On the Thermal Behavior during Spatial Anisotropic Femtoseconds Laser-DNA Interaction: The Crucial Role of Hermite Polynomials
Abstract
1. Introduction
2. Mathematical Modeling
3. Simulations
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Avery, O.T.; Macleod, C.M.; McCarty, M. Studieson the chemical nature of the substance inducingtransformation of pneumococcal types: Induction oftransformation by a desoxyribonucleic acid fractionisolated from pneumococcus type III. J. Exp. Med. 1944, 79, 137–158. [Google Scholar] [PubMed]
- Watson, J.D.; Crick, F.H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 1953, 171, 737–738. [Google Scholar] [CrossRef] [PubMed]
- Yakovchuk, P.; Protozanova, E.; Frank-Kamenetskii, M.D. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 2006, 34, 564–574. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hegde, R.; Hegde, s.; Joshi, P.; Gai, P.P.; Kulkarni, S.S.; Gai, P.B. Rapid and inexpensive method of PCR ready DNA isolation from human peripheral blood and saliva. Anal. Biochem. 2022, 655, 114852. [Google Scholar] [CrossRef]
- Muniz, M.I.; Bustos, A.H.; Slott, S.; Astakhova, K.; Weber, G. Cation valence dependence of hydrogen bond and stacking potentials in DNA mesoscopic models. Biophys. Chem. 2023, 294, 106949. [Google Scholar] [CrossRef]
- von Kitzing, E. Modeling DNA structures: Molecular mechanics and molecular dynamics. Methods Enzymol. 1992, 211, 449–467. [Google Scholar] [CrossRef]
- Lu, D.; Aksimentiev, A.; Shih, A.Y.; Cruz-Chu1, E.; Freddolino, P.L.; Arkhipov, A.; Schulten, K. The role of molecular modeling in bionanotechnology. Phys. Biol. 2006, 3, S40. [Google Scholar] [CrossRef][Green Version]
- Orozco, M.; Perez, A.; Noy, A.; Luque, F.J. Theoretical methods for the simulation of nucleic acids. Chem. Soc Rev. 2003, 32, 350–364. [Google Scholar] [CrossRef]
- Aviram, A.; Ratner, M.A. Molecular rectifiers. Chem. Phys. Lett. 1974, 29, 277–283. [Google Scholar] [CrossRef]
- Joachim, C.; Gimzewski, J.K.; Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 2000, 408, 541–548. [Google Scholar] [CrossRef]
- Reichert, J.; Ochs, R.; Beckmann, D.; Weber, H.B.; Mayor, M.; Löhneysen, H. Driving Current through Single Organic Molecules. Phys. Rev. Lett. 2002, 88, 176804. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chen, J.; Reed, M.A.; Rawlett, A.M.; Tour, J.M. Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device. Science 1999, 286, 1550–1552. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Metzger, R.M.; Chen, B.; Höpfner, U.; Lakshmikantham, M.V.; Vuillaume, D.; Kawai, T.; Wu, X.; Tachibana, H.; Hughes, T.V.; Sakurai, H.; et al. Unimolecular Electrical Rectification in Hexadecylquinolinium Tricyanoquinodimethanide. J. Am. Chem. Soc. 1997, 119, 10455–10466. [Google Scholar] [CrossRef]
- Datta, S.; Tian, W.; Hong, S.; Reifenberger, R.; Henderson, J.I.; Kubiak, C.P. Current-Voltage Characteristics of Self-Assembled Monolayers by Scanning Tunneling Microscopy. Phys. Rev. Lett. 1997, 79, 2530. [Google Scholar] [CrossRef]
- Joachim, C.; Gimzewski, J.K.; Schlittler, R.R.; Chavy, C. Electronic Transparence of a Single C60 Molecule. Phys. Rev. Lett. 1995, 74, 2102. [Google Scholar] [CrossRef]
- Kergueris, C.; Bourgoin, J.-P.; Palacin, S.; Esteve, D.; Urbina, C.; Magoga, M.; Joachim, C. Electron transport through a metal-molecule-metal junction. Phys. Rev. 1999, B59, 12505. [Google Scholar] [CrossRef][Green Version]
- Reed, M.A.; Zhou, C.; Muller, C.J.; Burgin, T.P.; Tour, J.M. Conductance of a Molecular Junction. Science 1997, 278, 252–254. [Google Scholar] [CrossRef][Green Version]
- Karni, M.; Zidon, D.; Polak, P.; Zalevsky, Z.; Shefi, O. Thermal degradation of DNA. DNA Cell Biol. 2013, 32, 298–301. [Google Scholar] [CrossRef][Green Version]
- Smit, R.H.M.; Noat, Y.; Untiedt, C.; Lang, N.D.; van Hemert, M.C.; van Ruitenbeek, J.M. Measurement of the conductance of a hydrogen molecule. Nature 2002, 419, 906–909. [Google Scholar] [CrossRef][Green Version]
- Hastman, D.A.; Chaturvedi, P.; Oh, E.; Melinger, J.S.; Medintz, I.L.; Vuković, L.; Díaz, S.A. Mechanistic Understanding of DNA Denaturation in Nanoscale Thermal Gradients Created by Femtosecond Excitation of Gold Nanoparticles. ACS Appl. Mater. Interfaces 2022, 14, 3404–3417. [Google Scholar] [CrossRef]
- Kazansky, A.K.; Sazhina, I.P.; Nosik, V.L.; Kabachnik, N.M. Angular streaking and sideband formation in rotating terahertz and far-infrared fields. J. Phys. B: At. Mol. Opt. Phys. 2017, 50, 105601. [Google Scholar] [CrossRef]
- Weman, K. Chapter 9. Other methods of welding. In Welding Processes Handbook, 1st ed.; CRC Press LLC: New York, NY, USA, 2003; pp. 93–101. ISBN 0-8493-1773-8. [Google Scholar]
- Ichikawa, M.; Ichikawa, H.; Yoshikawa, K.; Kimura, Y. Extension of a DNA molecule by local heating with a laser. Phys. Rev. Lett. 2007, 99, 148104. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Solovyov, A.; Surdutovich, E.; Scifoni, E.; Mishustin, I.; Greiner, W. Physics of ion beam cancer therapy: A multiscale approach. Phys. Rev. E 2009, 79, 011909. [Google Scholar] [CrossRef][Green Version]
- Ma, J.; Qiu, Y.; Yuan, Z.; Zhang, Y.; Sha, J.; Liu, L.; Sun, L.; Ni, Z.; Yi, H.; Li, D.; et al. Detection of short single-strand DNA homopolymers with ultrathin Si3N4 nanopores. Phys. Rev. E 2015, 92, 022719. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tan, H.; Mi, Z.; Bettiol, A.A. Simple and universal model for electron-impact ionization of complex biomolecules. Phys. Rev. E 2018, 97, 032403. [Google Scholar] [CrossRef]
- Tegenfeldt, J.O.; Bakajin, O.; Chou, C.F.; Chan, S.S.; Austin, R.; Fann, W. Near-field scanner for moving molecules. Phys. Rev. Lett. 2001, 86, 1378–1381. [Google Scholar] [CrossRef]
- Tanabe, T.; Noda, K.; Saito, M.; Starikov, E.B.; Tateno, M. Regular Threshold-Energy Increase with Charge for Neutral-Particle Emissionin Collisions of Electrons with Oligonucleotide Anions. Phys. Rev. Lett. 2004, 93, 043201. [Google Scholar] [CrossRef][Green Version]
- Vera, P.; Molina, R.G.; Abril, I.; Solov’yov, A. Semiempirical Model for the Ion Impact Ionization of Complex Biological Media. Phys. Rev. Lett. 2013, 110, 148104. [Google Scholar] [CrossRef][Green Version]
- Möller, F.M.; Kieß, M.; Mast, C.; Braun, D. Optochemical disequilibrium to measure biomolecule charge. Phys. Rev. E 2018, 98, 062601. [Google Scholar] [CrossRef]
- Salo, A.B.; FløjborgIlia, A.A.; Solovyov, A. Free-electron production from nucleotides upon collision with charged carbon ions. Phys. Rev. A 2018, 98, 012702. [Google Scholar] [CrossRef][Green Version]
- Bashir, R. DNA Nanobiostructures. Mater. Today 2001, 4, 30–39. [Google Scholar] [CrossRef]
- Sääskilahti, K.; Oksanen, J.; Tulkki, J. Thermal balance and quantum heat transport in nanostructures thermalized by local Langevin heat baths. Phys. Rev. E 2013, 88, 012128. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Arbab, A.I. Derivation of Dirac, Klein-Gordon, Schrödinger, diffusion and quantum heat transport equations from a universal quantum wave equation. Europhys. Lett. 2010, 92, 40001. [Google Scholar] [CrossRef]
- Rieth, M.; Schommers, W. Quantum and Molecular Computing, and Quantum Simulations. In Handbook of Theoretical and Computational Nanotechnology, 1st ed.; American Scientific Publishers: Valencia, CA, USA, 2006; Volume 3, ISBN 1-58883-042-X. [Google Scholar]
- Popov, A.V. Computational Nanotechnologies; MAKS: Moscow, Russia, 2009. [Google Scholar]
- Liljeroth, P.; Repp, J.; Meyer, G. Current-Induced Hydrogen Tautomerization and Conductance Switching of Naphthalocyanine Molecules. Science 2007, 317, 1203–1206. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lowska, J.M.-K.; Lowski, M.K. Thermal Transport Induced by Ultra-Short Laser Pulses in Molecular Nanomaterials. LIE 2003, 13, 107–111. [Google Scholar]
- Kozlowski, M.; Marciak-Kozlowska, J. Chapter 2. Casual thermal phenomena, quantal description. In From Quarks to Bullk Matter. Physics of the Causal Thermal Phenomena; Hadronic Press: Palm Harbor, FL, USA, 2001; pp. 81–86. [Google Scholar]
- Mitchell, H.H.; Hamilton, T.S.; Steggerda, F.R.; Bean, H.W. The chemical composition of the adult human body and its bearing on the biochemistry of growth. J. Biol. Chem. 1945, 158, 625–637. [Google Scholar] [CrossRef]
- Oane, M.; Sava, B.; Mahmood, M.A.; Mihailescu, N.; Anghel, S.; Filip, A.V.; Mihailescu, I.N.; Mihailescu, C.N.; Ristoscu, C. Mathematical formalism of femtosecond laser-deoxyribonucleic acid interaction: Thermal evolution. Heliyon 2022, 8, 11765. [Google Scholar] [CrossRef]
- Zhukovsky, K. Operational Approach and Solutions of Hyperbolic Heat Conduction Equations. Axioms 2016, 5, 28. [Google Scholar] [CrossRef][Green Version]
- Cui, Y.; Veryovkin, I.V.; Majeski, M.W.; Cavazos, D.R.; Hanley, L. High Lateral Resolution vs. Molecular Preservation in near-IR fs-LaserDesorption Postionization Mass Spectrometry. Anal. Chem. 2015, 87, 367–371. [Google Scholar] [CrossRef][Green Version]
Item | Value | Unit |
---|---|---|
Thermal wave velocity (υ) | 0.05 | nm fs−1 |
Characteristic temperature at the molecular level | 316 | K |
Pulse duration | 100 | fs |
Potential | 3.25 × 10−3 | eV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oane, M.; Mihailescu, C.N.; Trefilov, A.M.I. On the Thermal Behavior during Spatial Anisotropic Femtoseconds Laser-DNA Interaction: The Crucial Role of Hermite Polynomials. Materials 2023, 16, 3334. https://doi.org/10.3390/ma16093334
Oane M, Mihailescu CN, Trefilov AMI. On the Thermal Behavior during Spatial Anisotropic Femtoseconds Laser-DNA Interaction: The Crucial Role of Hermite Polynomials. Materials. 2023; 16(9):3334. https://doi.org/10.3390/ma16093334
Chicago/Turabian StyleOane, Mihai, Cristian Nicolae Mihailescu, and Alexandra Maria Isabel Trefilov. 2023. "On the Thermal Behavior during Spatial Anisotropic Femtoseconds Laser-DNA Interaction: The Crucial Role of Hermite Polynomials" Materials 16, no. 9: 3334. https://doi.org/10.3390/ma16093334
APA StyleOane, M., Mihailescu, C. N., & Trefilov, A. M. I. (2023). On the Thermal Behavior during Spatial Anisotropic Femtoseconds Laser-DNA Interaction: The Crucial Role of Hermite Polynomials. Materials, 16(9), 3334. https://doi.org/10.3390/ma16093334