The Effect of Nitridation on Sputtering AlN on Composited Patterned Sapphire Substrate
Abstract
:1. Introduction
2. Experiments
3. Results and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Uchida, K.; Watanabe, A.; Yano, F.; Kouguchi, M.; Tanaka, T.; Minagawa, S. Nitridation process of sapphire substrate surface and its effect on the growth of GaN. J. Appl. Phys. 1996, 79, 3487–3491. [Google Scholar] [CrossRef]
- Tóth, G.I.; Tegze, G.; Pusztai, T.; Gránásy, L. Heterogeneous crystal nucleation: The effect of lattice mismatch. Phys. Rev. Lett. 2012, 108, 025502. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.F.; Nelson, J.S. Consistent structural properties for AlN, GaN, and InN. Phys. Rev. B 1995, 51, 7866. [Google Scholar] [CrossRef] [PubMed]
- Ponce, F.A. Defects and interfaces in GaN epitaxy. MRS Bull. 1997, 22, 51–57. [Google Scholar] [CrossRef]
- Melton, W.A.; Pankove, J.I. GaN growth on sapphire. J. Cryst. Growth 1997, 178, 168–173. [Google Scholar] [CrossRef]
- Shen, C.F.; Chang, S.J.; Chen, W.S.; Ko, T.K.; Kuo, C.T.; Shei, S.C. Nitride-based high-power flip-chip LED with double-side patterned sapphire substrate. IEEE Phot. Tech. Lett. 2007, 19, 780–782. [Google Scholar] [CrossRef]
- Lee, J.H.; Oh, J.T.; Choi, S.B.; Kim, Y.C.; Cho, H.I.; Lee, J.H. Enhancement of InGaN-based vertical LED with concavely patterned surface using patterned sapphire substrate. IEEE Phot. Tech. Lett. 2008, 20, 345–347. [Google Scholar] [CrossRef]
- Nie, Q.; Jiang, Z.; Gan, Z.; Liu, S.; Yan, H.; Fang, H. Defect analysis of the LED structure deposited on the sapphire substrate. J. Cryst. Growth 2018, 488, 1–7. [Google Scholar] [CrossRef]
- Lee, Y.J.; Chiu, C.H.; Ke, C.C.; Lin, P.C.; Lu, T.C.; Kuo, H.C.; Wang, S.C. Study of the excitation power dependent internal quantum efficiency in InGaN/GaN LEDs grown on patterned sapphire substrate. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 1137–1143. [Google Scholar]
- Yamada, M.; Mitani, T.; Narukawa, Y.; Shioji, S.; Niki, I.; Sonobe, S.; Deguchi, K.; Sano, M.; Mukai, T. InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode. Jpn. J. Appl. Phys. 2002, 41, L1431. [Google Scholar] [CrossRef]
- Huang, X.H.; Liu, J.P.; Fan, Y.Y.; Kong, J.J.; Yang, H.; Wang, H.B. Effect of patterned sapphire substrate shape on light output power of GaN-based LEDs. IEEE Phot. Tech. Lett. 2011, 23, 944–946. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Tan, Q.; Zeng, X. V-defects formation and optical properties of InGaN/GaN multiple quantum well LED grown on patterned sapphire substrate. Mat. Sci. Semi. Proc. 2015, 29, 112–116. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, D.Y.; Oh, B.W.; Lee, J.H. Comparison of InGaN-based LEDs grown on conventional sapphire and cone-shape-patterned sapphire substrate. IEEE Trans. Electron Devices 2009, 57, 157–163. [Google Scholar] [CrossRef]
- Yang, G.; Chang, J.; Zhao, J.; Tong, Y.; Xie, F.; Wang, J.; Zhang, Q.; Huang, H.; Yan, D. Investigation of light output performance for gallium nitride-based light-emitting diodes grown on different shapes of patterned sapphire substrate. Mat. Sci. Semi. Proc. 2015, 33, 149–153. [Google Scholar] [CrossRef]
- Ooi, Y.K.; Zhang, J. Light extraction efficiency analysis of flip-chip ultraviolet light-emitting diodes with patterned sapphire substrate. IEEE Photonics J. 2018, 10, 1–13. [Google Scholar] [CrossRef]
- Chang, S.; Lin, Y.; Su, Y.; Chang, C.; Wen, T.; Shei, S.; Ke, J.; Kuo, C.; Chen, S.; Liu, C. Nitride-based LEDs fabricated on patterned sapphire substrates. Solid-State Electron. 2003, 47, 1539–1542. [Google Scholar] [CrossRef]
- Lin, D.W.; Huang, J.K.; Lee, C.Y.; Chang, R.W.; Lan, Y.P.; Lin, C.C.; Lee, K.Y.; Lin, C.H.; Lee, P.T.; Chi, G.C. Enhanced Light Output Power and Growth Mechanism of GaN-Based Light-Emitting Diodes Grown on Cone-Shaped SiO2 Patterned Template. J. Dis. Tech. 2012, 9, 285–291. [Google Scholar] [CrossRef]
- Yen, C.H.; Lai, W.C.; Yang, Y.Y.; Wang, C.K.; Ko, T.K.; Hon, S.J.; Chang, S.J. GaN-based light-emitting diode with sputtered AlN nucleation layer. IEEE Phot. Tech. Lett. 2011, 24, 294–296. [Google Scholar] [CrossRef]
- Zolper, J.C.; Rieger, D.J.; Baca, A.G.; Pearton, S.J.; Lee, J.W.; Stall, R.A. Sputtered AlN encapsulant for high-temperature annealing of GaN. Appl. Phys. Lett. 1996, 69, 538–540. [Google Scholar] [CrossRef]
- Hu, H.; Zhou, S.; Wan, H.; Liu, X.; Li, N.; Xu, H. Effect of strain relaxation on performance of InGaN/GaN green LEDs grown on 4-inch sapphire substrate with sputtered AlN nucleation layer. Sci. Rep. 2019, 9, 3447. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Kang, S.; Dinh, D.; Yoon, D. Influence of AlN buffer layer thickness and deposition methods on GaN epitaxial growth. Thin Solid Films 2009, 517, 5057–5060. [Google Scholar] [CrossRef]
- Peng, R.; Meng, X.; Xu, S.; Zhang, J.; Li, P.; Huang, J.; Du, J.; Zhao, Y.; Fan, X.; Hao, Y. Study on dislocation annihilation mechanism of the high-quality GaN grown on sputtered AlN/PSS and its application in green light-emitting diodes. IEEE Trans. Electron Devices 2019, 66, 2243–2248. [Google Scholar] [CrossRef]
- Oh, J.T.; Moon, Y.T.; Kang, D.S.; Park, C.K.; Han, J.W.; Jung, M.H.; Sung, Y.J.; Jeong, H.H.; Song, J.O.; Seong, T.Y. High efficiency ultraviolet GaN-based vertical light emitting diodes on 6-inch sapphire substrate using ex-situ sputtered AlN nucleation layer. Opt. Express 2018, 26, 5111–5117. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.W.; Li, H.; Lu, T.C. Improved performance of GaN based light emitting diodes with ex-situ sputtered AlN nucleation layers. AIP Adv. 2016, 6, 045311. [Google Scholar] [CrossRef] [Green Version]
- Vashaei, Z.; Aikawa, T.; Ohtsuka, M.; Kobatake, H.; Fukuyama, H.; Ikeda, S.; Takada, K. Influence of sputtering parameters on the crystallinity and crystal orientation of AlN layers deposited by RF sputtering using the AlN target. J. Cryst. Growth 2009, 311, 459–462. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, K.; Liu, N.X.; Wei, T.B.; Ji, X.L.; Ma, P.; Yan, J.C.; Wang, J.X.; Zeng, Y.P.; Li, J.M. Theoretical study of polarization-doped GaN-based light-emitting diodes. Appl. Phys. Lett. 2011, 98, 101110. [Google Scholar] [CrossRef]
- Chernyakov, A.E.; Bulashevich, K.A.; Karpov, S.Y.; Zakgeim, A.L. Experimental and theoretical study of electrical, thermal, and optical characteristics of InGaN/GaN high-power flip-chip LEDs. Phys. Status Solidi (A) 2013, 210, 466–469. [Google Scholar] [CrossRef]
- Cai, X.; Deng, S.; Li, L.; Hao, L. A first-principles theoretical study of the electronic and optical properties of twisted bilayer GaN structures. J. Comput. Electron. 2020, 19, 910–916. [Google Scholar] [CrossRef]
- Belabbas, I.; Chen, J.; Heggie, M.I.; Latham, C.D.; Rayson, M.J.; Briddon, P.R.; Nouet, G. Core properties and mobility of the basal screw dislocation in wurtzite GaN: A density functional theory study. Model. Simul. Mater. Sci. Eng. 2016, 24, 075001. [Google Scholar] [CrossRef]
- Blendell, J.E.; Coble, R.L. Measurement of stress due to thermal expansion anisotropy in Al2O3. J. Am. Ceram. Soc. 1982, 65, 174–178. [Google Scholar] [CrossRef]
- Tsou, C.; Huang, Y.S.; Li, H.C.; Lai, T.H. Determination of thermal expansion coefficient of thermal oxide. Sens. Mater. 2005, 17, 441–451. [Google Scholar]
Sample | AC Power (W) | Nitridation Time (s) | Thickness (nm) | Refractive Index |
---|---|---|---|---|
1 | 50 | 60 | 11.51 | 1.9706 |
2 | 70 | 60 | 11.51 | 1.9686 |
3 | 90 | 60 | 11.43 | 1.9707 |
4 | 120 | 60 | 11.55 | 1.9703 |
5 | 50 | 90 | 11.31 | 1.9670 |
6 | 50 | 120 | 11.34 | 1.9646 |
7 | 50 | 150 | 11.44 | 1.9649 |
8 | / | / | 11.7 | 1.9811 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhu, G.; Wang, J.; Le, Z. The Effect of Nitridation on Sputtering AlN on Composited Patterned Sapphire Substrate. Materials 2023, 16, 1104. https://doi.org/10.3390/ma16031104
Zhang Y, Zhu G, Wang J, Le Z. The Effect of Nitridation on Sputtering AlN on Composited Patterned Sapphire Substrate. Materials. 2023; 16(3):1104. https://doi.org/10.3390/ma16031104
Chicago/Turabian StyleZhang, Yi, Guangmin Zhu, Jiangbo Wang, and Zichun Le. 2023. "The Effect of Nitridation on Sputtering AlN on Composited Patterned Sapphire Substrate" Materials 16, no. 3: 1104. https://doi.org/10.3390/ma16031104
APA StyleZhang, Y., Zhu, G., Wang, J., & Le, Z. (2023). The Effect of Nitridation on Sputtering AlN on Composited Patterned Sapphire Substrate. Materials, 16(3), 1104. https://doi.org/10.3390/ma16031104