Physical and Chemical Effects in Blended Cement Pastes Elaborated with Calcined Clay and Nanosilica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Past Composition and Preparation
2.3. Test Methods
3. Results
3.1. Isothermal Calorimetry
3.2. X-ray Diffraction (XRD)
3.3. Thermogravimetric Analysis (TGA)
3.4. Mercury Intrusion Porosimetry (MIP)
3.5. Compressive Strength
4. Conclusions
- Hydration kinetics were heavily influenced by the presence of NS and CC, with acceleration due to nucleation effects in both binary and ternary. In these mixtures, which possess higher total surface area and lower clinker content than OPC, an undersulfated condition was observed, with superposition of silicate and aluminate peaks;
- Analysis of CH content in the pastes over time shows that the pozzolanic re-action starts before 1 day for NS, and between 1 and 3 days for CC. Furthermore, the effect of NS in CH consumption was more significant in paste 23CC2NS than in paste 23IF2NS at all ages, reaffirming the chemical effect of the pozzolanic reaction of CC when compared with IF;
- The use of NS and CC, in both binary and ternary mixtures, promoted a reduction in total porosity and refinement of the microstructure, with the conversion of macropores into mesopores and gel pores. This effect was very significant in the ternary paste (23CC2NS), which showed macropore volume close to zero;
- Compressive strength was increased at an early age with the use of NS. At later ages, however, all pastes without IF showed similar compressive strength values. In the case of 23CC2NS paste, although a higher compressive strength was expected, the undersulfated condition might have limited the reactive potential of the materials and consequently the potential for compressive strength gains.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scrivener, K.L. Options for the Future of Cement. Indian Concr. J. 2014, 88, 11–21. [Google Scholar]
- Eduardo, C.; Balestra, T.; Rocha, L.; Jubanski, E.; Nakano, A.Y.; Helena, M.; Schneider, R.; Angel, M.; Gil, R. Contribution to Low-Carbon Cement Studies: Effects of Silica Fume, Fly Ash, Sugarcane Bagasse Ash and Acai Stone Ash Incorporation in Quaternary Blended Limestone-Calcined Clay Cement Concretes. Environ. Dev. 2023, 45, 100792. [Google Scholar] [CrossRef]
- Benkeser, D.; Hernandez, K.; Lolli, F.; Kurtis, K. Influence of Calcined Clay Morphology on Flow in Blended Cementitious Systems. Cem. Concr. Res. 2022, 160, 106927. [Google Scholar] [CrossRef]
- Bonavetti, V.L.; Castellano, C.C.; Irassar, E.F. Designing General Use Cement with Calcined Illite and Limestone Filler. Appl. Clay Sci. 2022, 230, 106700. [Google Scholar] [CrossRef]
- Mencía, R.V.; de la, V.; Frias, M.; Ramírez, S.M.; Carrasco, L.F.; Giménez, R.G. Concrete/Glass Construction and Demolition Waste (CDW). Materials 2022, 15, 4661. [Google Scholar] [CrossRef] [PubMed]
- Boris, R.; Wilińska, I.; Pacewska, B.; Antonovič, V. Investigations of the Influence of Nano-Admixtures on Early Hydration and Selected Properties of Calcium Aluminate Cement Paste. Materials 2022, 15, 4958. [Google Scholar] [CrossRef]
- Becerra-Duitama, J.A.; Rojas-Avellaneda, D. Pozzolans: A Review. Eng. Appl. Sci. Res. 2022, 49, 495–504. [Google Scholar] [CrossRef]
- Sevinç, A.H. Investigating the Properties of GGBFS Hazelnut Ash–Based Cement-Free Mortars Produced at Ambient Temperature under Different Curing Conditions. J. Mater. Civ. Eng. 2022, 34, 4022268. [Google Scholar] [CrossRef]
- Durgun, M.Y.; Atahan, H.N. Strength, Elastic and Microstructural Properties of SCCs’ with Colloidal Nano Silica Addition. Constr. Build. Mater. 2018, 158, 295–307. [Google Scholar] [CrossRef]
- Durgun, M.Y.; Sevinç, A.H. Determination of the Effectiveness of Various Mineral Additives against Sodium and Magnesium Sulfate Attack in Concrete by Taguchi Method. J. Build. Eng. 2022, 57, 104849. [Google Scholar] [CrossRef]
- Hanein, T.; Franco, K.T.; Marsh, A.T.M.; Maier, M.; Wang, B.; Canut, M.; Juenger, M.C.G.; Ben, M.; Franc, H.; Karen, A.; et al. Clay Calcination Technology: State-of-the-Art Review by the RILEM TC 282-CCL. Mater. Struct. 2022, 55, 3. [Google Scholar] [CrossRef]
- Rojas, M.F.; Cabrera, J. The Effect of Temperature on the Hydration Rate and Stability of the Hydration Phases of Metakaolin-Lime-Water Systems. Cem. Concr. Res. 2002, 32, 133–138. [Google Scholar] [CrossRef]
- Frias, M. The Effect of Metakaolin on the Reaction Products and Microporosity in Blended Cement Pastes Submitted to Long Hydration Time and High Curing Temperature. Adv. Cem. Res. 2006, 18, 1–6. [Google Scholar] [CrossRef]
- MFrías, M.; Martínez-Ramírez, S.; de la Villa, R.V.; Fernández-Carrasco, L.; García, R. Reactivity in Cement Pastes Bearing Fine Fraction Concrete and Glass from Construction and Demolition Waste: Microstructural Analysis of Viabilit. Cem. Concr. Res. 2021, 148, 106531. [Google Scholar]
- Castillo, D.; Cruz, J.C.; Trejo-arroyo, D.L.; Muzquiz, E.M.; Zarhri, Z. Characterization of Poultry Litter Ashes as a Supplementary Cementitious Material. Case Stud. Constr. Mater. 2022, 17, e01278. [Google Scholar] [CrossRef]
- Mohammed, S. Processing, Effect and Reactivity Assessment of Artificial Pozzolans Obtained from Clays and Clay Wastes: A Review. Constr. Build. Mater. 2017, 140, 10–19. [Google Scholar] [CrossRef]
- Cao, Z.; Cao, Y.; Dong, H.; Zhang, J.; Sun, C. Effect of Calcination Condition on the Microstructure and Pozzolanic Activity of Calcined Coal Gangue. Int. J. Miner. Process. 2016, 146, 23–28. [Google Scholar] [CrossRef]
- Okashah, A.M.; Zainal, F.F.; Hayazi, N.F.; Nordin, M.N.; Abdullah, A. Pozzolanic Properties of Calcined Clay in Geopolymer Concrete: A Review. AIP Conf. Proc. 2021, 2339, 020234. [Google Scholar] [CrossRef]
- Tironi, A.; Trezza, M.A.; Scian, A.N.; Irassar, E.F. Thermal Analysis to Assess Pozzolanic Activity of Calcined Kaolinitic Clays. J. Therm. Anal. Calorim. 2014, 117, 547–556. [Google Scholar] [CrossRef]
- Schneider, M.; Romer, M.; Tschudin, M.; Bolio, H. Sustainable Cement Production-Present and Future. Cem. Concr. Res. 2011, 41, 642–650. [Google Scholar] [CrossRef]
- Tironi, A.; Scian, A.N.; Irassar, E.F. Blended Cements with Limestone Filler and Kaolinitic Calcined Clay: Filler and Pozzolanic Effects. J. Mater. Civ. Eng. 2017, 29, 04017116. [Google Scholar] [CrossRef]
- Khalifa, A.Z.; Cizer, Ö.; Pontikes, Y.; Heath, A.; Patureau, P.; Bernal, S.A.; Marsh, A.T.M. Advances in Alkali-Activation of Clay Minerals. Cem. Concr. Res. 2020, 132, 106050. [Google Scholar] [CrossRef]
- Gartner, E.; Sui, T. Alternative Cement Clinkers. Cem. Concr. Res. 2018, 114, 27–39. [Google Scholar] [CrossRef]
- Pierkes, R.; Schulze, S.E.; Rickert, J. Calcined Clays for Sustainable Concrete. In RILEM Bookseries; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Ez-zaki, H.; Marangu, J.M.; Bellotto, M.; Dalconi, M.C.; Artioli, G.; Valentini, L. A Fresh View on Limestone Calcined Clay Cement (LC3) Pastes. Materials 2021, 14, 3037. [Google Scholar] [CrossRef] [PubMed]
- Sánchez Berriel, S.; Favier, A.; Rosa Domínguez, E.; Sánchez MacHado, I.R.; Heierli, U.; Scrivener, K.; Martirena Hernández, F.; Habert, G. Assessing the Environmental and Economic Potential of Limestone Calcined Clay Cement in Cuba. J. Clean. Prod. 2016, 124, 361–369. [Google Scholar] [CrossRef]
- Zunino, F.; Martirena, F.; Scrivener, K. Limestone Calcined Clay Cements (Lc3). ACI Mater. J. 2021, 118, 49–60. [Google Scholar] [CrossRef]
- Antoni, M.; Rossen, J.; Martirena, F.; Scrivener, K. Cement Substitution by a Combination of Metakaolin and Limestone. Cem. Concr. Res. 2012, 42, 1579–1589. [Google Scholar] [CrossRef]
- Tironi, A.; Trezza, M.A.; Scian, A.N.; Irassar, E.F. Kaolinitic Calcined Clays: Factors Affecting Its Performance as Pozzolans. Constr. Build. Mater. 2012, 28, 276–281. [Google Scholar] [CrossRef]
- Frías, M.; Cabrera, J. Influence of MK on the Reaction Kinetics in MK/Lime and MK-Blended Cement Systems at 20 °C. Cem. Concr. Res. 2001, 31, 519–527. [Google Scholar] [CrossRef]
- Tironi, A.; Castellano, C.C.; Bonavetti, V.L.; Trezza, M.A.; Scian, A.N.; Irassar, E.F. Kaolinitic Calcined Clays—Portland Cement System: Hydration and Properties. Constr. Build. Mater. 2014, 64, 215–221. [Google Scholar] [CrossRef]
- Fraga, Y.S.B.; Rêgo, J.H.d.S.; Capuzzo, V.M.S.; Andrade, D.d.S.; Morais, P.C. Ultrasonication and Synergistic Effects of Silica Fume and Colloidal Nanosilica on the C–S–H Microstructure. J. Build. Eng. 2020, 32, 101702. [Google Scholar] [CrossRef]
- Kawashima, S.; Hou, P.; Corr, D.J.; Shah, S.P. Modification of Cement-Based Materials with Nanoparticles. Cem. Concr. Compos. 2013, 36, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Singh, L.P.; Goel, A.; Bhattacharyya, S.K.; Sharma, U.; Mishra, G. Hydration Studies of Cementitious Material Using Silica Nanoparticles. J. Adv. Concr. Technol. 2015, 13, 345–354. [Google Scholar] [CrossRef]
- da Silva Andrade, D.; da Silva Rêgo, J.H.; Cesar Morais, P.; Frías Rojas, M. Chemical and Mechanical Characterization of Ternary Cement Pastes Containing Metakaolin and Nanosilica. Constr. Build. Mater. 2018, 159, 18–26. [Google Scholar] [CrossRef]
- Jamsheer, A.F.; Kupwade-patil, K.; Büyüköztürk, O.; Bumajdad, A. Analysis of Engineered Cement Paste Using Silica Nanoparticles and Metakaolin Using 29 Si NMR, Water Adsorption and Synchrotron X-Ray Diffraction. Constr. Build. Mater. 2018, 180, 698–709. [Google Scholar] [CrossRef]
- Andrade, D.; da, S.; Rêgo, J.H.; da, I.; Morais, P.C.; Lopes, A.N.; de, M.; Rojas, M.F. Investigation of C-S-H in Ternary Cement Pastes Containing Nanosilica and Highly-Reactive Supplementary Cementitious Materials (SCMs): Microstructure and Strength. Constr. Build. Mater. 2019, 198, 445–455. [Google Scholar] [CrossRef]
- Sousa, M.I.C.; Rêgo, J.H.; da, S. Effect of Nanosilica/Metakaolin Ratio on the Calcium Alumina Silicate Hydrate (C-A-S-H) Formed in Ternary Cement Pastes. J. Build. Eng. 2021, 38, 102226. [Google Scholar] [CrossRef]
- Sousa, M.I.C.; Rêgo, J.H.; da, S. Hidratação de Pastas de Cimento Ternárias Com Metacaulim e Nanossílica Nas Idades Iniciais. Matéria (Rio Jan.) 2020, 25. [Google Scholar] [CrossRef]
- Sousa, M.I.C.; da Silva Rêgo, J.H. Mechanical Strength Analysis of Ternary Cement Pastes Containing Nanosilica and Metakaolin; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; Volume 22, ISBN 9783030220341. [Google Scholar]
- Fernandez, R.; Martirena, F.; Scrivener, K.L. The Origin of the Pozzolanic Activity of Calcined Clay Minerals: A Comparison between Kaolinite, Illite and Montmorillonite. Cem. Concr. Res. 2011, 41, 113–122. [Google Scholar] [CrossRef]
- Nguyen, Q.D.; Khan, M.S.H.; Castel, A. Engineering Properties of Limestone Calcined Clay Concrete. J. Adv. Concr. Technol. 2018, 16, 343–357. [Google Scholar] [CrossRef] [Green Version]
- Sabir, B.; Wild, S.; Bai, J. Metakaolin and Calcined Clays as Pozzolans for Concrete: A Review. Cem. Concr. Compos. 2001, 23, 441–454. [Google Scholar] [CrossRef]
- Scrivener, K.; Martirena, F.; Bishnoi, S.; Maity, S. Calcined Clay Limestone Cements (LC3). Cem. Concr. Res. 2018, 114, 49–56. [Google Scholar] [CrossRef]
- NBR, A. 16697 Portland Cement-Requirements; ABNT: São Paulo, Brazil, 2018. [Google Scholar]
- ABNT. NBR 7215: Cimento Portland—Determinação Da Resistência à Compressão (Portland Cement—Determination of Compressive Strength); Associação Brasileira de Normas Técnicas: São Paulo, Brazil, 2019; p. 8. [Google Scholar]
- Scrivener, K. Calcined Clays for Sustainable Concrete; Springer: Berlin/Heidelberg, Germany, 2015; Volume 10, ISBN 978-94-017-9938-6. [Google Scholar]
- Almenares, R.S.; Vizcaíno, L.M.; Damas, S.; Mathieu, A.; Alujas, A.; Martirena, F. Industrial Calcination of Kaolinitic Clays to Make Reactive Pozzolans. Case Stud. Constr. Mater. 2017, 6, 225–232. [Google Scholar] [CrossRef]
- Martirena, F.; Almenares, R.; Zunino, F.; Alujas, A.; Scrivener, K. Color Control in Industrial Clay Calcination. RILEM Tech. Lett. 2020, 5, 1–7. [Google Scholar] [CrossRef]
- Filho, J.H.; Gobbi, A.; Pereira, E. Atividade Pozolânica de Adições Minerais Para Cimento Portland (Parte I): Índice de Atividade Pozolânica (IAP) Com Cal, Difração de Raios-X (DRX), Termogravimetria (TG/DTG) e Chapelle Modificado Pozzolanic Activity of Mineral Additions to Portl. Rev. Mater. 2017. [Google Scholar] [CrossRef]
- Kantro, D.L. Influence of Water-Reducing Admixtures on Properties of Cement Paste-a Miniature Slump Test. Cem. Concret Aggreg. 1980, 2, 95–102. [Google Scholar]
- Navarro-Blasco, I.; Pérez-Nicolás, M.; Fernández, J.M.; Duran, A.; Sirera, R.; Alvarez, J.I. Assessment of the Interaction of Polycarboxylate Superplasticizers in Hydrated Lime Pastes Modified with Nanosilica or Metakaolin as Pozzolanic Reactives. Constr. Build. Mater. 2014, 73, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Quercia, G.; Spiesz, P.; Hüsken, G.; Brouwers, H.J.H. SCC Modification by Use of Amorphous Nano-Silica. Cem. Concr. Compos. 2014, 45, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.H.; Islam, J.; Peethamparan, S. Use of Nano-Silica to Increase Early Strength and Reduce Setting Time of Concretes with High Volumes of Slag. Cem. Concr. Compos. 2012, 34, 650–662. [Google Scholar] [CrossRef]
- Barbhuiya, S.; Chow, P.L.; Memon, S. Microstructure, Hydration and Nanomechanical Properties of Concrete Containing Metakaolin. Constr. Build. Mater. 2015, 95, 696–702. [Google Scholar] [CrossRef]
- Berra, M.; Carassiti, F.; Mangialardi, T.; Paolini, A.E.; Sebastiani, M. Effects of Nanosilica Addition on Workability and Compressive Strength of Portland Cement Pastes. Constr. Build. Mater. 2012, 35, 666–675. [Google Scholar] [CrossRef]
- Scrivener, K.; Snellings, R.; Lothenbach, B. A Practical Guide to Microstructural Analysis of Cementitious Materials; Crc Press: Boca Raton, FL, USA, 2016; Volume 540. [Google Scholar]
- Rupasinghe, M.; San Nicolas, R.; Mendis, P.; Sofi, M.; Ngo, T. Investigation of Strength and Hydration Characteristics in Nano-Silica Incorporated Cement Paste. Cem. Concr. Compos. 2017, 80, 17–30. [Google Scholar] [CrossRef]
- Skocek, J.; Zajac, M.; Stabler, C.; Ben Haha, M. Predictive Modelling of Hydration and Mechanical Performance of Low Ca Composite Cements: Possibilities and Limitations from Industrial Perspective. Cem. Concr. Res. 2017, 100, 68–83. [Google Scholar] [CrossRef]
- Flores, Y.C.; Cordeiro, G.C.; Toledo Filho, R.D.; Tavares, L.M. Performance of Portland Cement Pastes Containing Nano-Silica and Different Types of Silica. Constr. Build. Mater. 2017, 146, 524–530. [Google Scholar] [CrossRef]
- Lothenbach, B.; Scrivener, K.; Hooton, R.D. Supplementary Cementitious Materials. Cem. Concr. Res. 2011, 41, 1244–1256. [Google Scholar] [CrossRef]
- Avet, F.; Scrivener, K. Investigation of the Calcined Kaolinite Content on the Hydration of Limestone Calcined Clay Cement (LC3). Cem. Concr. Res. 2018, 107, 124–135. [Google Scholar] [CrossRef]
- Zunino, F.; Scrivener, K. The Influence of the Filler Effect on the Sulfate Requirement of Blended Cements. Cem. Concr. Res. 2019, 126, 105918. [Google Scholar] [CrossRef]
- Dorn, T.; Blask, O.; Stephan, D. Acceleration of Cement Hydration—A Review of the Working Mechanisms, Effects on Setting Time, and Compressive Strength Development of Accelerating Admixtures. Constr. Build. Mater. 2022, 323, 126554. [Google Scholar] [CrossRef]
- Nehring, J.; Neubauer, J.; Berger, S.; Goetz-neunhoe, F. Acceleration of OPC by CAC in Binary and Ternary Systems: The Role of Pore Solution Chemistry. Cem. Concr. Res. 2018, 107, 264–274. [Google Scholar] [CrossRef]
- Quennoz, A.; Scrivener, K.L. Interactions between Alite and C3A-Gypsum Hydrations in Model Cements. Cem. Concr. Res. 2013, 44, 46–54. [Google Scholar] [CrossRef]
- Suraneni, P.; Flatt, R.J. Use of Micro-Reactors to Obtain New Insights into the Factors Influencing Tricalcium Silicate Dissolution. Cem. Concr. Res. 2015, 78, 208–215. [Google Scholar] [CrossRef]
- Haruehansapong, S.; Pulngern, T.; Chucheepsakul, S. Effect of the Particle Size of Nanosilica on the Compressive Strength and the Optimum Replacement Content of Cement Mortar Containing Nano-SiO2. Constr. Build. Mater. 2014, 50, 471–477. [Google Scholar] [CrossRef]
- Khaloo, A.; Mobini, M.H.; Hosseini, P. Influence of Different Types of Nano-SiO2 particles on Properties of High-Performance Concrete. Constr. Build. Mater. 2016, 113, 188–201. [Google Scholar] [CrossRef]
- Rojas, M.F. Study of Hydrated Phases Present in a MK—Lime System Cured at 60 °C and 60 Months of Reaction. Cem. Concr. Res. 2006, 36, 827–831. [Google Scholar] [CrossRef]
- Taylor, H.F.W. Cement Chemistry; Thomas Telford Publishing: London, UK, 1997. [Google Scholar]
- Hoppe Filho, J. Sistemas Cimento, Cinza Volante e Cal Hidratada: Mecanismo de Hidratação, Microestrutura e Carbonatação de Concreto. Tese Doutorado 2008, 247, 104. [Google Scholar]
- Ram, K.; Serdar, M.; Londono-zuluaga, D.; Scrivener, K. Case Studies in Construction Materials The Effect of Pore Microstructure on Strength and Chloride Ingress in Blended Cement Based on Low Kaolin Clay. Case Stud. Constr. Mater. 2022, 17, e01242. [Google Scholar] [CrossRef]
- Krajči, Ľ.; Mojumdar, S.C.; Janotka, I.; Puertas, F.; Palacios, M.; Kuliffayová, M. Performance of Composites with Metakaolin-Blended Cements. J. Therm. Anal. Calorim. 2015, 119, 851–863. [Google Scholar] [CrossRef]
- Maraghechi, H.; Avet, F.; Wong, H.; Kamyab, H.; Scrivener, K. Performance of Limestone Calcined Clay Cement (LC3) with Various Kaolinite Contents with Respect to Chloride Transport. Mater. Struct. Constr. 2018, 51, 125. [Google Scholar] [CrossRef] [Green Version]
- Frías, M.; Cabrera, J. Pore Size Distribution and Degree of Hydration of Metakaolin-Cement Pastes. Cem. Concr. Res. 2000, 30, 561–569. [Google Scholar] [CrossRef]
- Land, G.; Stephan, D. The Influence of Nano-Silica on the Hydration of Ordinary Portland Cement. J. Mater. Sci. 2012, 47, 1011–1017. [Google Scholar] [CrossRef]
- Chithra, S.; Senthil Kumar, S.R.R.; Chinnaraju, K. The Effect of Colloidal Nano-Silica on Workability, Mechanical and Durability Properties of High Performance Concrete with Copper Slag as Partial Fine Aggregate. Constr. Build. Mater. 2016, 113, 794–804. [Google Scholar] [CrossRef]
- Hou, P.K.; Kawashima, S.; Wang, K.J.; Corr, D.J.; Qian, J.S.; Shah, S.P. Effects of Colloidal Nanosilica on Rheological and Mechanical Properties of Fly Ash-Cement Mortar. Cem. Concr. Compos. 2013, 35, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Tobón, J.I.; Payá, J.J.; Borrachero, M.V.; Restrepo, O.J. Mineralogical Evolution of Portland Cement Blended with Silica Nanoparticles and Its Effect on Mechanical Strength. Constr. Build. Mater. 2012, 36, 736–742. [Google Scholar] [CrossRef]
Material Property | OPC | CC | IF | NS | |
---|---|---|---|---|---|
Chemical composition (%) | SiO2 | 19.82 | 57.65 | 97.83 | 90.61 |
Al2O3 | 4.78 | 34.54 | 1.48 | - | |
MgO | 5.58 | 0.26 | - | 0.1 | |
Fe2O3 | 3.13 | 3.21 | 0.57 | 0.11 | |
CaO | 61.47 | - | - | 0.02 | |
Na2O | 0.11 | - | - | 2.03 | |
K2O | 0.33 | 1.1 | 0.26 | 0.03 | |
TiO2 | 0.24 | 1.77 | - | 0.03 | |
P2O5 | 0.16 | - | - | - | |
MnO | - | - | - | - | |
SO3 | 2.75 | - | - | - | |
Others | - | - | - | 0.9 | |
Loss on ignition (LOI) | 1.47 | 0.74 | 0.27 | 6.19 | |
Specific mass (g/cm3) | 3.11 | 2.66 | 2.69 | 1.2 * | |
Specific surface area (m2/g) | 2.86 | 17.96 | 3.013 | 80 * | |
Mean particle diameter (μm) | 21.65 | 19.13 | 23.51 | 0.022 | |
D10 (μm) | 2.19 | 1.49 | 1.51 | - | |
D50 (μm) | 20.17 | 14.48 | 13.81 | - | |
D90 (μm) | 42.60 | 44.25 | 60.74 | - |
Paste | Formulation | OPC (g) | CC (g) | IF (g) | NS Total/Solid Nanosilica (g) | Water (g) | SP (g)/SP (%) | Mini-Slump Diameter (mm) |
---|---|---|---|---|---|---|---|---|
OPC | 100%OPC | 1200 | - | - | - | 480 | 1.2/0.10% | 90 |
2NS | 98%OPC + 2%NS | 1176 | - | - | 80/24 | 480 | 9.6/0.80% | 92 |
25CC | 75%OPC + 25%CC | 900 | 300 | - | - | 480 | 3.6/0.30% | 93 |
23CC2NS | 75%OPC + 23%CC + 2%NS | 900 | 276 | - | 80/24 | 480 | 14.1/1.20% | 96 |
25IF | 75%OPC + 25%IF | 900 | - | 300 | - | 480 | 0.84/0.07% | 93 |
23IF2NS | 75%OPC + 23%IF + 2%NS | 900 | - | 276 | 80/24 | 480 | 10.44/0.80% | 95 |
Parameter | OPC | 2NS | 25CC | 23CC2NS | 25IF | 23IF2NS |
---|---|---|---|---|---|---|
Total heat at 24 h (J/g of binder) | 237.0 | 255.3 | 178.5 | 197.4 | 191.0 | 205.3 |
Total heat at 72 h (J/g of binder) | 350.2 | 359.1 | 262.4 | 294.6 | 281.1 | 303.4 |
Heat flow at main peak (mW/g of clinker) | 5.0 | 7.6 | 5.2 | 6.1 | 5.2 | 5.7 |
Main peak maximum point time (h) | 12.6 | 9.1 | 7.9 | 8.2 | 10.6 | 9.9 |
Pastes | OPC | 2NS | 25CC | 23CC2NS | 25IF | 23IF2NS |
---|---|---|---|---|---|---|
Weight loss at Hydrated phases region (50–440 °C) | 13.2% | 13.0% | 13.5% | 15.5% | 11.1% | 12.3% |
HP index in relation to OPC | 100% | 98% | 102% | 117% | 84% | 93% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinheiro, D.G.L.; Sousa, M.I.C.; Pelisser, F.; da Silva Rêgo, J.H.; Moragues Terrades, A.; Frías Rojas, M. Physical and Chemical Effects in Blended Cement Pastes Elaborated with Calcined Clay and Nanosilica. Materials 2023, 16, 1837. https://doi.org/10.3390/ma16051837
Pinheiro DGL, Sousa MIC, Pelisser F, da Silva Rêgo JH, Moragues Terrades A, Frías Rojas M. Physical and Chemical Effects in Blended Cement Pastes Elaborated with Calcined Clay and Nanosilica. Materials. 2023; 16(5):1837. https://doi.org/10.3390/ma16051837
Chicago/Turabian StylePinheiro, Divino Gabriel Lima, Matheus Ian Castro Sousa, Fernando Pelisser, João Henrique da Silva Rêgo, Amparo Moragues Terrades, and Moisés Frías Rojas. 2023. "Physical and Chemical Effects in Blended Cement Pastes Elaborated with Calcined Clay and Nanosilica" Materials 16, no. 5: 1837. https://doi.org/10.3390/ma16051837
APA StylePinheiro, D. G. L., Sousa, M. I. C., Pelisser, F., da Silva Rêgo, J. H., Moragues Terrades, A., & Frías Rojas, M. (2023). Physical and Chemical Effects in Blended Cement Pastes Elaborated with Calcined Clay and Nanosilica. Materials, 16(5), 1837. https://doi.org/10.3390/ma16051837