Author Contributions
Conceptualisation, A.G.-K.; data curation, A.G.-K., P.S., M.S., M.W.-L., M.P., J.K. and M.P.-N.; formal analysis, M.P.-N., M.P., J.K. and A.G.-K.; investigation, A.G.-K.; methodology, A.G.-K., J.K. and M.P.; software, M.P.; supervision, A.G.-K.; validation, M.W.-L.; visualization, A.G.-K., P.S. and M.P.-N.; writing—original draft, A.G.-K.; writing—review and editing, A.G.-K., M.W.-L. and M.P. All authors have read and agreed to the published version of the manuscript.
Figure 1.
Hoard found in Przybysław including three lumps of raw bronze material, two lumps of iron raw material, six fragments of four necklaces, and a socketed axe.
Figure 1.
Hoard found in Przybysław including three lumps of raw bronze material, two lumps of iron raw material, six fragments of four necklaces, and a socketed axe.
Figure 2.
Macrostructure of the Prz.184i_R1 ingots: top of ingot (a); an apparent volumetric shrinkage effect closer to centre of slab (b); bottom of ingot (c); fragment with visible rim (d).
Figure 2.
Macrostructure of the Prz.184i_R1 ingots: top of ingot (a); an apparent volumetric shrinkage effect closer to centre of slab (b); bottom of ingot (c); fragment with visible rim (d).
Figure 3.
Microstructure of the Prz.184i.R1 ingot: 100× (a); 500× (b); 1000× (c); 2000× (d).
Figure 3.
Microstructure of the Prz.184i.R1 ingot: 100× (a); 500× (b); 1000× (c); 2000× (d).
Figure 4.
Macrostructure of the Prz.184i_R2 ingot: top of ingot (a–c); an apparent volumetric shrinkage effect (b); bottom of ingot (d).
Figure 4.
Macrostructure of the Prz.184i_R2 ingot: top of ingot (a–c); an apparent volumetric shrinkage effect (b); bottom of ingot (d).
Figure 5.
Microstructure of the Prz.184i.R2 ingot: 100× (a); 500× (b); 1000× (c,d).
Figure 5.
Microstructure of the Prz.184i.R2 ingot: 100× (a); 500× (b); 1000× (c,d).
Figure 6.
Macrostructure of the Prz.184i_R3 ingot: top of ingot (a,b); bottom of ingot (c,d).
Figure 6.
Macrostructure of the Prz.184i_R3 ingot: top of ingot (a,b); bottom of ingot (c,d).
Figure 7.
Microstructure of the Prz.184i.R3 ingot: 100× (a); 500× (b,c); 1000× (d).
Figure 7.
Microstructure of the Prz.184i.R3 ingot: 100× (a); 500× (b,c); 1000× (d).
Figure 8.
Macrostructure of the Prz.184a axles: general view (a); appearance of the gating system (b); fin (burr) on the parting plane (c), shrinkage depression (d).
Figure 8.
Macrostructure of the Prz.184a axles: general view (a); appearance of the gating system (b); fin (burr) on the parting plane (c), shrinkage depression (d).
Figure 9.
Microstructure of the Prz.184a axes: 500× (a); 1000× (b); 1000× (c); 2000× (d).
Figure 9.
Microstructure of the Prz.184a axes: 500× (a); 1000× (b); 1000× (c); 2000× (d).
Figure 10.
Macrostructure of the Prz.184b necklace: general view (a); breakthrough (b); ornamentation (c,d).
Figure 10.
Macrostructure of the Prz.184b necklace: general view (a); breakthrough (b); ornamentation (c,d).
Figure 11.
Microstructure of the Prz.184b necklace: 500× (a); 1000× (b); 2000× (c); 5000× (d).
Figure 11.
Microstructure of the Prz.184b necklace: 500× (a); 1000× (b); 2000× (c); 5000× (d).
Figure 12.
Macrostructure of the Prz.184c necklace: general view (a); tordering (b,c); breakthrough (d).
Figure 12.
Macrostructure of the Prz.184c necklace: general view (a); tordering (b,c); breakthrough (d).
Figure 13.
Microstructure of the Prz.184c necklace: 9× (a); 500× (b); 1000× (c); 1000× (d).
Figure 13.
Microstructure of the Prz.184c necklace: 9× (a); 500× (b); 1000× (c); 1000× (d).
Figure 14.
Macrostructure of the Prz.184d necklace: general view of necklace fragments Prz.184d-f (a); ending of necklace (b); ornamentation (c); traces made with a chisel for the secondary division of necklace (d).
Figure 14.
Macrostructure of the Prz.184d necklace: general view of necklace fragments Prz.184d-f (a); ending of necklace (b); ornamentation (c); traces made with a chisel for the secondary division of necklace (d).
Figure 15.
Microstructure of the Prz.184d necklace: 50× (a); 200× (b); 200× (c); 500× (d).
Figure 15.
Microstructure of the Prz.184d necklace: 50× (a); 200× (b); 200× (c); 500× (d).
Figure 16.
Macrostructure of the Prz.184e necklace: breakthrough (a,b); ornamentation (c,d).
Figure 16.
Macrostructure of the Prz.184e necklace: breakthrough (a,b); ornamentation (c,d).
Figure 17.
Microstructure of the Prz.184e necklace: 500× (a); 1000× (b); 2000× (c); 2000× (d).
Figure 17.
Microstructure of the Prz.184e necklace: 500× (a); 1000× (b); 2000× (c); 2000× (d).
Figure 18.
Macrostructure of the Prz.184f necklace: breakthrough (a); ornamentation (b–d).
Figure 18.
Macrostructure of the Prz.184f necklace: breakthrough (a); ornamentation (b–d).
Figure 19.
Microstructure of the Prz.184f necklace: 32× (a); 500× (b); 1000× (c); 2000× (d).
Figure 19.
Microstructure of the Prz.184f necklace: 32× (a); 500× (b); 1000× (c); 2000× (d).
Figure 20.
Microstructure of the Prz.184i.R2 ingot with the areas of chemical composition analysis in the micro-areas (
Table 2).
Figure 20.
Microstructure of the Prz.184i.R2 ingot with the areas of chemical composition analysis in the micro-areas (
Table 2).
Figure 21.
Microstructure of the Prz.184i.R2 ingot with the areas of chemical composition analysis in micro-areas (
Table 3).
Figure 21.
Microstructure of the Prz.184i.R2 ingot with the areas of chemical composition analysis in micro-areas (
Table 3).
Figure 22.
Microstructure of the ingot Prz.184i.R2. Map of elemental distribution: area of analysis (a), the presence of Cu (b); the presence of As (c); and the presence of Pb (d). Mag: 2000×.
Figure 22.
Microstructure of the ingot Prz.184i.R2. Map of elemental distribution: area of analysis (a), the presence of Cu (b); the presence of As (c); and the presence of Pb (d). Mag: 2000×.
Figure 23.
Microstructure of the Prz.184i.R3 ingot. Map of elemental distribution: area of analysis (a); the presence of Pb (b); the presence of S (c) and the presence of As (d) (mag: 10,000×).
Figure 23.
Microstructure of the Prz.184i.R3 ingot. Map of elemental distribution: area of analysis (a); the presence of Pb (b); the presence of S (c) and the presence of As (d) (mag: 10,000×).
Figure 24.
SEM-EDS layered image of the Prz.184i.R3 ingot (mag: 10,000×).
Figure 24.
SEM-EDS layered image of the Prz.184i.R3 ingot (mag: 10,000×).
Figure 25.
Elemental spectrum of the Prz.184i.R3 ingot and the quantitative elemental content in the micro-area of object (cf.
Figure 24).
Figure 25.
Elemental spectrum of the Prz.184i.R3 ingot and the quantitative elemental content in the micro-area of object (cf.
Figure 24).
Figure 26.
Phase-distribution map of the Prz.184i.R3 ingot (by EBSD) and phase identification (by PXRD): general view with phase identification (a); enlarged fragment—upper left area (b); enlarged fragment—lower right area (c); identification Cu, Cu2O, AsS, and CuPbAsS3 (d).
Figure 26.
Phase-distribution map of the Prz.184i.R3 ingot (by EBSD) and phase identification (by PXRD): general view with phase identification (a); enlarged fragment—upper left area (b); enlarged fragment—lower right area (c); identification Cu, Cu2O, AsS, and CuPbAsS3 (d).
Figure 27.
EBSD inverse pole figure (IPF) map of the Prz.184i.R3 copper ingot (a); IPF Z (b).
Figure 27.
EBSD inverse pole figure (IPF) map of the Prz.184i.R3 copper ingot (a); IPF Z (b).
Figure 28.
Copper grain size distribution in the Prz.184i. R3 ingot.
Figure 28.
Copper grain size distribution in the Prz.184i. R3 ingot.
Figure 29.
Circumferential size distribution of lead precipitations in the Prz.184i. R3 ingot.
Figure 29.
Circumferential size distribution of lead precipitations in the Prz.184i. R3 ingot.
Figure 30.
Microstructure of the Prz.184a axe, with the areas of chemical composition analysis in the micro-areas (
Table 5).
Figure 30.
Microstructure of the Prz.184a axe, with the areas of chemical composition analysis in the micro-areas (
Table 5).
Figure 31.
Microstructure of the Prz.184a axe, with the areas of chemical composition analysis in the micro-areas (
Table 6).
Figure 31.
Microstructure of the Prz.184a axe, with the areas of chemical composition analysis in the micro-areas (
Table 6).
Figure 32.
Microstructure of the Prz.184b necklace, with the areas of chemical composition analysis in the micro areas (
Table 7).
Figure 32.
Microstructure of the Prz.184b necklace, with the areas of chemical composition analysis in the micro areas (
Table 7).
Figure 33.
Microstructure of the Prz.184c necklace, with the areas of chemical composition analysis in the micro-areas (
Table 8).
Figure 33.
Microstructure of the Prz.184c necklace, with the areas of chemical composition analysis in the micro-areas (
Table 8).
Figure 34.
Microstructure of the Prz.184c necklace, with the areas of chemical composition analysis in the micro-areas (
Table 9).
Figure 34.
Microstructure of the Prz.184c necklace, with the areas of chemical composition analysis in the micro-areas (
Table 9).
Figure 35.
Microstructure of the Prz.184d necklace, with the areas of chemical composition analysis in the micro-areas (
Table 10).
Figure 35.
Microstructure of the Prz.184d necklace, with the areas of chemical composition analysis in the micro-areas (
Table 10).
Figure 36.
Microstructure of the Prz.184e necklace, with the areas of chemical composition analysis in the micro-areas (
Table 11).
Figure 36.
Microstructure of the Prz.184e necklace, with the areas of chemical composition analysis in the micro-areas (
Table 11).
Figure 37.
Microstructure of the Prz.184e necklace, with the areas of chemical composition analysis in the micro-areas (
Table 12).
Figure 37.
Microstructure of the Prz.184e necklace, with the areas of chemical composition analysis in the micro-areas (
Table 12).
Figure 38.
Curves that were recorded during crystallisation of the tested CuPbSn alloys with Sn, Bi, and As additives.
Figure 38.
Curves that were recorded during crystallisation of the tested CuPbSn alloys with Sn, Bi, and As additives.
Figure 39.
Phase-transition temperatures according to TDA during the CuSn alloy crystallisation (Prz.184c).
Figure 39.
Phase-transition temperatures according to TDA during the CuSn alloy crystallisation (Prz.184c).
Figure 40.
Crystallisation path of the CuPbSn system (Prz.184b) and phase-transition temperatures according to Thermo-Calc.
Figure 40.
Crystallisation path of the CuPbSn system (Prz.184b) and phase-transition temperatures according to Thermo-Calc.
Figure 41.
Crystallisation path of the CuSn system (Prz.184c) and the phase transition temperatures according to Thermo-Calc.
Figure 41.
Crystallisation path of the CuSn system (Prz.184c) and the phase transition temperatures according to Thermo-Calc.
Figure 42.
Casting mould, 100x: K1 CuPb (a); K2 CuPbP (b); K3 CuPbSn (c); K4 CuPbSnBi (d).
Figure 42.
Casting mould, 100x: K1 CuPb (a); K2 CuPbP (b); K3 CuPbSn (c); K4 CuPbSnBi (d).
Figure 43.
Sand mould, 100x: P1 CuPb (a); P2 CuPbP (b); P3 CuPbSn (c); P4 CuPbSnBi (d).
Figure 43.
Sand mould, 100x: P1 CuPb (a); P2 CuPbP (b); P3 CuPbSn (c); P4 CuPbSnBi (d).
Figure 44.
Ceramic moulds, 100x: C1 CuPb (a); C2 CuPbP (b); C3 CuPbSn (c); C4 CuPbSnBi (d).
Figure 44.
Ceramic moulds, 100x: C1 CuPb (a); C2 CuPbP (b); C3 CuPbSn (c); C4 CuPbSnBi (d).
Table 1.
XRF chemical composition of copper raw materials and bronze products from the raw material hoard (wt.%).
Table 1.
XRF chemical composition of copper raw materials and bronze products from the raw material hoard (wt.%).
Element | Fe | Co | Ni | Cu | Zn | As | Ag | Sn | Sb | Pb | Bi |
---|
Prz.184i.R1 | 0.07 | 0.05 | 0.10 | 97.93 | 0.18 | 0.21 | 0.12 | 0.03 | <0.05 | 1.01 | 0.30 |
Prz.184i.R2 | 0.10 | 0.07 | 0.10 | 97.40 | 0.14 | 0.40 | 0.15 | 0.02 | <0.05 | 1.25 | 0.37 |
Prz.184i.R3 | 0.14 | 0.07 | 0.10 | 97.90 | 0.16 | 0.27 | 0.11 | 0.10 | <0.05 | 0.90 | 0.25 |
Prz.184a | <0.025 | 0.08 | 0.48 | 90.50 | 0.14 | 0.37 | 0.22 | 5.32 | 1.00 | 1.87 | 0.03 |
Prz.184b | 0.03 | 0.08 | 0.13 | 89.73 | 0.13 | 0.32 | 0.09 | 2.37 | 0.09 | 6.44 | 0.59 |
Prz.184c | 0.11 | 0.11 | 0.12 | 90.10 | 0.15 | 0.27 | 0.02 | 8.49 | <0.051 | 0.56 | 0.07 |
Prz.184d | 0.12 | 0.12 | 0.13 | 89.75 | 0.14 | 0.24 | 0.04 | 8.39 | 0.08 | 0.91 | 0.08 |
Prz.184e | 0.10 | 0.11 | 0.13 | 90.04 | 0.14 | 0.21 | 0.04 | 8.21 | 0.03 | 0.92 | 0.07 |
Prz184f | 0.16 | 0.14 | 0.14 | 88.88 | 0.16 | 0.36 | 0.05 | 8.71 | <0.05 | 1.42 | 0.16 |
Table 2.
EDS chemical composition of the Prz.184i.R2 ingot for
Figure 20 (wt.%).
Table 2.
EDS chemical composition of the Prz.184i.R2 ingot for
Figure 20 (wt.%).
Conc. | Cu | As | Sn | Sb | Pb | Bi |
---|
R2_pt1 | 13.79 | 12.73 | - | - | 73.49 | - |
R2_pt2 | 16.55 | 14.06 | - | 2.12 | 67.27 | - |
R2_pt3 | 14.64 | 11.88 | - | 1.36 | 65.82 | 6.30 |
R2_pt4 | 12.90 | 11.54 | 2.40 | 1.47 | 71.70 | - |
R2_pt5 | 18.51 | 11.00 | - | - | 70.49 | - |
R2_pt6 | 100.00 | | - | - | - | - |
Table 3.
EDS chemical composition of the Prz.184i.R2 ingot for
Figure 21 (wt.%).
Table 3.
EDS chemical composition of the Prz.184i.R2 ingot for
Figure 21 (wt.%).
Conc. | Cu | As | Ag | Pb | Bi |
---|
R2_pt1 | 23.32 | - | 17.65 | - | 59.03 |
R2_pt2 | 11.17 | 12.56 | - | - | 76.27 |
R2_pt3 | 16.97 | 14.28 | - | 68.75 | - |
R2_pt4 | 100.0 | - | - | - | - |
Table 4.
Phases in the Prz.184i.R3 ingot (by EBSD) in the micro-area from
Figure 26.
Table 4.
Phases in the Prz.184i.R3 ingot (by EBSD) in the micro-area from
Figure 26.
Phase Number | Phase Name | Phase Fraction (%) | Phase Count | Crystal System |
---|
1 | Copper | 97.00 | 190,705 | Cubic |
2 | Cu2O | 0.55 | 1087 | Cubic |
3 | PbS | 0.08 | 161 | Cubic |
4 | AsS | 0.05 | 103 | Monoclinic |
5 | Zero Solutions | 2.32 | 4407 | |
Table 5.
EDS chemical composition of the Przy.184a axe for
Figure 30 (wt.%).
Table 5.
EDS chemical composition of the Przy.184a axe for
Figure 30 (wt.%).
Conc. | Cu | Sn | Pb |
---|
Prz184a_pt1 | 61.41 | 17.78 | 20.81 |
Prz184a_pt2 | 11.80 | 34.64 | 53.56 |
Prz184a_pt3 | 94.63 | 5.37 | - |
Table 6.
EDS chemical composition of the Przy.184a axe for
Figure 31 (wt.%).
Table 6.
EDS chemical composition of the Przy.184a axe for
Figure 31 (wt.%).
Conc. | S | Fe | Cu | Sn | Pb |
---|
Prz184a_pt1 | 19.65 | 1.85 | 78.50 | - | - |
Prz184a_pt2 | - | - | 51.49 | 4.33 | 44.18 |
Prz184a_pt3 | - | - | 95.22 | 4.78 | - |
Table 7.
EDS chemical composition of the Przy184b necklace for
Figure 32 (wt.%).
Table 7.
EDS chemical composition of the Przy184b necklace for
Figure 32 (wt.%).
Conc. | O | Cu | Sn | Pb |
---|
Prz184ba_pt1 | - | 92.77 | 2.72 | 4.52 |
Prz184ba_pt2 | - | 94.52 | 0.00 | 5.48 |
Prz184ba_pt3 | - | 80.01 | 0.00 | 19.99 |
Prz184ba_pt4 | - | 36.65 | 3.94 | 59.41 |
Prz184ba_pt5 | 15.39 | 84.61 | 0.00 | 0.00 |
Prz184ba_pt6 | - | 100.00 | 0.00 | 0.00 |
Table 8.
EDS chemical composition of the Przy184c necklace for
Figure 33 (wt.%).
Table 8.
EDS chemical composition of the Przy184c necklace for
Figure 33 (wt.%).
Conc | Cu | Sn | Pb |
---|
Prz184c_pt1 | 67.65 | 7.18 | 25.17 |
Prz184c_pt2 | 82.19 | 7.11 | 10.71 |
Prz184c_pt3 | 92.66 | 7.34 | - |
Table 9.
EDS chemical composition of the Przy184c necklace for
Figure 34 (wt.%).
Table 9.
EDS chemical composition of the Przy184c necklace for
Figure 34 (wt.%).
Conc | S | Cu | Sn | Pb |
---|
Prz184c_pt1 | - | 5.35 | 0.00 | 94.65 |
Prz184c_pt2 | 6.22 | 92.27 | 1.51 | - |
Prz184c_pt3 | - | 93.86 | 6.14 | - |
Table 10.
EDS chemical composition of the Przy184d necklace for
Figure 35 (wt.%).
Table 10.
EDS chemical composition of the Przy184d necklace for
Figure 35 (wt.%).
Conc. | S | Cu | Sn | Pb |
---|
Prz 184 d_pt1 | - | 38.90 | 26.36 | 34.74 |
Prz 184 d_pt2 | 4.25 | 83.41 | 12.33 | - |
Prz 184 d_pt3 | - | 92.26 | 7.74 | - |
Table 11.
EDS chemical composition of the Przy184e necklace for
Figure 36 (wt.%).
Table 11.
EDS chemical composition of the Przy184e necklace for
Figure 36 (wt.%).
Conc. | S | Fe | Cu | Sn | Pb |
---|
Prz184e_pt1 | - | - | 12.71 | - | 87.29 |
Prz184e_pt2 | 9.08 | 1.58 | 31.90 | - | 57.44 |
Prz184e_pt3 | 16.51 | 1.92 | 79.19 | 2.38 | - |
Prz184e_pt4 | - | - | 90.43 | 9.57 | - |
Prz184e_pt5 | - | - | 89.96 | 10.04 | - |
Table 12.
Chemical composition of the Prz.184f necklace for
Figure 37 (wt.%).
Table 12.
Chemical composition of the Prz.184f necklace for
Figure 37 (wt.%).
Concentration | S | Fe | Cu | Sn | Pb |
---|
Prz184f_pt1 | - | - | 23.54 | - | 76.46 |
Prz184f_pt2 | 22.78 | 5.84 | 71.38 | - | - |
Prz184f_pt3 | 22.86 | 4.59 | 72.54 | - | - |
Prz184f_pt4 | - | - | 82.33 | 6.59 | 11.08 |
Prz184f_pt5 | - | - | 90.35 | 9.65 | - |
Prz184f_pt6 | - | - | 87.00 | 10.78 | 1.85 |
Table 13.
Chemical compositions of the model alloys that were prepared in the experiment for the Prz.184b and Prz.184c necklaces, which corresponded to the compositions in
Table 1 (wt%).
Table 13.
Chemical compositions of the model alloys that were prepared in the experiment for the Prz.184b and Prz.184c necklaces, which corresponded to the compositions in
Table 1 (wt%).
No. | Fe | Co | Ni | Cu | Zn | As | Ag | Sn | Sb | Pb | Bi |
---|
(wt.%) |
---|
Alloy 1. CuPbSn (Prz.184b) | 0.03 | 0.08 | 0.13 | 89.73 | 0.13 | 0.32 | 0.09 | 2.37 | 0.09 | 6.44 | 0.59 |
(1) CuPb6.5 | 0.001 | 0.002 | 0.003 | 93.3 | 0.02 | 0.006 | 0.001 | 0.07 | 0.03 | 6.52 | 0.01 |
(2) CuPb6Sn2.2 | 0.001 | 0.001 | 0.002 | 91.8 | 0.014 | 0.006 | 0.001 | 2.22 | 0.02 | 5.91 | 0.004 |
(3) CuPb6Sn2.3Bi0.3 | 0.001 | 0.001 | 0.002 | 91.3 | 0.012 | 0.006 | 0.001 | 2.32 | 0.02 | 6.10 | 0.28 |
(4) CuPb6.5Sn2.4Bi0.8As0.3 | 0.01 | 0.001 | 0.133 | 89.28 | 0.106 | 0.34 | 0.129 | 2.54 | 0.10 | 6.54 | 0.81 |
Alloy 2. CuSn (Prz.184c) | 0.11 | 0.11 | 0.12 | 90.10 | 0.15 | 0.27 | 0.02 | 8.49 | <0.051 | 0.56 | 0.07 |
(1) CuSn8Pb0.7As0.3Zn | 0.07 | 0.001 | 0.131 | 90.51 | 0.24 | 0.28 | 0.001 | 8.00 | 0.02 | 0.69 | 0.07 |
Table 14.
Characteristic temperatures of crystallisation were determined on basis of TDA for the CuPbSn alloy casting experiment.
Table 14.
Characteristic temperatures of crystallisation were determined on basis of TDA for the CuPbSn alloy casting experiment.
Sample | T1 | T2 | T3 | T4 | T5 |
---|
| | | [°C] | |
---|
TDA | TC | TDA | TC | TDA | TC | TDA | TC | TDA | TC |
---|
CuPb6.5 | 1048.9 | 1062.0 | 951.0 | 946.0 | 323.6 | 326.0 | - | - | - | - |
CuPb6.5Sn2.4 | 1041.2 | 1045.0 | 922.1 | 918.0 | 314.2 | 326.0 | 299.7 | - | - | 132.0 |
CuPb6.5Sn2.4Bi0.3 | 1034.8 | 1044.0 | 914.4 | 916.0 | 289.0 | 313.0 | - | 301.0 | - | 133.0 |
CuPb6.7Sn2.6Bi0.6As0.3 | - | 1042.0 | - | 908.0 | - | 313.0 | - | 301.0 | - | 138.0 |
CuPb6.5Sn2.3Bi0.8As0.3 | 1022.8 | 1038.0 | 904.2 | 898.0 | 286.1 | 293/286 | 266.0 | 270.0 | - | - |
Table 15.
Examples of TC modelling and TDA analysis for the Prz_184b and CuPbSn alloys.
Table 15.
Examples of TC modelling and TDA analysis for the Prz_184b and CuPbSn alloys.
Sample | T1 | T2 | T3 | T4 | T5 | T6 | T7 | Mass Percent at 20 °C |
---|
[°C] | | | [%] |
---|
TDA | 1022.83 | 904.23 | - | - | 286.10 | 266.03 | - | - |
LIQUID | 1038.13 | 898.66 | - | - | - | 263.96 | - | - |
FCC_L12 | 1038.13 | 898.66 | - | - | - | - | 20 | 86.76 |
FCC_L12#2 | - | - | - | - | 293.58 | - | 20 | 7.24 |
FCC_L12#3 | - | - | - | - | - | 270.18 | 20 | 0.10 |
BCC_B2 | - | - | - | 539.94 | - | - | 20 | 0.11 |
BCC_B2#2 | - | - | 584.31 | 539.94 | - | - | - | - |
CU3SN | - | - | - | - | 286.16 | - | 20 | 5.79 |
CU10SN3 | - | - | - | 408.55 | 286.16 | - | - | - |
Table 16.
Examples of TC modelling and TDA analysis for the Prz.184c (CuSn8Pb0.7As0.3Zn) alloys.
Table 16.
Examples of TC modelling and TDA analysis for the Prz.184c (CuSn8Pb0.7As0.3Zn) alloys.
Sample | T1 | T2 | T3 | T4 | T5 | T6 | Mass Percent at 20 °C |
---|
[°C] | | [%] |
---|
TDA | 1010.84 | 754.22 | 573.91 | 509.10 | 278.77 | | - |
LIQUID | 1017.66 | 788.00 | - | - | 263.83 | | - |
FCC_L12 | 1017.66 | 788.00 | - | - | - | 20 | 78.07% |
BCC_B2#2 | - | - | 630.42 | - | - | 20 | 0.13% |
CU3SN | - | - | - | 470.36 | - | 20 | 21.17% |
FCC_L12#2 | - | - | - | - | 292.43 | 20 | 0.63% |
Table 17.
Crystallisation range that was determined by TDA method on the basis of the conducted experiments of tested model alloys.
Table 17.
Crystallisation range that was determined by TDA method on the basis of the conducted experiments of tested model alloys.
Sample | T1 [°C] | T2 [°C] | Actual Range of Solidification |
---|
CuPb6.5Sn2.3Bi0.8As0.3 (184b) | 1022.83 | 898.7 | 118.6 |
CuSn8Pb0.7As0.3Zn (184c) | 1010.84 | 754.22 | 256.6 |
Table 18.
Results of the tensile strength (UTS), elongation (A), hardness (HBS), and alloy flowability tests for the assessed CuPb6.5Sn2.3Bi0.8As0.3 (Prz.184b) and CuSn8Pb0.7As0.3Zn (Prz.184c) alloys.
Table 18.
Results of the tensile strength (UTS), elongation (A), hardness (HBS), and alloy flowability tests for the assessed CuPb6.5Sn2.3Bi0.8As0.3 (Prz.184b) and CuSn8Pb0.7As0.3Zn (Prz.184c) alloys.
Sample | Metal Mould | Sand Mould |
---|
UTS [MPa] | A [%] | HBS | HBS | Alloy Flowability [m] |
---|
Alloy 1. CuPb6.5Sn2.3Bi0.8As0.3 (Prz.184b) | 240.4 | 32.1 | 83.2 | 68.1 | 0.55 |
Alloy 2. CuSn8Pb0.7As0.3Zn (Prz.184c) | 280.5 | 22.0 | 108.5 | 93.1 | 1.15 |