Modeling of LCF Behaviour on AISI316L Steel Applying the Armstrong–Frederick Kinematic Hardening Model
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Experimental Low-Cycle Fatigue Test
2.1.1. Specimens and Materials
2.1.2. LCF Experimental Test
2.2. Numerical Simulation of LCF
2.2.1. Finite Element Modelling
2.2.2. Specimen Loading
2.2.3. Material Modelling
- : Maximum stress for the current cycle.
- : Initial Yield Stress
- N: number of cycles.
- : Plastic strain range (%)
- C: Coefficient of Kinematic Hardening (MPa)
- : Exponent for Kinematic Hardening
- : Plastic strain
- : Accumulated Plastic Deformation
- : Backstress
- : Maximum cycle stress (MPa)
3. Results
3.1. LCF Experiment
3.2. LCF Simulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arrieta, S.; Austin, T.; Bruchhausen, M.; Chitty, W.-J.; Cicero, R.; Cicero, S.; Cuvilliez, S.; De Baglion, L.; Dundulis, G.; Gourdin, C.; et al. INCEFA-PLUS Findings on Environmental Fatigue; INCEFA-PLUS Consortium, University of Cantabria: Santander, Spain, 2020; 170p, ISBN 978-84-09-24496-6. Available online: https://zenodo.org/records/4243979 (accessed on 20 October 2020).
- McLennan, A.; Cicero, R.; Mottershead, K.; Courtin, S.; Que, Z.; Cicero, S. INCEFA-SCALE (Increasing Safety in NPPs by Covering Gaps in Environmental Fatigue Assessment—Focusing on Gaps Between Laboratory Data and Component-Scale). In Proceedings of the ASME 2022 Pressure Vessels & Piping Conference, Atlanta, GA, USA, 16–21 July 2023. [Google Scholar]
- Arrieta, S.; Cicero, S.; Mottershead, K.; Cicero, R.; McLennan, A.; Courtin, S.; Que, Z. Environmental Fatigue Analysis of nuclear components within the framework of INCEFA-SCALE project. Procedia Struct. Integr. 2022, 42, 27–34. [Google Scholar] [CrossRef]
- Courtin, S.; Ancelet, O.; Beswick, J.; Blakesley, O.; Cicero, R. INCEFA-SCALE Project—Overview of the Modelling Plans. In Proceedings of the ASME 2023 Pressure Vessels & Piping Conference, Atlanta, GA, USA, 16–21 July 2023. [Google Scholar]
- Cao, Y.; Moumni, Z.; Zhu, J.; Zhang, Y.; You, Y.; Zhang, W. Comparative investigation of the fatigue limit of additive-manufactured and rolled 316 steel based on self-heating approach. Eng. Fract. Mech. 2020, 223, 106746. [Google Scholar] [CrossRef]
- Hormozi, R.; Biglari, F.; Nikbin, K. Experimental and numerical creep–fatigue study of Type 316 stainless steel failure under high temperature LCF loading condition with different hold time. Eng. Fract. Mech. 2015, 141, 19–43. [Google Scholar] [CrossRef]
- Slávik, O.; Vojtek, T.; Poczklán, L.; Tinoco, H.A.; Kruml, T.; Hutař, P.; Šmíd, M. Improved description of low-cycle fatigue behaviour of 316L steel under axial, torsional and combined loading using plastic J-integral. Theor. Appl. Fract. Mech. 2022, 118, 103212. [Google Scholar] [CrossRef]
- Duan, H.; Cao, M.; Liu, L.; Yue, S.; He, H.; Zhao, Y.; Zhang, Z.; Liu, Y. Prediction of 316 stainless steel low-cycle fatigue life based on machine learning. Sci. Rep. 2023, 13, 6753. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Yue, S.; Liu, Y.; He, H.; Zhang, Z.; Zhao, Y. A deep learning-based method for predicting the low-cycle fatigue life of austenitic stainless steel. Mater. Res. Express 2023, 10, 086506. [Google Scholar] [CrossRef]
- Bartošák, M. Using machine learning to predict lifetime under isothermal low-cycle fatigue and thermo-mechanical fatigue loading. Int. J. Fatigue 2022, 163, 107067. [Google Scholar] [CrossRef]
- Roy, S.C.; Goyal, S.; Sandhya, R.; Ray, S. Low cycle fatigue life prediction of 316 L(N) stainless steel based on cyclic elasto-plastic response. Nucl. Eng. Des. 2012, 253, 219–225. [Google Scholar] [CrossRef]
- Moeini, G.; Ramazani, A.; Myslicki, S.; Sundararaghavan, V.; Könke, C. Low Cycle Fatigue Behaviour of DP Steels: Micromechanical Modelling vs. Validation. Metals 2017, 7, 265. [Google Scholar] [CrossRef]
- Branco, R.; Costa, J.D.M.; Berto, F.; Razavi, S.M.J.; Ferreira, J.A.M.; Capela, C.; Santos, L.; Antunes, F. Low-Cycle Fatigue Behaviour of AISI 18Ni300 Maraging Steel Produced by Selective Laser Melting. Metals 2018, 8, 32. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, W.; Zhang, T.; Gong, J.; Wahab, M.A. A New Empirical Life Prediction Model for 9–12%Cr Steels under Low Cycle Fatigue and Creep Fatigue Interaction Loadings. Metals 2019, 9, 183. [Google Scholar] [CrossRef]
- Vaitkunas, T.; Griskevicius, P.; Dundulis, G.; Courtin, S. Peridynamic numerical investigation of asymmetric strain-controlled fatigue behaviour using the kinetic theory of fracture. Adv. Model. Simul. Eng. Sci. 2024, 11, 12. [Google Scholar] [CrossRef]
- Zhu, P.-N.; Gao, J.-X.; Yuan, Y.-P.; Wu, Z.-F.; Xu, R.-X. An Improved Multiaxial Low-Cycle Fatigue Life Prediction Model Based on Equivalent Strain Approach. Metals 2023, 13, 629. [Google Scholar] [CrossRef]
- Mahbadi, H.; Eslami, M. Cyclic loading of thick vessels based on the Prager and Armstrong–Frederick kinematic hardening models. Int. J. Press. Vessel. Pip. 2006, 83, 409–419. [Google Scholar] [CrossRef]
- ASTM E606/E606M-21; Standard Test Method for Strain-Controlled Fatigue Testing. ASTM International: West Conshohocken, PA, USA, 2021.
- Sebastian, S.; Martin, R.; Marion, M. Evaluation of kinematic hardening model for multiple stress reversals under continuous cyclic shearing and multi-step bending. In Proceedings of the 10th European LS-DYNA Conference 2015, Wurzburg, Germany, 15–17 June 2024. [Google Scholar]
- Novak, J.S.; De Bona, F.; Benasciutti, D. Benchmarks for Accelerated Cyclic Plasticity Models with Finite Elements. Metals 2020, 10, 781. [Google Scholar] [CrossRef]
Quantity | Temperature | Young’s Modulus | Poisson’s Ratio | Yield Stress | Ultimate Tensile Strength |
---|---|---|---|---|---|
Symbol | T | E | υ | ||
Units | °C | GPa | - | MPa | MPa |
Values | 20 | 201 | 0.3 | 133 | 554 |
300 | 160 | 0.27 | 68 | 439 |
Strain Amplitude | Temperature, °C | C1, MPa | ϒ1 | C2, MPa | ϒ2 | C3, MPa | ϒ3 |
0.18% | 20 | 150,500 | 1680 | 450,650 | 2530 | 10,560 | 1360 |
0.6% | 300 | 5000 | 83.3 | 100,000 | 825 | 1000 | 1530 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pate, S.B.; Dundulis, G.; Griskevicius, P. Modeling of LCF Behaviour on AISI316L Steel Applying the Armstrong–Frederick Kinematic Hardening Model. Materials 2024, 17, 3395. https://doi.org/10.3390/ma17143395
Pate SB, Dundulis G, Griskevicius P. Modeling of LCF Behaviour on AISI316L Steel Applying the Armstrong–Frederick Kinematic Hardening Model. Materials. 2024; 17(14):3395. https://doi.org/10.3390/ma17143395
Chicago/Turabian StylePate, Sushant Bhalchandra, Gintautas Dundulis, and Paulius Griskevicius. 2024. "Modeling of LCF Behaviour on AISI316L Steel Applying the Armstrong–Frederick Kinematic Hardening Model" Materials 17, no. 14: 3395. https://doi.org/10.3390/ma17143395
APA StylePate, S. B., Dundulis, G., & Griskevicius, P. (2024). Modeling of LCF Behaviour on AISI316L Steel Applying the Armstrong–Frederick Kinematic Hardening Model. Materials, 17(14), 3395. https://doi.org/10.3390/ma17143395