster, F.; Dudczig, S.; Schemmel, T.; Aneziris, C.G. Studies on the use of two different magnesia-carbon recyclates as secondary raw material for MgO–C refractories. Open Ceram. 2023, 15, 100426. [Google Scholar] [CrossRef]
- Steiner, R.; Lammer, G.; Spiel, C.; Jandl, C. Refractories 4.0. Berg Huettenmaenn. Monatsh. 2017, 162, 514–520. [Google Scholar] [CrossRef]
- Ślusarczyk, B. Industry 4.0—Are we ready. Pol. J. Manag. Stud. 2018, 17, 232–248. [Google Scholar] [CrossRef]
- Rajendra, P.; Girisha, A.; Naidu, T.G. Advancement of machine learning in materials science. Mater. Today Proc. 2022, 62, 5503–5507. [Google Scholar] [CrossRef]
- Rydning, D.R.-J.G. The Digitization of the World from Edge to Core; International Data Corporation: Framingham, MA, USA, 2018. [Google Scholar]
- Pilania, G. Machine learning in materials science: From explainable predictions to autonomous design. Comput. Mater. Sci. 2021, 193, 110360. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef]
- Jain, N.; Kumar, R. A Review on Machine Learning & It’s Algorithms. Int. J. Soft Comp. Eng. 2022, 12, 1–5. [Google Scholar] [CrossRef]
- Pugliese, R.; Regondi, S.; Marini, R. Machine learning-based approach: Global trends, research directions, and regulatory standpoints. Data Sci. Manag. 2021, 4, 19–29. [Google Scholar] [CrossRef]
- Bhat, D.; Muench, S.; Roellig, M. Application of machine learning algorithms in prognostics and health monitoring of electronic systems: A review. Adv. Electr. Electron. Eng. 2023, 4, 100166. [Google Scholar] [CrossRef]
- Nadachowski, F.; Kloska, A. Refractory Wear Processes; AGH: Kraków, Poland, 1997. [Google Scholar]
- Rongti, L.; Wei, P.; Sano, M. Kinetics and Mechanism of Carbothermic Reduction of Magnesia. Metall. Mater. Trans. B 2003, 34, 433–437. [Google Scholar] [CrossRef]
- Lee, J.; Myung, J.; Chung, Y. Degradation Kinetics of MgO-C Refractory at High Temperature. Metall. Mater. Trans. B 2023, 52, 1179–1185. [Google Scholar] [CrossRef]
- Faghihi-Sani, M.-A.; Yamaguchii, A. Oxidation Kinetics of MgO-C refractory bricks. Ceram. Int. 2021, 28, 835–839. [Google Scholar] [CrossRef]
- Li, X.; Riguard, M.; Palco, S. Oxidation Kinetics of Graphite in Magnesia-Carbon Refractories. J. Am. Ceram. Soc. 1995, 78, 965–971. [Google Scholar] [CrossRef]
- Volkova, O.; Scheller, P.; Lychatz, B. Kinetics and Thermodynamics of Carbon Isothermal and Non-isothermal Oxidation in MgO-C Refractory with different air flow. Metall. Mater. Trans. Bf 2014, 45, 1782–1792. [Google Scholar] [CrossRef]
- Jansson, S.; Brabie, V.; Jonsson, P. Corrosion Mechanism of Commercial MgO-C Refractories in Contact with Different Gas Atmosheres. ISIJ Int. 2008, 48, 760–767. [Google Scholar] [CrossRef]
- Nemati, Z.A.; Moetakef, P. Investigation of graphite oxidation kinetics in MgO-C composite via artificial neural network approach. Comput. Mater. Sci. 2007, 39, 723–728. [Google Scholar] [CrossRef]
- Nemati, A.; Nemati, E. Oxygen diffusion mechanism in MgO-C composites: An artificial neural network approach. Model Simul. Mat. Sci. Eng. 2012, 20, 015016. [Google Scholar] [CrossRef]
- Sadrnezhaad, S.K.; Mahshid, S.; Hashemi, B.; Nemati, Z.A. Oxidation Mechanism of C in MgO-C Refractory Bricks. J. Am. Ceram. Soc. 2006, 89, 1308–1316. [Google Scholar] [CrossRef]
- Mahato, S.; Pratihar, S.K.; Behera, S.K. Fabrication and properties of MgO-C refractories improved with expanded graphite. Ceram. Int. 2020, 40, 16535–16542. [Google Scholar] [CrossRef]
- Mazloom, M.; Sarpoolaky, H.; Savabieh, H.R. Use of neural networks to optimize graphite content in magnesia-graphite refractories. Refract. Ind. Ceram. 2012, 53, 193–198. [Google Scholar] [CrossRef]
- Sado, S. Method of raw materials selection for production of the MgO-C bricks of comparable properties using PCA and K-medoids. Int. J. Appl. Ceram. Technol. 2023. [Google Scholar] [CrossRef]
- An, J.; Xue, X. Life-cycle carbon footprint analysis of magnesia products. Resour. Conserv. Recycl. 2017, 119, 4–11. [Google Scholar] [CrossRef]
- Bahtli, T.; Hopa, D.Y.; Bostanci, V.M.; Ulvan, N.S.; Yasti, S.Y. Corrosion behaviours of MgO-C refractories: Incorporation of graphite or pyrolytic carbon black as a carbon source. Ceram. Int. 2018, 44, 6780–6785. [Google Scholar] [CrossRef]
- Chen, L.; Malfliet, A.; Jones, P.T.; Blanpain, B.; Guo, M. Comparison of the chemical corrosion resistance of magnesia-based refractories by stainless steelmaking slags under vacuum conditions. Ceram. Int. 2016, 42, 743–751. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, J.; Yuan, L. The effect of applied voltage on the corrosion resistance of MgO–C refractories. J. Mater. Sci. 2019, 54, 265–273. [Google Scholar] [CrossRef]
- Akkurt, S. Prediction of the slag corrosion of MgO-C ladle refractories by the use of artificial neural networks. Key Eng. Mater. 2004, 264–268, 1727–1730. [Google Scholar] [CrossRef]
- Alwosheel, A.; Cranenburgh, S.; Chorus, C. Is your dataset big enough? Sample size requirements when using artificial neural network for discrete choice analysis. J. Choice Model. 2018, 28, 167–182. [Google Scholar] [CrossRef]
- Benavidez, E.; Brandaleze, E.; Lagorio, Y.; Gass, S.; Martinez, A. Thermal and mechanical properties of commercial MgO-C bricks. Matéria (Rio De Janeiro) 2015, 20, 571–579. [Google Scholar] [CrossRef]
- Lagorio, Y.; Gass, S.; Benavidez, E.; Martinez, A. Thermomechanical evaluation of MgO-C commercial bricks. Ceram. Int. 2022, 48, 10105–10112. [Google Scholar] [CrossRef]
- Hou, A.; Jin, S.; Harmuth, H.; Gruber, D. Thermal and Thermomechanical Responses Prediction of a Steel Ladle Using a Back-Propagation Artificial Neural Network Combining Multiple Orthogonal Arrays. Steel Res. Int. 2019, 90, 1900116. [Google Scholar] [CrossRef]
- Hou, A.; Jin, S.; Gruber, D.; Harmuth, H. Influence of variation/response space complexity and variable completeness on BP-ANN model establishment: Case study of steel ladle lining. Appl. Sci. 2019, 9, 2835. [Google Scholar] [CrossRef]
- Hou, A.; Jin, S.; Gruber, D.; Harmuth, H. Modelling of a Steel Ladle and Prediction of Its Thermomechanical Behavior by Finite Element Simulation Together with Artificial Neural Network Approaches. 2019. Available online: https://www.researchgate.net/publication/334304593 (accessed on 8 September 2023).
- Griogiev, A.; Dailchenko, S.; Zabolotsky, A.; Migashkin, A.; Turchin, M.; Khadyev, V. Features of the Fracture of Refractory Linings Depending on the Equipment Size. Refract. Ind. Ceram. 2023, 63, 585–592. [Google Scholar] [CrossRef]
- Borges, R.A.A.; Antoniassi, N.P.; Klotz, L.E.; de Carvalho Carneiro, C.; Silva, G.F.B.L.E. A Statistical and Self-Organizing Maps (SOM) Comparative Study on the Wear and Performance of MgO-C Resin Bonded Refractories Used on the Slag Line of Ladles of a Basic Oxygen Steelmaking Plant. Metall. Mater. Trans. B 2022, 53, 2852–2866. [Google Scholar] [CrossRef]
- Jančar, D.; Machů, M.; Velička, M.; Tvardek, P.; Kocián, L.; Vlček, J. Use of Neural Networks for Service time Analysis of Teeming Ladles. Materials 2022, 15, 8234. [Google Scholar] [CrossRef]
- Yemelyanov, V.A.; Yemelyanova, N.Y.; Nedelkin, A.A.; Zarudnaya, M.V. Neural network to diagnose lining condition. IOP Conf. Ser. Mater. Sci. Eng. 2018, 327, 022107. [Google Scholar] [CrossRef]
- Zelik, W.; Lech, R.; Sado, S.; Labuz, A.; Lasota, A.; Lis, S. Modelling the Wear of MC 98/15 Refractory Material in the Slag Spout Zone of an Oxygen Converter with the Use of Artificial Neural Networks. J. Ceram. Sci. Technol. 2020, 11, 81–90. [Google Scholar] [CrossRef]
- Sado, S.; Zelik, W.; Lech, R. Use of Machine Learning for modelling the wear of MgO-C refractories in Basic Oxygen Furnace. J. Ceram. Process. Res. 2022, 23, 421–429. [Google Scholar] [CrossRef]
Sample | Compressive Strength [MPa] | Apparent Porosity [%] |
---|---|---|
F1 | 381.20 | - |
F2 | 375.91 | - |
F3 | 371.25 | - |
F4 | 377.54 | - |
F5 | - | 7.05 |
F6 | - | 7.18 |
F7 | - | 7.09 |
Average experimental value | 376.47 | 7.11 |
Predicted value (ANN) | 365.16 | 7.08 |
Error, % * | 1.30 | 0.35 |
% Area Loss— Measured | % Area Loss— Predicted | Difference | % Error (Absolute) |
---|---|---|---|
10.57 | 12.43 | −1.86 | 17.6 |
10.85 | 14.57 | −3.72 | 34.3 |
14.65 | 14.85 | −0.20 | 1.4 |
18.99 | 18.94 | 0.05 | 0.3 |
19.20 | 18.05 | 1.15 | 6.0 |
32.34 | 24.80 | 7.54 | 23.3 |
15.67 | 18.27 | −2.60 | 16.6 |
Average | - | - | 14.2 |
End Temperature [°C] | Maximum Tensile Stress [MPa] | Maximum Compressive Stress [MPa] | ||||
---|---|---|---|---|---|---|
Used algorithm | CFG | BR | CFG | BR | CFG | BR |
RE_MAX [%] | 7.15 | 7.15 | 16.62 | 12.43 | 3.12 | 4.09 |
MRE [%] | 1.02 | 1.76 | 2.43 | 2.37 | 0.93 | 0.78 |
B | 0.9967 | 0.9908 | 0.9279 | 0.9348 | 0.9963 | 0.9966 |
Thickness [mm] | Thermal Conductivity [W·m−1K−1] | Young’s Modulus [GPa] | Thermal Expansion Coefficient [10−6K−1] | |
---|---|---|---|---|
Working lining | 155.0 | 9 | 40 | 12 |
Permanent lining | 52.5 | 2.2 | 45 | 5 |
Insulation (lining concept 1) | 37.5 | 0.5 | 3 | 6 |
Insulation (lining concept 2) | 37.5 | 0.38 | 4 | 5.6 |
Steel shell | 30 | 50 | 210 | 12.0 |
Steel Shell Temperature [°C] | Maximum Tensile Stress [MPa] | Maximum Compressive Stress [MPa] | ||||
---|---|---|---|---|---|---|
Modelling (FE) | Predicted (BP-ANN) | Modelling (FE) | Predicted (BP-ANN) | Modelling (FE) | Predicted (BP-ANN) | |
Lining concept 1 | 280 | 276 | 1495 | 1433 | 512 | 517 |
Lining concept 2 | 259 | 259 | 1539 | 1576 | 517 | 515 |
Predicted Wear Class | Real Wear Class | |||||||||||
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ∑ | ||
0 | 226 | 60 | 19 | 0 | 4 | 0 | 1 | 0 | 0 | 0 | 310 | |
1 | 63 | 128 | 2 | 0 | 4 | 0 | 12 | 0 | 0 | 0 | 209 | |
2 | 9 | 1 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 | |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
4 | 12 | 12 | 10 | 0 | 0 | 0 | 7 | 0 | 0 | 8 | 49 | |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
6 | 0 | 6 | 0 | 0 | 5 | 0 | 5 | 0 | 0 | 0 | 16 | |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
9 | 0 | 10 | 0 | 0 | 6 | 0 | 2 | 0 | 0 | 7 | 25 | |
∑ | 310 | 217 | 37 | 0 | 19 | 0 | 27 | 0 | 0 | 15 | 625 |
Training Data Set | |||||||
Algorithm | SSE | MSE | RMSE | R2 | R | MAPE | MAE |
CART | 6.811 | 0.004 | 0.065 | 0.559 | 0.747 | 24.673% | 0.057 |
MARS | 4.195 | 0.002 | 0.051 | 0.716 | 0.846 | 17.987% | 0.047 |
Boosted Trees | 1.590 | 0.001 | 0.031 | 0.899 | 0.948 | 11.086% | 0.029 |
ANN | 3.521 | 0.002 | 0.047 | 0.789 | 0.886 | 16.012% | 0.041 |
Testing Data Set | |||||||
CART | 5.445 | 0.008 | 0.091 | 0.429 | 0.655 | 27.598% | 0.066 |
MARS | 3.329 | 0.005 | 0.071 | 0.649 | 0.805 | 21.316% | 0.054 |
Boosted Trees | 1.458 | 0.002 | 0.047 | 0.849 | 0.921 | 13.439% | 0.035 |
ANN | 2.932 | 0.004 | 0.066 | 0.687 | 0.829 | 20.233% | 0.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sado, S.; Jastrzębska, I.; Zelik, W.; Szczerba, J. Current State of Application of Machine Learning for Investigation of MgO-C Refractories: A Review. Materials 2023, 16, 7396. https://doi.org/10.3390/ma16237396
Sado S, Jastrzębska I, Zelik W, Szczerba J. Current State of Application of Machine Learning for Investigation of MgO-C Refractories: A Review. Materials. 2023; 16(23):7396. https://doi.org/10.3390/ma16237396
Chicago/Turabian StyleSado, Sebastian, Ilona Jastrzębska, Wiesław Zelik, and Jacek Szczerba. 2023. "Current State of Application of Machine Learning for Investigation of MgO-C Refractories: A Review" Materials 16, no. 23: 7396. https://doi.org/10.3390/ma16237396
APA StyleSado, S., Jastrzębska, I., Zelik, W., & Szczerba, J. (2023). Current State of Application of Machine Learning for Investigation of MgO-C Refractories: A Review. Materials, 16(23), 7396. https://doi.org/10.3390/ma16237396