An Ionic Liquid Electrolyte Additive for High-Performance Lithium–Sulfur Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of IL Additive TDA+TFSI
2.3. Preparation of C/S Complex and Cathode
2.4. Physical Characterization
2.5. Electrochemical Characterization
2.6. Preparation of Electrolytes with Different TDA+TFSI Additive Contents
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bruce, P.G.; Freunberger, S.A.; Hardwick, L.J.; Tarascon, J.M. Li-O2 and Li-S Batteries with High Energy Storage. Nat. Mater. 2012, 11, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Manthiram, A.; Fu, Y.Z.; Chung, S.H.; Zu, C.X.; Su, Y.S. Rechargeable Lithium-Sulfur Batteries. Chem. Rev. 2014, 114, 11751–11787. [Google Scholar] [CrossRef] [PubMed]
- Peled, E.; Sternberg, Y.; Gorenshtain, A.; Lavi, Y. Lithium-Sulfur Battery-Evaluation of Cioxolane-Based Electrolytes. J. Electrochem. Soc. 1986, 133, C290. [Google Scholar]
- Zheng, J.; Fan, X.L.; Ji, G.B.; Wang, H.Y.; Hou, S.; DeMella, K.C.; Raghavan, S.R.; Wang, J.; Xu, K.; Wang, C.S. Manipulating Electrolyte and Solid Electrolyte Interphase to Enable Safe and Efficient Li-S Batteries. Nano Energy 2018, 50, 431–440. [Google Scholar] [CrossRef]
- Conder, J.; Bouchet, R.; Trabesinger, S.; Marino, C.; Gubler, L.; Villevieille, C. Direct Observation of Lithium Polysulfides in Lithium-Sulfur Batteries using Operando X-ray Diffraction. Nat. Energy 2017, 2, 17069. [Google Scholar] [CrossRef]
- Mikhaylik, Y.V.; Akridge, J.R. Polysulfide Shuttle Study in the Li/S Battery System. J. Electrochem. Soc. 2004, 151, A1969–A1976. [Google Scholar] [CrossRef]
- Wang, L.N.; Liu, J.Y.; Yuan, S.Y.; Wang, Y.G.; Xia, Y.Y. To Mitigate Self-Discharge of Lithium-Sulfur Batteries by Optimizing Ionic Liquid Electrolytes. Energy Environ. Sci. 2016, 9, 224–231. [Google Scholar] [CrossRef]
- Zhang, S.S. New Insight into Liquid Electrolyte of Rechargeable Lithium/Sulfur Battery. Electrochim. Acta 2013, 97, 226–230. [Google Scholar] [CrossRef]
- Dokko, K.; Tachikawa, N.; Yamauchi, K.; Tsuchiya, M.; Yamazaki, A.; Takashima, E.; Park, J.W.; Ueno, K.; Seki, S.; Serizawa, N.; et al. Solvate Ionic Liquid Electrolyte for Li-S Batteries. J. Electrochem. Soc. 2013, 160, A1304–A1310. [Google Scholar] [CrossRef]
- Galinski, M.; Lewandowski, A.; Stepniak, I. Ionic Liquids as Electrolytes. Electrochim. Acta 2006, 51, 5567–5580. [Google Scholar] [CrossRef]
- MacFarlane, D.R.; Forsyth, S.A.; Golding, J.; Deacon, G.B. Ionic Liquids Based on Imidazolium, Ammonium and Pyrrolidinium Salts of the Dicyanamide Anion. Green Chem. 2002, 4, 444–448. [Google Scholar] [CrossRef]
- Wang, B.; Qin, L.; Mu, T.; Xue, Z.; Gao, G. Are Ionic Liquids Chemically Stable? Chem. Rev. 2017, 117, 7113–7131. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.B.; Matsumoto, H.; Tatsumi, K. Low-melting, Low-viscous, Hydrophobic Ionic Liquids: Aliphatic Quaternary Ammonium Salts with Perfluoroalkyltrifluoroborates. Chem. Eur. J. 2005, 11, 752–766. [Google Scholar] [CrossRef] [PubMed]
- Agostini, M.; Sadd, M.; Xiong, S.Z.; Cavallo, C.; Heo, J.; Ahn, J.H.; Matic, A. Designing a Safe Electrolyte Enabling Long-life Li/S Batteries. Chemsuschem 2019, 12, 4176–4184. [Google Scholar] [CrossRef] [PubMed]
- Suriyakumar, S.; Kathiresan, M.; Stephan, A.M. Charge-discharge and Interfacial Properties of Ionic Liquid-added Hybrid Electrolytes for Lithium-Sulfur Batteries. ACS Omega 2019, 4, 3894–3903. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Yin, Y.X.; Guo, Y.G.; Wan, L.J. Effect of Cations in Ionic Liquids on the Electrochemical Performance of Lithium-Sulfur Batteries. Sci. China Chem. 2014, 57, 1564–1569. [Google Scholar] [CrossRef]
- Park, J.W.; Yamauchi, K.; Takashima, E.; Tachikawa, N.; Ueno, K.; Dokko, K.; Watanabe, M. Solvent Effect of Room Temperature Ionic Liquids on Electrochemical Reactions in Lithium-Sulfur Batteries. J. Phys. Chem. C 2013, 117, 4431–4440. [Google Scholar] [CrossRef]
- Yang, Y.B.; Men, F.; Song, Z.P.; Zhou, Y.H.; Zhan, H. N-methoxyethyl-N-methylpyrrolidinium Bis(trifluoromethanesulfonyl) Imide Ionic Liquid Based Hybrid Electrolyte for Lithium Sulfur Batteries. Electrochim. Acta 2017, 256, 37–43. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, Z.C.; Fu, W.J.; Dudney, N.J.; Liang, C.D. Phosphorous Pentasulfide as a Novel Additive for High-Performance Lithium-Sulfur Batteries. Adv. Funct. Mater. 2013, 23, 1064–1069. [Google Scholar] [CrossRef]
- Zhang, H.; Eshetu, G.G.; Judez, X.; Li, C.M.; Rodriguez-Martinez, L.M.; Armand, M. Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives. Angew. Chem. Int. Ed. 2018, 57, 15002–15027. [Google Scholar] [CrossRef]
- Li, W.Y.; Yao, H.B.; Yan, K.; Zheng, G.Y.; Liang, Z.; Chiang, Y.M.; Cui, Y. The Synergetic Effect of Lithium Polysulfide and Lithium Nitrate to Prevent Lithium Dendrite Growth. Nat. Commun. 2015, 6, 7436. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.S. A New Finding on the Role of LiNO3 in Lithium-Sulfur Battery. J. Power Sources 2016, 322, 99–105. [Google Scholar] [CrossRef]
- Xiong, S.Z.; Kai, X.; Hong, X.B.; Diao, Y. Effect of LiBOB as Additive on Electrochemical Properties of Lithium-Sulfur Batteries. Ionics 2012, 18, 249–254. [Google Scholar] [CrossRef]
- Kim, S.; Kwon, Y.M.; Cho, K.Y.; Yoon, S. Metal Iodides (LiI, MgI2, AlI3, TiI4, and SnI4) Potentiality as Electrolyte Additives for Li-S Batteries. Electrochim. Acta 2021, 391, 138927. [Google Scholar] [CrossRef]
- Rui, L.; Sun, X.G.; Zou, J.Y.; Qiang, H. Lithium Fluoride as an Efficient Additive for Improved Electrochemical Performance of Li-S Batteries. Colloids Surf. A 2020, 598, 124737. [Google Scholar]
- Wu, F.; Zhu, Q.Z.; Chen, R.J.; Chen, N.; Chen, Y.; Ye, Y.S.; Qian, J.; Li, L. Ionic Liquid-Based Electrolyte with Binary Lithium Salts for High Performance Lithium-Sulfur Batteries. J. Power Sources 2015, 296, 10–17. [Google Scholar] [CrossRef]
- Seong, M.J.; Yim, T. Ionic Additives to Increase Electrochemical Utilization of Sulfur Cathode for Li-S Batteries. J. Electrochem. Sci. Technol. 2021, 12, 279–284. [Google Scholar] [CrossRef]
- Sun, J.P.; Zhang, K.; Fu, Y.Z.; Guo, W. Benzoselenol as an Organic Electrolyte Additive in Li-S Battery. Nano Res. 2023, 16, 3814–3822. [Google Scholar] [CrossRef]
- Wang, Y.J.; Meng, Y.; Zhang, Z.K.; Guo, Y.; Xiao, D. Trifunctional Electrolyte Additive Hexadecyltrioctylammonium Iodide for Lithium-Sulfur Batteries with Extended Cycle Life. ACS Appl. Mater. Interfaces 2021, 13, 16545–16557. [Google Scholar] [CrossRef]
- Vu, D.L.; Kim, N.; Myung, Y.; Yang, M.; Lee, J.W. Aluminum Phosphate as a Bifunctional Additive for Improved Cycling Stability of Li-S Batteries. J. Power Sources 2020, 459, 228068. [Google Scholar] [CrossRef]
- Lu, H.; Zhu, Y.; Yuan, Y.; He, L.; Zheng, B.; Zheng, X.Z.; Liu, C.C.; Du, H.L. LiFSI as a Functional Additive of the Fluorinated Electrolyte for Rechargeable Li-S Batteries. J. Mater. Sci. Mater. Electron. 2021, 32, 5898–5906. [Google Scholar] [CrossRef]
- Ji, X.; Lee, K.T.; Nazar, L.F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Jiang, C.; Chen, B.; Li, X.; Zhang, H. Hollow C/Co9S8 hybrid polyhedra-modified carbon nanofibers as sulfur hosts for promising Li-S batteries. Ceram. Int. 2021, 47, 25387–25397. [Google Scholar] [CrossRef]
- Chen, R.; Shen, J.; Chen, K.; Tang, M.; Zeng, T. Metallic phase MoS2 nanosheet decorated biomass carbon as sulfur hosts for advanced lithium-sulfur batteries. Appl. Surf. Sci. 2021, 566, 150651. [Google Scholar] [CrossRef]
- Howlett, P.C.; Izgorodina, E.I.; Forsyth, M.; MacFarlane, D.R. Electrochemistry at Negative Potentials in Bis(trifluoromethanesulfonyl)amide Ionic Liquids. Z. Phys. Chem. 2006, 220, 1483–1498. [Google Scholar] [CrossRef]
- Li, Z.; Borodin, O.; Smith, G.D.; Bedrov, D. Effect of Organic Solvents on Li+ Ion Solvation and Transport in Ionic Liquid Electrolytes: A Molecular Dynamics Simulation Study. J. Phys. Chem. B 2015, 119, 3085–3096. [Google Scholar] [CrossRef] [PubMed]
- Oldiges, K.; Diddens, D.; Ebrahiminia, M.; Hooper, J.B.; Cekic-Laskovic, I.; Heuer, A.; Bedrov, D.; Winter, M.; Brunklaus, G. Understanding Transport Mechanisms in Ionic Liquid/Carbonate Solvent Electrolyte Blends. Phys. Chem. Chem. Phys. 2018, 20, 16579–16591. [Google Scholar] [CrossRef]
- Azimi, N.; Weng, W.; Takoudis, C.; Zhang, Z.C. Improved Performance of Lithium-Sulfur Battery with Fluorinated Electrolyte. Electrochem. Commun. 2013, 37, 96–99. [Google Scholar] [CrossRef]
- Busche, M.R.; Adelhelm, P.; Sommer, H.; Schneider, H.; Leitner, K.; Janek, J. Systematical Electrochemical Study on the Parasitic Shuttle-Effect in Lithium-Sulfur-Cells at Different Temperatures and Different Rates. J. Power Sources 2014, 259, 289–299. [Google Scholar] [CrossRef]
- Barghamadi, M.; Best, A.S.; Bhatt, A.I.; Hollenkamp, A.F.; Mahon, P.J.; Musameh, M.; Ruther, T. Effect of Anion on Behaviour of Li-S Battery Electrolyte Solutions Based on N-Methyl-N-Butyl-Pyrrolidinium Ionic Liquids. Electrochim. Acta 2015, 180, 636–644. [Google Scholar] [CrossRef]
- Barghamadi, M.; Best, A.S.; Bhatt, A.I.; Hollenkamp, A.F.; Mahon, P.J.; Musameh, M.; Ruther, T. Effect of LiNO3 Additive and Pyrrolidinium Ionic Liquid on the Solid Electrolyte Interphase in the Lithium Sulfur Battery. J. Power Sources 2015, 295, 212–220. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Zhang, P.; Liu, Z.J.; Du, B.Y.; Peng, Z.Q. A Novel Zwitterionic Ionic Liquid-Based Electrolyte for More Efficient and Safer Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 2020, 12, 11635–11642. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim(s) responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
Samples | Volume Ratio of TDA+TFSI (vol%) | Volume Ratio of DOL (vol%) | Volume Ratio of DME (vol%) | LiTFSI Concentration (mol/L) | LiNO3 Concentration (mol/L) |
---|---|---|---|---|---|
0% IL | 0 | 50 | 50 | 0.5 | 0.2 |
3% IL | 3 | 48.5 | 48.5 | 0.5 | 0.2 |
5% IL | 5 | 47.5 | 47.5 | 0.5 | 0.2 |
10% IL | 10 | 45 | 45 | 0.5 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, Z.; Bai, L.; Du, B. An Ionic Liquid Electrolyte Additive for High-Performance Lithium–Sulfur Batteries. Materials 2023, 16, 7504. https://doi.org/10.3390/ma16237504
Guan Z, Bai L, Du B. An Ionic Liquid Electrolyte Additive for High-Performance Lithium–Sulfur Batteries. Materials. 2023; 16(23):7504. https://doi.org/10.3390/ma16237504
Chicago/Turabian StyleGuan, Zeliang, Ling Bai, and Binyang Du. 2023. "An Ionic Liquid Electrolyte Additive for High-Performance Lithium–Sulfur Batteries" Materials 16, no. 23: 7504. https://doi.org/10.3390/ma16237504
APA StyleGuan, Z., Bai, L., & Du, B. (2023). An Ionic Liquid Electrolyte Additive for High-Performance Lithium–Sulfur Batteries. Materials, 16(23), 7504. https://doi.org/10.3390/ma16237504