Enhancement of the Refractory Matrix Diamond-Reinforced Cutting Tool Composite with Zirconia Nano-Additive
Abstract
:1. Introduction
2. Materials and Methods
2.1. Initial Powders
2.2. Samples for Sintering
2.3. Sintering Method
2.4. Analysis of Sintered Specimens
3. Results and Discussion
3.1. Characterization of the Starting Materials
3.2. Structural and Phase Composition after Sintering
3.3. Microhardness and Fracture Toughness
3.4. Elemental Composition and Porosity Analysis
3.5. Fracture Analysis of the 94WC–6Co Diamond-Reinforced Composites
4. Conclusions
- The basic composites with the addition of ZrO2 from 0.5 wt.% up to 10.0 wt.% consisted of structural phases WC, Co3W3C, amorphous carbon, and a tetragonal zirconia phase. In the composites with a zirconia percentage above 1 wt.%, an intense refinement of the phase components was observed. Microdeformations ε in directions c and a of the composite 94WC–6Co appeared to be decreased, which could be attributed to the specific phase composition.
- The Williamson–Hall method allowed us to determine the maximal refinement corresponding with Dc = 18.2 nm and Da = 24.0 nm, as well as respective microdeformations εc = 0.003% and εa = 0.013% in directions c and a. It took place in the composite, where zirconia occupied 6 wt.%.
- Increased diamond retention forces in composites with zirconia additions could be attributed to the presence of a large amount of tetragonal ZrO2 phase. This phase ensured the transformational mechanism of the matrix enhancement, densification of its structure, as well as refinement of the refractory matrix structure. In particular, the formation of thin (ca. 100 nm) cobalt interlayers between WC grains largely contributed to the enhancement of the composite.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.; Song, X.; Wang, H.; Liu, X.; Tang, F.; Lu, H. Complexions in WC-Co cemented carbides. Acta Mater. 2018, 149, 164–178. [Google Scholar] [CrossRef]
- Wang, J.L.; Zhang, S.H. A new diamond bit for extra-hard, compact and nonabrasive rock formation. J. Cent. South Univ. 2015, 22, 1456–1462. [Google Scholar] [CrossRef]
- Gu, Q.; Han, Z.; Xu, L.; Wei, S. Preparation of Ti-coated diamond/WC-Co-based cemented carbide composites by microwave-evaporation titanium-plating of diamond particles and microwave hot-press sintering. Ceram. Int. 2023, 49, 10139–10150. [Google Scholar] [CrossRef]
- Yang, Q.M.; Yu, S.S.; Zheng, C.L.; Liao, J.X.; Li, J.Z.; Chen, L.Y.; Guo, S.D.; Ye, Y.; Chen, H. Effect of carbon content on microstructure and mechanical properties of WC–10Co cemented carbides with plate-like WC grain. Ceram. Int. 2020, 46, 1824–1829. [Google Scholar] [CrossRef]
- Gu, L.; Huang, J.; Xie, C. Effects of carbon content on microstructure and properties of WC–20Co cemented carbides. Int. J. Refract. Met. Hard Mater. 2014, 42, 228–232. [Google Scholar] [CrossRef]
- Kim, S.; Han, S.H.; Park, J.K.; Kim, H.E. Variation of WC grain shape with carbon content in the WC–Co alloys during liquid-phase sintering. Scr. Mater. 2003, 48, 635–639. [Google Scholar] [CrossRef]
- Liu, K.; Wang, Z.H.; Yin, Z.B.; Cao, L.Y.; Yuan, J.T. Effect of Co content on microstructure and mechanical properties of ultrafine grained WC–Co cemented carbide sintered by spark plasma sintering. Ceram. Int. 2018, 44, 18711–18718. [Google Scholar] [CrossRef]
- Wang, H.; Webb, T.; Bitler, J.W. Study of thermal expansion and thermal conductivity of cemented WC–Co composite. Int. J. Refract. Met. Hard Mater. 2015, 49, 170–177. [Google Scholar] [CrossRef]
- Fang, Z.Z. Correlation of transverse rupture strength of WC–Co with hardness. Int. J. Refract. Met. Hard Mater. 2005, 23, 119–127. [Google Scholar] [CrossRef]
- Da Silva, E.N.; dos Santos, A.A.A.; do Nascimento, R.M.; Alves, S.M.; da Silva Guimarães, R.; Filgueira, M. Investigation of characteristics and properties of spark plasma sintered ultrafine WC-6.4Fe3.6Ni alloy as potential alternative WC-Co hard metals. Int. J. Refract. Met. Hard Mater. 2021, 101, 105669. [Google Scholar] [CrossRef]
- Pereira, P.; Vilhena, L.M.; Sacramento, J.; Senos, A.M.R.; Malheiros, L.F.; Ramalho, A. Abrasive wear resistance of WC-based composites, produced with Co or Ni-rich binders. Wear 2021, 482–483, 203924. [Google Scholar] [CrossRef]
- Pereira, P.; Vilhena, L.M.; Sacramento, J.; Senos, A.M.R.; Malheiros, L.F.; Ramalho, A. Tribological behaviour of different formulations of WC composites. Wear 2022, 506–507, 204415. [Google Scholar] [CrossRef]
- Agode, K.E.; Wolff, C.; Nouari, M.; Moufki, A. Microstructure scale modelling of the WC and Co phases plastic behaviour in the WC-Co composite with different cobalt contents and for different temperatures. Comparison of the Drucker-Prager and Mises models. Int. J. Refract. Met. Hard Mater. 2021, 99, 105588. [Google Scholar] [CrossRef]
- García, J.; Ciprés, V.C.; Blomqvist, A.; Kaplan, B. Cemented carbide microstructures: A review. Int. J. Refract. Met. Hard Mater. 2019, 80, 40–68. [Google Scholar] [CrossRef]
- Pero, R.; Maizza, G.; Montanari, R.; Ohmura, T. Nano-Indentation Properties of Tungsten Carbide-Cobalt Composites as a Function of Tungsten Carbide Crystal Orientation. Materials 2020, 13, 2137. [Google Scholar] [CrossRef] [PubMed]
- Tyrala, D.; Romanski, A.; Konstanty, J. The Effects of Powder Composition on Microstructure and Properties of Hot-Pressed Matrix Materials for Sintered Diamond Tools. J. Mater. Eng. Perform. 2020, 29, 1467–1472. [Google Scholar] [CrossRef]
- Rosenblad, L.; Staf, H.; Larsson, H.; Larsson, P.-L. Parametric dependency of a constitutive model describing solid state sintering of cemented carbides. Powder Technol. 2022, 403, 117407. [Google Scholar] [CrossRef]
- Singh, R.; Sharma, V. Experimental investigation for cutting performance of cemented carbide cutting insert developed through microwave sintering. Int. J. Refract. Met. Hard Mater. 2022, 106, 105867. [Google Scholar] [CrossRef]
- Singh, R.; Sharma, V.; Pandey, P.M. Microstructural characteristics and mechanical behaviour of microwave-assisted sintered novel WC-Co ceramic based internally cooled turning tool. Mater. Charact. 2023, 200, 112855. [Google Scholar] [CrossRef]
- Son, S.; Park, J.M.; Park, S.H.; Yu, J.H.; Kwon, H.; Kim, H.S. Correlation between microstructural heterogeneity and mechanical properties of WC-Co composite additively manufactured by selective laser melting. Mater. Lett. 2021, 293, 129683. [Google Scholar] [CrossRef]
- Lu, Z.; Du, J.; Sun, Y.; Su, G.; Zhang, C.; Kong, X.; Kong, X. Effect of ultrafine WC contents on the microstructures, mechanical properties and wear resistances of regenerated coarse grained WC-10Co cemented carbides. Int. J. Refract. Met. Hard Mater. 2021, 97, 105516. [Google Scholar] [CrossRef]
- Pittari, J.J.; Swab, J.J.; Wright, J.; Atwater, K. Mechanical evaluation of WC-Co materials with varying microstructures. Int. J. Refract. Met. Hard Mater. 2022, 104, 105809. [Google Scholar] [CrossRef]
- Mégret, A.; Vitry, V.; Delaunois, F. High-energy ball milling of WC-10Co: Effect of the milling medium and speed on the mechanical properties. Int. J. Refract. Met. Hard Mater. 2022, 104, 105774. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Guo, S.; Yu, F.; Cai, H.; Chen, H.; Bao, R. Effects of Y2O3 and Cr3C2 on the microstructure and properties of WC–Co–Ni alloy prepared by microwave sintering. Appl. Phys. A 2022, 128, 757. [Google Scholar] [CrossRef]
- Su, W.; Zou, J.; Sun, L. Effects of nano-alumina on mechanical properties and wear resistance of WC-8Co cemented carbide by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 2020, 92, 105337. [Google Scholar] [CrossRef]
- Yin, C.; Peng, Y.; Ruan, J.; Zhao, L.; Zhang, R.; Du, Y. Influence of Cr3C2 and VC content on WC grain size, WC shape and mechanical properties of WC-6.0Co wt.% Co cemenred carbides. Materials 2021, 14, 1551. [Google Scholar] [CrossRef] [PubMed]
- Borik, M.A.; Bublik, V.T.; Kulebyakin, A.V.; Lomonova, E.E.; Milovich, F.O.; Myzina, V.A.; Osiko, V.V.; Seryakov, S.V.; Tabachkova, N.Y. Change in the phase composition, structure and mechanical properties of directed melt crystallized partially stabilized zirconia crystals depending on the concentration of Y2O3. J. Eur. Ceram. Soc. 2015, 35, 1889–1894. [Google Scholar] [CrossRef]
- Hannink, R.H.J.; Kelly, P.M.; Muddle, B.C. Transformation toughening in zirconia-containing ceramics. J. Am. Ceram. Soc. 2000, 83, 461–487. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, L.M.; Zan, X.; Zhu, X.Y.; Zhu, L.; Wu, Y.C. Synthesis of Y2O3-doped WC-Co powders by wet chemical method and its effect on the properties of WC-Co cemented carbide alloy. Int. J. Refract. Met. Hard Mater. 2020, 92, 105324. [Google Scholar] [CrossRef]
- Gevorkyan, E.; Prikhna, T.; Vovk, R.; Rucki, M.; Siemiątkowski, Z.; Kucharczyk, W.; Chishkala, V.; Chałko, L. Sintered nanocomposites ZrO2-WC obtained with field assisted hot pressing. Compos. Struct. 2021, 259, 113443. [Google Scholar] [CrossRef]
- Lyons, W.C.; Stanley, J.H.; Sinisterra, F.J.; Weller, T. Air and Gas Drilling Manual, 4th ed.; Gulf Professional Publishing: Oxford, UK, 2021; pp. 67–131. [Google Scholar] [CrossRef]
- Mechnik, V.A.; Rucki, M.; Ratov, B.T.; Bondarenko, N.A.; Gevorkyan, E.S.; Kolodnitskyi, V.M.; Chishkala, V.A.; Morozova, O.M.; Kulich, V.G. Structure of Cdiamond–(WC–6Co)–ZrO2 Composites Formed by Electrical Plasma Spark Sintering. J. Superhard Mater. 2022, 44, 302–322. [Google Scholar] [CrossRef]
- Ratov, B.T.; Mechnik, V.A.; Rucki, M.; Gevorkyan, E.S.; Bondarenko, N.A.; Kolodnitskyi, V.M.; Chishkala, V.A.; Kudaikulova, G.A.; Muzaparova, A.B.; Korostyshevskyi, D.L. Cdiamond–(WC–Co)–ZrO2 composite materials with improved mechanical and adhesive properties. J. Superhard Mater. 2023, 45, 103–117. [Google Scholar] [CrossRef]
- Kodash, V.Y.; Gevorkian, E.S. Tungsten Carbide Cutting Tool Materials. U.S. Patent 6,617,271, 9 September 2003. [Google Scholar]
- Gevorkyan, E.; Lavrynenko, S.; Rucki, M.; Siemiątkowski, Z.; Kislitsa, M. Preparation of Nanostructured Materials by Electrical Sintering. In Proceedings of the 7th International Conference on Mechanics and Materials in Design (M2D2017), Albufeira, Portugal, 11–15 June 2017; pp. 663–666. [Google Scholar]
- Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The HighScore suite. Powder Diffr. 2014, 29, S13–S18. [Google Scholar] [CrossRef]
- Fedorenko, L.; Litovchenko, V.; Naumov, V.; Korbutyak, D.; Yukhymchuk, V.; Gudymenko, O.; Dubikovskyi, O.; Mimura, H.; Medvids, A. Exciton-Assisted UV Stimulated Emission with Incoherent Feedback in Polydisperse Crystalline ZnO Powder. Coatings 2022, 12, 1705. [Google Scholar] [CrossRef]
- Smirnov, O.; Dzhagan, V.; Kovalenko, M.; Gudymenko, O.; Dzhagan, V.; Mazur, N.; Isaieva, O.; Maksimenko, Z.; Kondratenko, S.; Skoryk, M.; et al. ZnO and Ag NP-decorated ZnO nanoflowers: Green synthesis using Ganoderma lucidum aqueous extract and characterization. R. Soc. Chem. Adv. 2023, 13, 756–763. [Google Scholar] [CrossRef]
- Evans, A.G.; Charles, E.A. Fracture toughness determinations by indentation. J. Am. Ceram. Soc. 1976, 59, 371–372. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, S.; Liu, J.; Zhang, W.; Ma, Q.; Wu, X.; Guo, S.; Cui, Y.; Li, X.; Zheng, B.; et al. Numerical Simulation of Temperature Characteristics and Graphitization Mechanism of Diamond in Laser Powder Bed Fusion. Materials 2023, 16, 6338. [Google Scholar] [CrossRef]
- Schnell, N.; Ferreira, M.P.; Wegner, J.; Tillmann, W.; Kleszczynski, S. Process strategy for crack-free production of diamond-reinforced metal matrix composites with minimal graphitization through laser powder bed fusion. Diam. Relat. Mater. 2023, 135, 109788. [Google Scholar] [CrossRef]
- Yan, X.; Wei, J.; An, K.; Zhao, Y.; Liu, J.; Chen, L.; Hei, L.; Li, C. Quantitative study on graphitization and optical absorption of CVD diamond films after rapid heating treatment. Diam. Relat. Mater. 2018, 87, 267–273. [Google Scholar] [CrossRef]
- Ratov, B.T.; Mechnik, V.A.; Bondarenko, N.A.; Strelchuk, V.V.; Prikhna, T.A.; Kolodnitskyi, V.M.; Nikolenko, A.S.; Lytvyn, P.M.; Danylenko, I.M.; Moshchil, V.E.; et al. Phase Formation and Physicomechanical Properties of WC–Co–CrB2 Composites Sintered by Vacuum Hot Pressing for Drill Tools. J. Superhard Mater. 2022, 44, 1–11. [Google Scholar] [CrossRef]
- Lisovsky, A.F. Role of Materials Science in Increasing the Efficiency of a Rock-Crushing Tool Equipped with WC–Co Cemented Carbide Inserts: A Review. J. Superhard Mater. 2020, 42, 203–222. [Google Scholar] [CrossRef]
- Lisovsky, A.F. Some speculations on an increase of WC–Co cemented carbide service life under dynamic loads. Int. J. Refract. Met. Hard Mater. 2003, 21, 63–67. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Q.; Wang, W.; Yu, N.; Ding, W.; Xu, J. Wear evolution of microstructured diamond grains in WC/Co cemented carbide single grain scratching. Wear 2022, 488–489, 204142. [Google Scholar] [CrossRef]
- Li, M.; Sun, Y.; Meng, Q.; Wu, H.; Gao, K.; Liu, B. Fabrication of Fe-Based Diamond Composites by Pressureless Infiltration. Materials 2016, 9, 1006. [Google Scholar] [CrossRef]
- Decker, Ž.; Rudzinskas, V.; Drozd, K.; Caban, J.; Tretjakovas, J.; Nieoczym, A.; Matijošius, J. Analysis of the Vehicle Chassis Axle Fractures. Materials 2023, 16, 806. [Google Scholar] [CrossRef]
№ | Cdiamond | WC | Co | ZrO2 |
---|---|---|---|---|
#1 | - | 94 | 6 | - |
#10 | 25 | 70.5 | 4.5 | - |
#2 | - | 93.53 | 5.97 | 0.5 |
#3 | - | 93.06 | 5.96 | 1.0 |
#4 | - | 92.59 | 5.91 | 1.5 |
#5 | - | 92.12 | 5.88 | 2.0 |
#6 | - | 90.24 | 5.76 | 4.0 |
#11 | 25 | 66.74 | 4.26 | 4.0 |
#7 | - | 88.36 | 5.64 | 6.0 |
#8 | - | 86.48 | 5.52 | 8.0 |
#9 | - | 84.60 | 5.4 | 10.0 |
#12 | 25 | 61.1 | 3.9 | 10.0 |
Sample № | WC, wt.% | Co3W3C, wt.% | Graphite, wt.% | ZrO2, wt.% |
---|---|---|---|---|
#1 | 97.97 | 1.26 | 0.77 | 0.00 |
#2 | 97.41 | 1.36 | 0.72 | 0.51 |
#3 | 96.83 | 1.55 | 0.68 | 0.94 |
#5 | 94.69 | 0.00 | 4.16 | 1.15 |
#6 | 94.68 | 1.39 | 1.60 | 2.33 |
#7 | 94.16 | 1.46 | 0.89 | 3.49 |
#8 | 91.37 | 1.35 | 3.27 | 4.01 |
#9 | 91.39 | 1.35 | 3.25 | 4.01 |
Sample № | Dc, nm | εc, % | Da, nm | εa, % |
---|---|---|---|---|
#1 | 26.5 | 0.070 | 29.3 | 0.057 |
#2 | 26.4 | 0.145 | 25.4 | 0.065 |
#3 | 20.8 | 0.020 | 23.4 | 0.031 |
#5 | 20.6 | 0.067 | 25.3 | 0.035 |
#6 | 24.2 | 0.029 | 27.8 | 0.024 |
#7 | 18.2 | 0.003 | 24.0 | 0.013 |
#8 | 23.1 | 0.032 | 27.1 | 0.025 |
#9 | 22.7 | 0.084 | 23.4 | 0.029 |
Spectrum * | Elemental Composition, % | |||||
---|---|---|---|---|---|---|
Instats. | C | O | Co | W | Total | |
Spectrum 1 | Yes | 10.43 | 0.97 | 79.09 | 9.51 | 100.00 |
Spectrum 2 | Yes | 10.96 | 0.81 | - | 88.23 | 100.00 |
Spectrum 3 | Yes | 11.61 | - | - | 88.39 | 100.00 |
Spectrum 4 | Yes | 13.94 | 2.67 | 65.14 | 18.15 | 100.00 |
Max. | 13.94 | 2.67 | 79.09 | 88.39 | ||
Min. | 10.43 | 0.81 | 65.14 | 9.51 |
Spectrum * | Elemental Composition, % | |||||
---|---|---|---|---|---|---|
Instats. | C | O | Co | W | Total | |
Spectrum 1 | Yes | 9.51 | 2.39 | 49.57 | 38.53 | 100.00 |
Spectrum 2 | Yes | 9.21 | - | - | 90.79 | 100.00 |
Max. | 9.51 | 2.39 | 49.57 | 90.79 | ||
Min. | 9.21 | 2.39 | 49.57 | 38.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ratov, B.; Mechnik, V.A.; Rucki, M.; Hevorkian, E.; Bondarenko, N.; Prikhna, T.; Moshchil, V.E.; Kolodnitskyi, V.; Morozow, D.; Gusmanova, A.; et al. Enhancement of the Refractory Matrix Diamond-Reinforced Cutting Tool Composite with Zirconia Nano-Additive. Materials 2024, 17, 2852. https://doi.org/10.3390/ma17122852
Ratov B, Mechnik VA, Rucki M, Hevorkian E, Bondarenko N, Prikhna T, Moshchil VE, Kolodnitskyi V, Morozow D, Gusmanova A, et al. Enhancement of the Refractory Matrix Diamond-Reinforced Cutting Tool Composite with Zirconia Nano-Additive. Materials. 2024; 17(12):2852. https://doi.org/10.3390/ma17122852
Chicago/Turabian StyleRatov, Boranbay, Volodymyr A. Mechnik, Miroslaw Rucki, Edvin Hevorkian, Nikolai Bondarenko, Tetiana Prikhna, Viktor E. Moshchil, Vasyl Kolodnitskyi, Dmitrij Morozow, Aigul Gusmanova, and et al. 2024. "Enhancement of the Refractory Matrix Diamond-Reinforced Cutting Tool Composite with Zirconia Nano-Additive" Materials 17, no. 12: 2852. https://doi.org/10.3390/ma17122852
APA StyleRatov, B., Mechnik, V. A., Rucki, M., Hevorkian, E., Bondarenko, N., Prikhna, T., Moshchil, V. E., Kolodnitskyi, V., Morozow, D., Gusmanova, A., Jozwik, J., Arshidinova, M., & Tofil, A. (2024). Enhancement of the Refractory Matrix Diamond-Reinforced Cutting Tool Composite with Zirconia Nano-Additive. Materials, 17(12), 2852. https://doi.org/10.3390/ma17122852