Effect of Various Dynamic Shear Rheometer Testing Methods on the Measured Rheological Properties of Bitumen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tested Materials
2.2. Testing Plan
2.3. Design of Experiment
3. Results and Discussion
3.1. Evaluation of Main and Interaction Effects
- Trim(G*) = ((G*8 − G*7) + (G*4 − G*3) + (G*6 − G*5) + (G*2 − G*1))/4
- BT (G*) = ((G*3 − G*1) + (G*4 − G*2) + (G*7 − G*5) + (G*8 − G*6))/4
- HT (G*) = ((G*8 − G*4) + (G*7 − G*3) + (G*6 − G*2) + (G*5 − G*1))/4
- Trim:HT (G*) = (G*1 + G*3 + G*6 + G*8)/4 − (G*2 + G*4 + G*5 + G*7)/4
- Trim:BT (G*) = (G*8 + G*5 + G*4 + G*1)/4 − (G*7 + G*6 + G*3 + G*2)/4
- BT:HT(G*) = (G*8 + G*7 + G*2 + G*1)/4 − (G*3 + G*4+ G*5 + G*6)/4
- Trim:BT:HT (G*) = (G*8 + G*5 + G*3 + G*2)/4 − (G*7 + G*6+ G*4 + G*1)/4
3.2. Master Curves and 2S2P1D Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yadykova, A.Y.; Strelets, L.A.; Ilyin, S.O. Infrared Spectral Classification of Natural Bitumens for Their Rheological and Thermophysical Characterization. Molecules 2023, 28, 2065. [Google Scholar] [CrossRef] [PubMed]
- Halstead, W.J. Relation of Asphalt Chemistry to Physical Properties and Specifications; Virginia Transportation Research Council: Charlottesville, VA, USA, 1984. [Google Scholar]
- Zakar, P. Asphalt; Chemical Publishing Company: Gloucester, MA, USA, 1971. [Google Scholar]
- EN1426; Bitumen and Bituminous Binders—Determination of Needle Penetration. European Committee for Standardization: Brussels, Belgium, 2015.
- EN1427; Bitumen and Bituminous Binders—Determination of the Softening Point—Ring and Ball Method. European Committee for Standardization: Brussels, Belgium, 2015.
- Airey, G.D. Rheological properties of styrene butadiene styrene polymer modified road bitumens. Fuel 2003, 82, 1709–1719. [Google Scholar] [CrossRef]
- Soenen, H.; Lu, X.; Redelius, P. The morphology of bitumen-SBS blends by UV microscopy: An evaluation of preparation methods. Road Mater. Pavement Des. 2008, 9, 97–110. [Google Scholar] [CrossRef]
- Zhu, J.; Balieu, R.; Lu, X.; Kringos, N. Numerical investigation on phase separation in polymer-modified bitumen: Effect of thermal condition. J. Mater. Sci. 2017, 52, 6525–6541. [Google Scholar] [CrossRef] [Green Version]
- EN14770; Bitumen and Bituminous Binders—Determination of Complex Shear Modulus and Phase Angle—Dynamic Shear Rheometer (dsr). European Committee for Standardization (CEN): Brussels Belgium, 2012.
- Airey, G.D.; Rahimzadeh, B.; Collop, A.C. Linear viscoelastic limits of bituminous binders. Asph. Paving Technol. 2002, 71, 89–115. [Google Scholar]
- Divya, P.; Krishnan, J.M. How to consistently collect rheological data for bitumen in a Dynamic Shear Rheometer? SN Appl. Sci. 2019, 1, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Airey, G.; Hunter, A.; Rahimzadeh, B. Sample Preparation Methods, Geometry and Temperature Control for Dynamic Shear Rheometers. Bearing Capacity of Roads, Railways and Airfields; CRC Press: Boca Raton, FL, USA, 2002; pp. 787–797. [Google Scholar]
- Liu, Q.; Wu, J.; Qu, X.; Wang, C.; Oeser, M. Investigation of bitumen rheological properties measured at different rheometer gap sizes. Constr. Build. Mater. 2020, 265, 120287. [Google Scholar] [CrossRef]
- Singh, B.; Saboo, N.; Kumar, P. (Eds.) Effect of spindle diameter and plate gap on the rheological properties of asphalt binders. In Functional Pavement Design, Proceedings of the 4th Chinese-European Workshop on Functional Pavement Design (4th CEW 2016), Delft, The Netherlands, 29 June–1 July 2016; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Wang, D.; Cannone Falchetto, A.; Alisov, A.; Schrader, J.; Riccardi, C.; Wistuba, M.P. An alternative experimental method for measuring the low temperature rheological properties of asphalt binder by using 4mm parallel plates on dynamic shear rheometer. Transp. Res. Rec. 2019, 2673, 427–438. [Google Scholar] [CrossRef]
- Zhai, H.; Bahia, H.U.; Erickson, S. Effect of film thickness on rheological behavior of asphalt binders. Transp. Res. Rec. 2000, 1728, 7–14. [Google Scholar] [CrossRef]
- Soenen, H.; De Visscher, J.; Vanelstraete, A.; Redelius, P. The influence of thermal history on binder rutting indicators. Road Mater. Pavement Des. 2005, 6, 217–238. [Google Scholar] [CrossRef]
- Mouillet, V.; Lapalu, L.; Planche, J.; Durrieu, F. (Eds.) Rheological analysis of bitumens by dynamic shear rheometer: Effect of the thermal history on the results. In Proceedings of the 3rd Eurasphalt and Eurobitume Congress Held Vienna, Vienna, Austria, 12–14 May 2004. [Google Scholar]
- Eckmann, B.; Largeaud, S.; Chabert, D.; Durand, G.; Robert, M.; Van Rooijen, R.; Chailleux, E.; Mouillet, V.; Soenen, H.; Clavel, N.; et al. Measuring the rheological properties of bituminous binders final results from the round robin test of the BNPÉ/P04/GE1 Working Group (France). In Proceedings of the 5th Eurasphalt & Eurobitume Congress, Istanbu, Turkey, 13–15 June 2012. [Google Scholar]
- Laukkanen, O.-V. Small-diameter parallel plate rheometry: A simple technique for measuring rheological properties of glass-forming liquids in shear. Rheol. Acta 2017, 56, 661–671. [Google Scholar] [CrossRef] [Green Version]
- Alisov, A. Typisierung von Bitumen Mittels Instationärer Oszillationsrheometrie; ISBS, Institut für Straßenwesen: Braunschweig, Germany, 2017. [Google Scholar]
- Box, G.E.; Hunter, W.H.; Hunter, S. Statistics for Experimenters; John Wiley & Sons: New York, NY, USA, 1978. [Google Scholar]
- Olard, F.; Di Benedetto, H. General “2S2P1D” Model and Relation Between the Linear Viscoelastic Behaviours of Bituminous Binders and Mixes. Road Mater. Pavement Des. 2003, 4, 185–224. [Google Scholar]
- Delaporte, B.; Di Benedetto, H.; Chaverot, P.; Gauthier, G. Linear viscoelastic properties of bituminous materials: From binders to mastics (with discussion). J. Assoc. Asph. Paving Technol. 2007, 76, 455–494. [Google Scholar]
- Benedetto, H.D.; Delaporte, B.; Sauzéat, C. Three-dimensional linear behavior of bituminous materials: Experiments and modeling. Int. J. Geomech. 2007, 7, 149–157. [Google Scholar] [CrossRef]
- Ferry, J.D. Viscoelastic Properties of Polymers; John Wiley & Sons: Hoboken, NJ, USA, 1980. [Google Scholar]
- Daniel, C. Use of half-normal plots in interpreting factorial two-level experiments. Technometrics 1959, 1, 311–341. [Google Scholar] [CrossRef]
- Ediger, M.; Lutz, T.; He, Y. Dynamics in glass-forming mixtures: Comparison of behavior of polymeric and non-polymeric components. J. Non-Cryst. Solids 2006, 352, 4718–4723. [Google Scholar] [CrossRef]
- Yusoff, N.I.M.; Mounier, D.; Marc-Stéphane, G.; Rosli Hainin, M.; Airey, G.D.; Di Benedetto, H. Modelling the rheological properties of bituminous binders using the 2S2P1D Model. Constr. Build. Mater. 2013, 38, 395–406. [Google Scholar] [CrossRef]
- Lesueur, D.; Gerard, J.F.; Claudy, P.; Letoffe, J.M.; Planche, J.P.; Martin, D. A structure—related model to describe asphalt linear viscoelasticity. J. Rheol. 1996, 40, 813–836. [Google Scholar] [CrossRef]
- López-Paz, J.; Gracia-Fernández, C.; Gómez-Barreiro, S.; López-Beceiro, J.; Nebreda, J.; Artiaga, R. Study of bitumen crystallization by temperature-modulated differential scanning calorimetry and rheology. J. Mater. Res. 2012, 27, 1410–1416. [Google Scholar] [CrossRef]
- Airey, G.D. Use of black diagrams to identify inconsistencies in rheological data. Road Mater. Pavement Des. 2002, 3, 403–424. [Google Scholar] [CrossRef]
Sample ID | PEN (0.1 mm) at 25 °C EN 1426 | SP (°C) EN 1427 | Density at 25 °C kg/m3 |
---|---|---|---|
50/70 | 61 | 48.4 | 1030 |
70/100 | 77 | 46.0 | 1022 |
160/220_I | 160 | 41.2 | 1000 |
160/220_II | 161 | 39.5 | 1013 |
Standard Order | Randomized Run Order | Trimming State Trim | Bonding Temp. °C BT | Heating Temp. °C HT |
---|---|---|---|---|
1 | 6 and 13 | Yes (−) | SP (−) | SP + 80 (−) |
2 | 2 and 4 | No (+) | SP (−) | SP + 80 (−) |
3 | 1 and 16 | Yes (−) | SP + 25 (+) | SP + 80 (−) |
4 | 5 and 10 | No (+) | SP + 25 (+) | SP + 80 (−) |
5 | 8 and 12 | Yes (−) | SP (−) | SP + 100 (+) |
6 | 9 and 14 | No (+) | SP (−) | SP + 100 (+) |
7 | 3 and 11 | Yes (−) | SP + 25 (+) | SP + 100 (+) |
8 | 7 and 15 | No (+) | SP + 25 (+) | SP + 100 (+) |
Result from 8 Runs | Average of Duplicate (kPa) | Estimated Variance: (Diff. of Duplicate)2/2 |
---|---|---|
G*6 and G*13 | G*1 = (G*6 + G*13)/2 = 3658.2 | (G*6 − G*13)2/2 = (152.7)2/2 |
G*2 and G*4 | G*2 = (G*2 + G*4)/2 = 3313.1 | (G*2 − G*4)2/2 = (419)2/2 |
G*1 and G*16 | G*3 = (G*1 + G*16)/2 = 3383.4 | (G*1 − G*16)2/2 = (99.3)2/2 |
G*5 and G*10 | G*4 = (G*5 + G*10)/2 = 3475.7 | (G*5 − G*10)2/2 = (187)2/2 |
G*8 and G*12 | G*5 = (G*8 + G*12)/2 = 3825.7 | (G*8 − G*12)2/2 = (78.1)2/2 |
G*9 and G*14 | G*6 = (G*9 + G*14)/2 = 3774.5 | (G*9 − G*14)2/2 = (71.9)2/2 |
G*3 and G*11 | G*7 = (G*3 + G*11)/2 = 3615 | (G*3 − G*11)2/2 = (0.4)2/2 |
G*7 and G*15 | G*8 = (G*7 + G*15)/2 = 3687.3 | (G*7 − G*15)2/2 = (3.7)2/2 |
Average of the Estimated Variance of 8 observations: | 15,937 |
Factors Effect ± Standard Error | Average |
---|---|
Main Effects | |
Trim | −58 ± 63 |
BT | −103 ± 63 |
HT | 268 ± 63 |
Two-factor interactions | |
Trim:BT | 140 ± 63 |
Trim:HT | 68 ± 63 |
BT:HT | −46 ± 63 |
Three-factor interaction | |
Trim:BT:HT | −78 ± 63 |
Factor | DF | Sum of Square | Mean Square | F Value | p-Value (Prob > F) |
---|---|---|---|---|---|
Trim | 1 | 13,415 | 13,415 | 0.84 | 0.39 |
BT | 1 | 42,035 | 42,035 | 2.64 | 0.14 |
HT | 1 | 287,323 | 287,323 | 18.03 | 0.00 |
Trim:BT | 1 | 78,638 | 78,638 | 4.93 | 0.06 |
Trim:HT | 1 | 18,735 | 18,735 | 1.18 | 0.31 |
BT:HT | 1 | 8616 | 8616 | 0.54 | 0.48 |
Trim:BT:HT | 1 | 24,641 | 24,641 | 1.55 | 0.25 |
Residuals | 8 | 127,495 | 15,937 | ||
Total | 15 | 600,898 |
Temp °C | Trim | BT | HT | Trim:HT | Trim:BT | BT:HT | HT:BT:Trim | SE/avg G* |
---|---|---|---|---|---|---|---|---|
G* (ω = 10 rad/s) | ||||||||
0 | 0.13 | −0.09 | 0.03 | 0.01 | −0.04 | 0.03 | 0.02 | 0.02 |
10 | 0.13 | −0.08 | 0.03 | 0.02 | −0.04 | 0.03 | 0.02 | 0.02 |
20 | 0.14 | −0.07 | 0.04 | 0.03 | −0.03 | 0.02 | 0.02 | 0.02 |
30 PP08 | 0.13 | −0.07 | 0.06 | 0.04 | −0.03 | 0.01 | −0.01 | 0.02 |
30 PP25 | −0.03 | 0.04 | 0.05 | 0.04 | 0.04 | 0.00 | 0.00 | 0.02 |
40 | −0.02 | 0.07 | 0.05 | 0.03 | 0.03 | 0.00 | 0.00 | 0.02 |
50 | −0.01 | 0.06 | 0.04 | 0.03 | 0.02 | 0.00 | 0.00 | 0.02 |
60 | −0.02 | −0.03 | 0.07 | 0.02 | 0.04 | −0.01 | −0.02 | 0.02 |
70 | −0.02 | 0.02 | 0.05 | 0.00 | 0.02 | −0.01 | −0.03 | 0.02 |
80 | −0.02 | 0.02 | 0.03 | 0.00 | 0.02 | −0.01 | −0.03 | 0.01 |
Temp °C | Trim | BT | HT | Trim:HT | Trim:BT | BT:HT | HT:BT:Trim | SE |
δ (ω = 10 rad/s) | ||||||||
0 | −0.29 | −0.06 | −0.08 | 0.01 | −0.09 | −0.07 | −0.04 | 0.11 |
10 | −0.39 | −0.09 | −0.16 | −0.10 | −0.13 | −0.06 | −0.02 | 0.17 |
20 | −0.43 | −0.04 | −0.28 | −0.29 | −0.20 | 0.03 | 0.14 | 0.21 |
30 PP08 | −0.35 | 0.10 | −0.38 | −0.36 | −0.18 | 0.08 | 0.30 | 0.21 |
30 PP25 | 0.10 | 0.23 | −0.14 | −0.04 | −0.31 | 0.02 | 0.26 | 0.15 |
40 | 0.00 | −0.20 | −0.06 | 0.03 | −0.20 | −0.02 | 0.15 | 0.10 |
50 | −0.01 | −0.26 | −0.03 | 0.05 | −0.07 | −0.03 | 0.05 | 0.07 |
60 | −0.03 | 0.16 | −0.09 | 0.03 | −0.02 | 0.02 | 0.01 | 0.04 |
70 | 0.10 | −0.04 | −0.13 | 0.10 | −0.01 | −0.09 | 0.02 | 0.04 |
80 | 0.04 | −0.07 | −0.01 | 0.00 | −0.13 | −0.03 | 0.09 | 0.19 |
Temp °C | Trim | BT | HT | Trim:HT | Trim:BT | BT:HT | HT:BT:Trim | SE/avg G* |
---|---|---|---|---|---|---|---|---|
G*(ω = 10 rad/s) | ||||||||
0 | 0.03 | 0.02 | −0.06 | −0.03 | 0.06 | 0.02 | 0.02 | 0.04 |
10 | 0.04 | 0.02 | −0.06 | −0.03 | 0.07 | 0.02 | 0.02 | 0.04 |
20 | 0.04 | 0.02 | −0.06 | −0.03 | 0.07 | 0.02 | 0.02 | 0.04 |
30 PP08 | 0.04 | 0.01 | −0.07 | −0.04 | 0.08 | 0.03 | 0.02 | 0.05 |
30 PP25 | 0.00 | −0.02 | 0.03 | 0.02 | 0.02 | 0.00 | 0.00 | 0.01 |
40 | 0.01 | −0.02 | 0.03 | 0.02 | 0.02 | 0.00 | −0.01 | 0.01 |
50 | 0.01 | −0.01 | 0.03 | 0.02 | 0.01 | 0.00 | 0.00 | 0.01 |
60 | 0.03 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.00 | 0.01 |
70 | 0.02 | 0.01 | 0.00 | 0.01 | 0.03 | 0.01 | −0.01 | 0.01 |
80 | 0.01 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.00 | 0.01 |
Temp °C | Trim | BT | HT | Trim:HT | Trim:BT | BT:HT | HT:BT:Trim | SE |
δ (ω = 10 rad/s) | ||||||||
0 | −0.24 | −0.07 | 0.04 | −0.01 | −0.27 | −0.03 | 0.05 | 0.10 |
10 | −0.35 | −0.06 | 0.06 | −0.03 | −0.32 | −0.06 | 0.10 | 0.15 |
20 | −0.45 | 0.00 | 0.07 | −0.02 | −0.28 | −0.05 | 0.15 | 0.18 |
30 PP08 | −0.43 | 0.09 | 0.07 | −0.03 | −0.16 | −0.06 | 0.17 | 0.20 |
30 PP25 | −0.19 | 0.29 | −0.01 | 0.00 | −0.11 | −0.06 | 0.01 | 0.09 |
40 | −0.14 | 0.17 | −0.01 | 0.00 | −0.12 | −0.05 | −0.01 | 0.08 |
50 | −0.09 | 0.05 | 0.00 | −0.01 | −0.08 | −0.03 | −0.01 | 0.06 |
60 | −0.03 | −0.01 | 0.03 | −0.01 | −0.07 | −0.06 | 0.02 | 0.02 |
70 | −0.02 | 0.02 | 0.20 | 0.00 | −0.02 | 0.07 | 0.02 | 0.07 |
80 | −0.08 | −0.26 | 0.19 | −0.12 | −0.21 | 0.11 | 0.26 | 0.24 |
Temp °C | Trim | BT | HT | Trim:HT | Trim:BT | BT:HT | HT:BT:Trim | SE/avg G* |
---|---|---|---|---|---|---|---|---|
G*(ω = 10 rad/s) | ||||||||
0 | 0.18 | 0.07 | −0.12 | −0.05 | −0.02 | 0.05 | 0.07 | 0.04 |
10 | 0.17 | 0.19 | −0.17 | −0.04 | −0.03 | 0.06 | 0.08 | 0.04 |
20 | 0.14 | 0.27 | −0.22 | −0.06 | −0.05 | 0.05 | 0.06 | 0.05 |
30 PP08 | 0.14 | 0.24 | −0.22 | −0.13 | −0.07 | 0.05 | 0.02 | 0.06 |
30 PP25 | 0.02 | 0.25 | −0.18 | −0.14 | −0.11 | 0.13 | 0.05 | 0.04 |
40 | 0.02 | 0.13 | −0.09 | −0.13 | −0.09 | 0.14 | 0.02 | 0.02 |
50 | 0.01 | 0.01 | 0.01 | −0.08 | −0.05 | 0.10 | 0.00 | 0.02 |
60 | 0.08 | −0.10 | 0.12 | 0.02 | −0.04 | −0.03 | −0.05 | 0.05 |
70 | 0.05 | −0.05 | 0.10 | 0.03 | −0.04 | −0.03 | −0.05 | 0.04 |
Temp °C | Trim | BT | HT | Trim:HT | Trim:BT | BT:HT | HT:BT:Trim | SE |
δ (ω = 10 rad/s) | ||||||||
0 | −0.34 | −2.98 | 1.62 | −0.25 | 0.33 | −0.88 | −0.42 | 0.49 |
10 | 0.00 | −4.27 | 2.26 | −0.19 | 0.54 | −1.05 | −0.13 | 0.63 |
20 | 0.43 | −4.66 | 2.64 | 0.17 | 0.79 | −0.94 | 0.29 | 0.75 |
30 PP08 | 0.42 | −3.29 | 1.75 | 0.67 | 0.89 | −0.34 | 0.62 | 0.64 |
30 PP25 | 0.11 | −3.18 | 2.42 | 1.49 | 1.89 | −1.48 | −0.87 | 0.48 |
40 | −0.06 | −1.28 | 0.75 | 0.97 | 1.13 | −1.12 | −0.47 | 0.16 |
50 | −0.09 | −0.38 | −0.03 | 0.25 | 0.51 | −0.54 | −0.31 | 0.12 |
60 | −0.25 | 0.05 | −0.13 | −0.08 | −0.04 | 0.04 | 0.03 | 0.11 |
70 | −0.29 | 0.10 | −0.27 | −0.08 | −0.11 | 0.28 | −0.43 | 0.18 |
Temp °C | Trim | BT | HT | Trim:HT | Trim:BT | BT:HT | HT:BT:Trim | SE/avg G* |
---|---|---|---|---|---|---|---|---|
G*(ω = 10 rad/s) | ||||||||
0 | 0.15 | −0.05 | 0.05 | 0.06 | 0.02 | 0.03 | 0.02 | 0.01 |
10 | 0.16 | −0.05 | 0.05 | 0.06 | 0.04 | 0.03 | 0.02 | 0.01 |
20 | 0.18 | −0.05 | 0.05 | 0.06 | 0.05 | 0.02 | 0.01 | 0.02 |
30 PP08 | 0.18 | −0.05 | 0.05 | 0.06 | 0.05 | 0.02 | 0.00 | 0.02 |
30 PP25 | 0.00 | −0.04 | −0.01 | 0.03 | 0.02 | 0.01 | −0.02 | 0.02 |
40 | 0.00 | −0.04 | −0.01 | 0.03 | 0.02 | 0.01 | −0.03 | 0.01 |
50 | 0.01 | −0.03 | −0.01 | 0.02 | 0.01 | 0.01 | −0.03 | 0.01 |
60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.01 | −0.01 | 0.01 |
70 | 0.00 | 0.01 | 0.00 | 0.00 | 0.02 | 0.01 | 0.00 | 0.01 |
Temp °C | Trim | BT | HT | Trim:HT | Trim:BT | BT:HT | HT:BT:Trim | SE |
δ (ω = 10 rad/s) | ||||||||
0 | −0.50 | 0.02 | 0.06 | 0.07 | −0.42 | 0.06 | 0.14 | 0.09 |
10 | −0.77 | 0.01 | 0.09 | 0.12 | −0.52 | 0.13 | 0.26 | 0.15 |
20 | −0.88 | 0.01 | 0.09 | 0.12 | −0.49 | 0.19 | 0.32 | 0.19 |
30 PP08 | −0.87 | 0.09 | 0.03 | 0.03 | −0.41 | 0.18 | 0.31 | 0.22 |
30 PP25 | −0.09 | 0.33 | 0.05 | −0.18 | −0.11 | −0.05 | 0.25 | 0.04 |
40 | −0.05 | 0.14 | 0.01 | −0.10 | −0.08 | −0.05 | 0.18 | 0.04 |
50 | −0.03 | 0.01 | −0.01 | −0.03 | −0.05 | −0.02 | 0.12 | 0.03 |
60 | −0.06 | 0.03 | 0.07 | 0.09 | −0.08 | −0.08 | −0.09 | 0.07 |
70 | 0.02 | −0.14 | −0.29 | −0.01 | 0.13 | −0.38 | 0.00 | 0.21 |
Run Order | G∞ | k | h | α | τ | β | G* R2 | δ R2 | Log (τ) |
---|---|---|---|---|---|---|---|---|---|
1 (YT 6&13) | 3.5 × 108 | 0.39 | 0.68 | 7.11 | 6.8 × 10−4 | 83 | 0.92 | 1 | −3.17 |
2 (NT 2&4) | 5.9 × 108 | 0.35 | 0.67 | 7.95 | 2.8 × 10−4 | 141 | 0.9 | 1 | −3.55 |
3 (YT 1&16) | 2.4 × 108 | 0.41 | 0.7 | 6.93 | 1.8 × 10−3 | 47 | 0.93 | 0.99 | −2.75 |
4 (NT 5&10) | 4.4 × 108 | 0.37 | 0.68 | 8.06 | 5.2 × 10−4 | 92 | 0.89 | 0.99 | −3.28 |
5 (YT 8&12) | 2.4 × 108 | 0.4 | 0.69 | 6.74 | 1.6 × 10−3 | 51 | 0.94 | 1 | −2.79 |
6 (NT 9&14) | 5.5 × 108 | 0.38 | 0.67 | 7.95 | 3.9 × 10−4 | 109 | 0.82 | 1 | −3.40 |
7 (YT 3&11) | 2.8 × 108 | 0.4 | 0.70 | 7.56 | 1.4 × 10−3 | 52 | 0.91 | 0.99 | −2.86 |
8 (NT 7&15) | 5.2 × 108 | 0.36 | 0.66 | 7.72 | 3.4 × 10−4 | 136 | 0.90 | 1 | −3.46 |
avg. | 4.0 × 108 | 0.38 | 0.68 | 7.50 | 8.7 × 10−4 | 88.88 | 0.90 | 1.00 | −3.06 |
SD | 1.4 × 108 | 0.02 | 0.01 | 0.51 | 0.00 | 37.67 | 0.04 | 0.01 | |
CV | 0.36 | 0.06 | 0.02 | 0.07 | 0.70 | 0.42 | 0.04 | 0.01 |
Run Order | G∞ | k | h | α | τ | β | G* R2 | δ R2 | Log (τ) |
---|---|---|---|---|---|---|---|---|---|
1 (YT 6-13) | 3.2 × 108 | 0.46 | 0.72 | 2.83 | 7.8 × 10−4 | 9 | 0.99 | 1 | −3.11 |
2 (NT 2-4) | 8.4 × 108 | 0.29 | 0.66 | 2.92 | 6.3 × 10−5 | 44 | 0.98 | 1 | −4.20 |
3 (YT 1-16) | 3.0 × 108 | 0.35 | 0.68 | 1.54 | 3.4 × 10−4 | 20 | 0.99 | 1 | −3.47 |
4 (NT 5-10) | 2.9 × 108 | 0.48 | 0.71 | 2.98 | 1.1 × 10−3 | 7 | 0.99 | 0.99 | −2.96 |
5 (YT 8-12) | 2.3 × 108 | 0.5 | 0.73 | 2.81 | 1.5 × 10−3 | 6 | 0.99 | 0.99 | −2.82 |
6 (NT 9-14) | 6.7 × 108 | 0.29 | 0.67 | 3.28 | 9.5 × 10−5 | 26 | 1 | 0.99 | −4.02 |
7 (YT 3-11) | 2.4 × 108 | 0.49 | 0.74 | 2.83 | 1.3 × 10−3 | 7 | 0.99 | 0.99 | −2.88 |
8 (NT 7-15) | 2.5 × 108 | 0.5 | 0.73 | 2.96 | 1.4 × 10−3 | 7 | 0.98 | 0.99 | −2.85 |
avg. | 3.9 × 108 | 0.42 | 0.71 | 2.77 | 8.3 × 10−4 | 15.75 | 0.99 | 0.99 | −3.08 |
SD | 2.3 × 108 | 0.09 | 0.03 | 0.52 | 0.00 | 13.58 | 0.01 | 0.01 | |
CV | 0.59 | 0.22 | 0.04 | 0.19 | 0.72 | 0.86 | 0.01 | 0.01 |
Run Order | G∞ | k | h | α | τ | β | G* R2 | δ R2 | Log (τ) |
---|---|---|---|---|---|---|---|---|---|
1 (YT 6-13) | 5.1 × 109 | 0.40 | 0.76 | 101.10 | 1.1 × 10−5 | 62 | 0.99 | 0.96 | −4.97 |
2 (NT 2-4) | 4.3 × 108 | 0.41 | 0.72 | 19.56 | 2.7 × 10−4 | 43 | 0.46 | 0.97 | −3.57 |
3 (YT 1-16) | 5.8 × 109 | 0.38 | 0.74 | 128.61 | 1.5 × 10−5 | 115 | 0.22 | 0.95 | −4.83 |
4 (NT 5-10) | 1.5 × 109 | 0.39 | 0.75 | 68.25 | 1.4 × 10−4 | 40 | 0.38 | 0.95 | −3.86 |
5 (YT 8-12) | 7.2 × 108 | 0.41 | 0.73 | 20.59 | 4.7 × 10−5 | 62 | 1 | 0.97 | −4.32 |
6 (NT 9-14) | 1.8 × 108 | 0.44 | 0.73 | 10.63 | 4.2 × 10−4 | 31 | 0.94 | 0.99 | −3.38 |
7 (YT 3-11) | 1.2 × 109 | 0.39 | 0.73 | 44.51 | 6.5 × 10−5 | 112 | 0.89 | 0.95 | −4.19 |
8 (NT 7-15) | 1.5 × 109 | 0.38 | 0.75 | 48.17 | 5.7 × 10−5 | 86 | 0.88 | 0.97 | −4.24 |
avg. | 2.1 × 109 | 0.40 | 0.74 | 55.18 | 1.3 × 10−4 | 68.88 | 0.72 | 0.96 | −3.89 |
SD | 2.1 × 109 | 0.02 | 0.01 | 41.89 | 0.00 | 32.32 | 0.31 | 0.01 | |
CV | 1.05 | 0.05 | 0.02 | 0.76 | 1.14 | 0.47 | 0.44 | 0.01 |
Run Order | G∞ | k | h | α | τ | β | G* R2 | δ R2 | Log (τ) |
---|---|---|---|---|---|---|---|---|---|
1 (YT 6-13) | 1.0 × 109 | 0.32 | 0.70 | 4.19 | 1.8 × 10−5 | 22 | 1 | 0.99 | −4.75 |
2 (NT 2-4) | 3.7 × 108 | 0.45 | 0.72 | 2.24 | 1.2 × 10−4 | 11 | 0.99 | 0.99 | −3.93 |
3 (YT 1-16) | 2.3 × 108 | 0.18 | 0.72 | 1.58 | 1.3 × 10−4 | 11 | 0.88 | 0.95 | −3.89 |
4 (NT 5-10) | 3.6 × 108 | 0.45 | 0.72 | 2.44 | 1.1 × 10−4 | 11 | 1 | 0.99 | −3.94 |
5 (YT 8-12) | 7.8 × 108 | 0.34 | 0.7 | 3.25 | 2.3 × 10−5 | 23 | 1 | 0.99 | −4.65 |
6 (NT 9-14) | 5.2 × 108 | 0.32 | 0.67 | 1.64 | 3.5 × 10−5 | 26 | 1 | 0.99 | −4.45 |
7 (YT 3-11) | 3.3 × 108 | 0.46 | 0.75 | 2.87 | 1.5 × 10−4 | 8 | 1 | 0.99 | −3.82 |
8 (NT 7-15) | 3.1 × 108 | 0.55 | 0.79 | 4.72 | 5.5 × 10−4 | 3 | 0.95 | 0.99 | −3.26 |
avg. | 4.9 × 108 | 0.38 | 0.72 | 2.87 | 1.4 × 10−4 | 14.38 | 0.98 | 0.99 | −3.85 |
SD | 2.7 × 108 | 0.12 | 0.04 | 1.14 | 0.00 | 8.21 | 0.04 | 0.01 | |
CV | 0.56 | 0.30 | 0.05 | 0.40 | 1.21 | 0.57 | 0.04 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheidaei, M.; Gudmarsson, A.; Langfjell, M. Effect of Various Dynamic Shear Rheometer Testing Methods on the Measured Rheological Properties of Bitumen. Materials 2023, 16, 2745. https://doi.org/10.3390/ma16072745
Sheidaei M, Gudmarsson A, Langfjell M. Effect of Various Dynamic Shear Rheometer Testing Methods on the Measured Rheological Properties of Bitumen. Materials. 2023; 16(7):2745. https://doi.org/10.3390/ma16072745
Chicago/Turabian StyleSheidaei, Maya, Anders Gudmarsson, and Michael Langfjell. 2023. "Effect of Various Dynamic Shear Rheometer Testing Methods on the Measured Rheological Properties of Bitumen" Materials 16, no. 7: 2745. https://doi.org/10.3390/ma16072745
APA StyleSheidaei, M., Gudmarsson, A., & Langfjell, M. (2023). Effect of Various Dynamic Shear Rheometer Testing Methods on the Measured Rheological Properties of Bitumen. Materials, 16(7), 2745. https://doi.org/10.3390/ma16072745