From Waste to Water Purification: Textile-Derived Sorbents for Pharmaceutical Removal
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Physicochemical Characteristics of Tested Materials
3.2. Adsorption Kinetics
Sorbent | Compound | Fitting Isotherm | Qe (mg/g) | References |
---|---|---|---|---|
cotton-derived carbon | DCF | Temkin | 51.7 | This study |
activated carbon KOH from red pepper (Capsicum annuum L.) | DCF | - | 196.1 | [39] |
rice husk ash-derived biochar | DCF | Freundlich | 2.316 | [40] |
(poly(acrylic acid) (PAA) and poly(sodium methacrylate) (PMAA)), with poly(ethyleneimine) (PEI) | DCF | - | 109.94 | [41] |
Sludge-derived hydrochar | DCF | Langmuir | 37.23 | [42] |
Palygorskite Clays | DCF | Langmuir | 253.34 | [43] |
sycamore ball-activated carbon | DCF | Langmuir | 178.89 | [38] |
cotton-derived carbon | CBZ | Temkin | 21.25 | This study |
pistachio shell composite of L@PSAC | CBZ | Langmuir | >99% from 50 mg/L | [44] |
ZnO nanoparticles derived from neem (Azadirachta indica) leaves | CBZ | - | 27.55 | [45] |
nitrogen-doped tantalum carbide | CBZ | Dubinin–Radushkevich | 119 | [46] |
3.3. Isotherm Modeling
L | F | T | DR | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
QL | KL | R2 | RL | KF | n | R2 | QT | B | R2 | QD | E | R2 | |
[mg/g] | [L/g] | [-] | [-] | [mg/g] | [-] | [-] | [mg/g] | [kJ/mol] | [-] | [mg/g] | [kJ/mol] | [-] | |
DCF | |||||||||||||
CT9 | 149.37 | 0.1042 | 0.9604 | 0.0604 | 24.849 | 0.423 | 0.9872 | 0.7354 | 66.548 | 0.9599 | 123.822 | 374.596 | 0.8472 |
CT11 | 169.92 | 0.0795 | 0.9637 | 0.0689 | 30.481 | 0.357 | 0.8876 | 1.1792 | 79.838 | 0.9645 | 129.060 | 338.997 | 0.9490 |
CT13 | 222.52 | 0.0457 | 0.9989 | 0.0896 | 19.672 | 0.508 | 0.9620 | 0.4565 | 50.492 | 0.9933 | 142.527 | 320.682 | 0.8169 |
CT15 | 399.61 | 0.0092 | 0.9416 | 0.2138 | 6.328 | 0.863 | 0.9212 | 0.2717 | 27.755 | 0.9837 | 234.447 | 224.110 | 0.9166 |
CBZ | |||||||||||||
CT9 | 100.69 | 0.0617 | 0.9566 | 0.139 | 10.789 | 0.497 | 0.9621 | 0.5143 | 101.06 | 0.9784 | 73.664 | 326.974 | 0.7613 |
CT11 | 100.82 | 0.0611 | 0.9792 | 0.140 | 12.415 | 0.432 | 0.9643 | 0.6827 | 122.35 | 0.9975 | 76.136 | 305.481 | 0.9568 |
CT13 | 86.98 | 0.0611 | 0.8743 | 0.158 | 8.111 | 0.544 | 0.9690 | 0.3889 | 96.62 | 0.9652 | 68.840 | 319.425 | 0.6503 |
CT15 | 126.36 | 0.051 | 0.9985 | 0.134 | 12.033 | 0.501 | 0.9743 | 0.4902 | 87.44 | 0.9896 | 83.485 | 317.451 | 0.8256 |
3.4. The Effects of Water Parameters on DCF and CBZ Adsorption onto CT
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abunada, Z.; Alazaiza, M.Y.D.; Bashir, M.J.K. An Overview of Per- and Polyfluoroalkyl Substances (PFAS) in the Environment: Source, Fate, Risk and Regulations. Water 2020, 12, 3590. [Google Scholar] [CrossRef]
- Hena, S.; Gutierrez, L.; Croué, J.-P. Removal of Pharmaceutical and Personal Care Products (PPCPs) from Wastewater Using Microalgae: A Review. J. Hazard. Mater. 2021, 403, 124041. [Google Scholar] [CrossRef] [PubMed]
- Subash, A.; Naebe, M.; Wang, X.; Kandasubramanian, B. Biopolymer—A Sustainable and Efficacious Material System for Effluent Removal. J. Hazard. Mater. 2023, 443, 130168. [Google Scholar] [CrossRef]
- Al-Rajab, A.J.; Sabourin, L.; Lapen, D.R.; Topp, E. The Non-Steroidal Anti-Inflammatory Drug Diclofenac Is Readily Biodegradable in Agricultural Soils. Sci. Total Environ. 2010, 409, 78–82. [Google Scholar] [CrossRef]
- Di Lorenzo, T.; Cifoni, M.; Baratti, M.; Pieraccini, G.; Di Marzio, W.D.; Galassi, D.M.P. Four Scenarios of Environmental Risk of Diclofenac in European Groundwater Ecosystems. Environ. Pollut. 2021, 287, 117315. [Google Scholar] [CrossRef]
- Peters, A.; Crane, M.; Merrington, G.; Ryan, J. Environmental Quality Standards for Diclofenac Derived under the European Water Framework Directive: 2. Avian Secondary Poisoning. Environ. Sci. Eur. 2022, 34, 28. [Google Scholar] [CrossRef]
- Aslam, M.M.-A.; Kuo, H.-W.; Den, W.; Usman, M.; Sultan, M.; Ashraf, H. Functionalized Carbon Nanotubes (CNTs) for Water and Wastewater Treatment: Preparation to Application. Sustainability 2021, 13, 5717. [Google Scholar] [CrossRef]
- Beltrán, E.M.; Pablos, M.V.; Fernández Torija, C.; Porcel, M.Á.; González-Doncel, M. Uptake of Atenolol, Carbamazepine and Triclosan by Crops Irrigated with Reclaimed Water in a Mediterranean Scenario. Ecotoxicol. Environ. Saf. 2020, 191, 110171. [Google Scholar] [CrossRef]
- Elshikh, M.S.; Hussein, D.S.; Al-khattaf, F.S.; Rasheed El-Naggar, R.A.; Almaary, K.S. Diclofenac Removal from the Wastewater Using Activated Sludge and Analysis of Multidrug Resistant Bacteria from the Sludge. Environ. Res. 2022, 208, 112723. [Google Scholar] [CrossRef]
- Feijoo, S.; Kamali, M.; Dewil, R. A Review of Wastewater Treatment Technologies for the Degradation of Pharmaceutically Active Compounds: Carbamazepine as a Case Study. Chem. Eng. J. 2023, 455, 140589. [Google Scholar] [CrossRef]
- Chen, W.-H.; Wong, Y.-T.; Huang, T.-H.; Chen, W.-H.; Lin, J.-G. Removals of Pharmaceuticals in Municipal Wastewater Using a Staged Anaerobic Fluidized Membrane Bioreactor. Int. Biodeterior. Biodegrad. 2019, 140, 29–36. [Google Scholar] [CrossRef]
- Hai, F.; Yang, S.; Asif, M.; Sencadas, V.; Shawkat, S.; Sanderson-Smith, M.; Gorman, J.; Xu, Z.-Q.; Yamamoto, K. Carbamazepine as a Possible Anthropogenic Marker in Water: Occurrences, Toxicological Effects, Regulations and Removal by Wastewater Treatment Technologies. Water 2018, 10, 107. [Google Scholar] [CrossRef]
- Sathishkumar, P.; Meena, R.A.A.; Palanisami, T.; Ashokkumar, V.; Palvannan, T.; Gu, F.L. Occurrence, Interactive Effects and Ecological Risk of Diclofenac in Environmental Compartments and Biota—A Review. Sci. Total Environ. 2020, 698, 134057. [Google Scholar] [CrossRef]
- Nasri-Nasrabadi, B.; Czech, B.; Yadav, R.; Shirvanimoghaddam, K.; Krzyszczak, A.; Unnikrishnan, V.; Naebe, M. Radially Aligned Hierarchical N-Doped Porous Carbon Beads Derived from Oil-Sand Asphaltene for Long-Life Water Filtration and Wastewater Treatment. Sci. Total Environ. 2023, 863, 160896. [Google Scholar] [CrossRef] [PubMed]
- Czech, B.; Nasri-Nasrabadi, B.; Krzyszczak, A.; Sadok, I.; Hojamberdiev, M.; Yadav, R.; Shirvanimoghaddam, K.; Naebe, M. Enhanced PFAS Adsorption with N-Doped Porous Carbon Beads from Oil-Sand Asphaltene. J. Water Process Eng. 2023, 54, 104058. [Google Scholar] [CrossRef]
- Shirvanimoghaddam, K.; Czech, B.; Abolhasani, M.M.; Naebe, M. Sustainable Periodically Patterned Carbon Nanotube for Environmental Application: Introducing the Cheetah Skin Structure. J. Clean. Prod. 2018, 179, 429–440. [Google Scholar] [CrossRef]
- Czech, B.; Zygmunt, P.; Kadirova, Z.C.; Yubuta, K.; Hojamberdiev, M. Effective Photocatalytic Removal of Selected Pharmaceuticals and Personal Care Products by Elsmoreite/Tungsten oxide@ZnS Photocatalyst. J. Environ. Manag. 2020, 270, 110870. [Google Scholar] [CrossRef]
- Petrinic, I.; Bukšek, H.; Galambos, I.; Gerencsér-Berta, R.; Sheldon, M.S.; Helix-Nielsen, C. Removal of Naproxen and Diclofenac Using an Aquaporin Hollow Fibre Forward Osmosis Module. DWT 2020, 192, 415–423. [Google Scholar] [CrossRef]
- Hassani, A.; Khataee, A.; Karaca, S.; Fathinia, M. Degradation of Mixture of Three Pharmaceuticals by Photocatalytic Ozonation in the Presence of TiO2/Montmorillonite Nanocomposite: Simultaneous Determination and Intermediates Identification. J. Environ. Chem. Eng. 2017, 5, 1964–1976. [Google Scholar] [CrossRef]
- Giordani, T.; Dose, J.; Kuskoski, Y.; Schultz, J.; Mangrich, A.S.; de Mello, J.M.M.; Silva, L.L.; Zeferino, R.C.F.; Zanetti, M.; Fiori, M.A.; et al. Photocatalytic Degradation of Propranolol Hydrochloride Using Nd–TiO2 Nanoparticles under UV and Visible Light. J. Mater. Res. 2021, 36, 1584–1599. [Google Scholar] [CrossRef]
- Gomes, J.; Costa, R.; Quinta-Ferreira, R.M.; Martins, R.C. Application of Ozonation for Pharmaceuticals and Personal Care Products Removal from Water. Sci. Total Environ. 2017, 586, 265–283. [Google Scholar] [CrossRef]
- Goh, P.S.; Ismail, A.F.; Hilal, N. Nano-Enabled Membranes Technology: Sustainable and Revolutionary Solutions for Membrane Desalination? Desalination 2016, 380, 100–104. [Google Scholar] [CrossRef]
- Adeola, A.O.; de Lange, J.; Forbes, P.B.C. Adsorption of Antiretroviral Drugs, Efavirenz and Nevirapine from Aqueous Solution by Graphene Wool: Kinetic, Equilibrium, Thermodynamic and Computational Studies. Appl. Surf. Sci. Adv. 2021, 6, 100157. [Google Scholar] [CrossRef]
- Ahmed, M.J.K.; Ahmaruzzaman, M. A Review on Potential Usage of Industrial Waste Materials for Binding Heavy Metal Ions from Aqueous Solutions. J. Water Process Eng. 2016, 10, 39–47. [Google Scholar] [CrossRef]
- Huang, Z.; Li, Y.; Mei, J.; Ding, Y.; Wang, X. Preparation of Poly(Divinylbenzene-Co-Methyl Acrylate) Adsorbent with Tunable Surface Hydrophilicity for Atrazine Removal. Surf. Interfaces 2024, 49, 104371. [Google Scholar] [CrossRef]
- Kica, M.; Ronka, S. The Removal of Atrazine from Water Using Specific Polymeric Adsorbent. Sep. Sci. Technol. 2014, 49, 1634–1642. [Google Scholar] [CrossRef]
- Xiong, X.; He, M.; Dutta, S.; Tsang, D.C.W. Biochar and Sustainable Development Goals. In Biochar in Agriculture for Achieving Sustainable Development Goals; Elsevier: Amsterdam, The Netherlands, 2022; pp. 15–22. ISBN 978-0-323-85343-9. [Google Scholar]
- De Mello, J.R.; Machado, T.S.; Crestani, L.; Alessandretti, I.; Marchezi, G.; Melara, F.; Mignoni, M.L.; Piccin, J.S. Synthesis, Characterization and Application of New Adsorbent Composites Based on Sol-Gel/Chitosan for the Removal of Soluble Substance in Water. Heliyon 2022, 8, e09444. [Google Scholar] [CrossRef]
- Chen, L.; He, B.-Y.; He, S.; Wang, T.-J.; Su, C.-L.; Jin, Y. Fe―Ti Oxide Nano-Adsorbent Synthesized by Co-Precipitation for Fluoride Removal from Drinking Water and Its Adsorption Mechanism. Powder Technol. 2012, 227, 3–8. [Google Scholar] [CrossRef]
- Danso-Boateng, E.; Mohammed, A.S.; Sander, G.; Wheatley, A.D.; Nyktari, E.; Usen, I.C. Production and Characterisation of Adsorbents Synthesised by Hydrothermal Carbonisation of Biomass Wastes. SN Appl. Sci. 2021, 3, 257. [Google Scholar] [CrossRef]
- Abdoul Magid, A.S.I.; Islam, M.S.; Chen, Y.; Weng, L.; Sun, Y.; Chang, X.; Zhou, B.; Ma, J.; Li, Y. Competitive Adsorption of Dibutyl Phthalate (DBP) and Di(2-Ethylhexyl) Phthalate (DEHP) onto Fresh and Oxidized Corncob Biochar. Chemosphere 2021, 280, 130639. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar Physicochemical Properties: Pyrolysis Temperature and Feedstock Kind Effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Chatterjee, R.; Sajjadi, B.; Chen, W.-Y.; Mattern, D.L.; Hammer, N.; Raman, V.; Dorris, A. Effect of Pyrolysis Temperature on PhysicoChemical Properties and Acoustic-Based Amination of Biochar for Efficient CO2 Adsorption. Front. Energy Res. 2020, 8, 85. [Google Scholar] [CrossRef]
- Shirvanimoghaddam, K.; Czech, B.; Wiącek, A.E.; Ćwikła-Bundyra, W.; Naebe, M. Sustainable Carbon Microtube Derived from Cotton Waste for Environmental Applications. Chem. Eng. J. 2018, 361, 1605–1616. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Rethinking of the Intraparticle Diffusion Adsorption Kinetics Model: Interpretation, Solving Methods and Applications. Chemosphere 2022, 309, 136732. [Google Scholar] [CrossRef]
- Zhou, X.; Maimaitiniyazi, R.; Wang, Y. Some Consideration Triggered by Misquotation of Temkin Model and the Derivation of Its Correct Form. Arab. J. Chem. 2022, 15, 104267. [Google Scholar] [CrossRef]
- Dada, A.O.; Olalekan, A.P.; Olatunya, A.M.; Dada, O. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ unto Phosphoric Acid Modified Rice Husk. IOSR J. Appl. Chem. 2012, 3, 38–45. [Google Scholar]
- Avcu, T.; Üner, O.; Geçgel, Ü. Adsorptive Removal of Diclofenac Sodium from Aqueous Solution onto Sycamore Ball Activated Carbon—Isotherms, Kinetics, and Thermodynamic Study. Surf. Interfaces 2021, 24, 101097. [Google Scholar] [CrossRef]
- Koyuncu, F.; Güzel, F.; Teymur, Y.A. Red Pepper (Capsicum annuum L.) Industrial Processing Pulp-Derived Nanoporous Carbon Sorbent for the Removal of Methylene Blue, Diclofenac, and Copper(II). Biomass Conv. Bioref. 2024, 14, 5651–5664. [Google Scholar] [CrossRef]
- Andi Grefa, D.D.; Guevara Sánchez, J.E.; Bravo Sánchez, L.R.; Pomares Alfonso, M.S.; Villanueva Tagle, M.E. Rice Husk Ash as Sorbent for Solid Phase Extraction of Diclofenac, Ibuprofen and Carboplatin Residues from Waters. Microchem. J. 2023, 195, 109361. [Google Scholar] [CrossRef]
- Fighir, D.; Paduraru, C.; Ciobanu, R.; Bucatariu, F.; Plavan, O.; Gherghel, A.; Barjoveanu, G.; Mihai, M.; Teodosiu, C. Removal of Diclofenac and Heavy Metal Ions from Aqueous Media Using Composite Sorbents in Dynamic Conditions. Nanomaterials 2023, 14, 33. [Google Scholar] [CrossRef]
- Oumabady, S.; Selvaraj, P.S.; Periasamy, K.; Veeraswamy, D.; Ramesh, P.T.; Palanisami, T.; Ramasamy, S.P. Kinetic and Isotherm Insights of Diclofenac Removal by Sludge Derived Hydrochar. Sci. Rep. 2022, 12, 2184. [Google Scholar] [CrossRef] [PubMed]
- Sousa, M.U.; Rodrigues, A.M.; Araujo, M.E.B.; Menezes, R.R.; Neves, G.A.; Lira, H.L. Adsorption of Sodium Diclofenac in Functionalized Palygoskite Clays. Materials 2022, 15, 2708. [Google Scholar] [CrossRef]
- Al-sareji, O.J.; Al-Samarrai, S.Y.; Grmasha, R.A.; Meiczinger, M.; Al-Juboori, R.A.; Jakab, M.; Somogyi, V.; Miskolczi, N.; Hashim, K.S. A Novel and Sustainable Composite of L@PSAC for Superior Removal of Pharmaceuticals from Different Water Matrices: Production, Characterization, and Application. Environ. Res. 2024, 251, 118565. [Google Scholar] [CrossRef]
- Mehmood, S.; Ahmed, W.; Rizwan, M.; Bundschuh, J.; Elnahal, A.S.M.; Li, W. Green Synthesized Zinc Oxide Nanoparticles for Removal of Carbamazepine in Water and Soil Systems. Sep. Purif. Technol. 2024, 334, 125988. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, T.; Tang, S.; Zheng, M.; Wu, M.; Wang, J.; Lei, B.; Tang, L. Synthesis of Novel Nitrogen-Doped Tantalum Carbide for Pharmaceutical Compound Adsorption. J. Environ. Chem. Eng. 2024, 12, 112195. [Google Scholar] [CrossRef]
- Desta, M.B. Batch Sorption Experiments: Langmuir and Freundlich Isotherm Studies for the Adsorption of Textile Metal Ions onto Teff Straw (Eragrostis Tef) Agricultural Waste. J. Thermodyn. 2013, 2013, 375830. [Google Scholar] [CrossRef]
- Chu, K.H. Revisiting the Temkin Isotherm: Dimensional Inconsistency and Approximate Forms. Ind. Eng. Chem. Res. 2021, 60, 13140–13147. [Google Scholar] [CrossRef]
- Díaz, E.; García, L.; Ordóñez, S. Adsorption of Stable and Labile Emerging Pollutants on Activated Carbon: Degradation and Mass Transfer Kinetic Study. Appl. Water Sci. 2024, 14, 79. [Google Scholar] [CrossRef]
- Seyfi, S.; Azadmehr, A.R.; Maghsoudi, A. Comparative and Competitive Adsorption of Cu(II) and Cd(II) Using Scoria: Equilibrium, Kinetic and Thermodynamic Studies. Chem. Res. Chin. Univ. 2017, 33, 471–478. [Google Scholar] [CrossRef]
- Correia-Sá, L.; Soares, C.; Freitas, O.M.; Moreira, M.M.; Nouws, H.P.A.; Correia, M.; Paíga, P.; Rodrigues, A.J.; Oliveira, C.M.; Figueiredo, S.A.; et al. A Three-Dimensional Electrochemical Process for the Removal of Carbamazepine. Appl. Sci. 2021, 11, 6432. [Google Scholar] [CrossRef]
- Fan, Y.; Huang, L.; Wu, L.; Zhang, C.; Zhu, S.; Xiao, X.; Li, M.; Zou, X. Adsorption of Sulfonamides on Biochars Derived from Waste Residues and Its Mechanism. J. Hazard. Mater. 2021, 406, 124291. [Google Scholar] [CrossRef]
- Lin, J.; Zhan, Y.; Zhu, Z.; Xing, Y. Adsorption of Tannic Acid from Aqueous Solution onto Surfactant-Modified Zeolite. J. Hazard. Mater. 2011, 193, 102–111. [Google Scholar] [CrossRef]
- Akgül, G.; Maden, T.B.; Diaz, E.; Jiménez, E.M. Modification of Tea Biochar with Mg, Fe, Mn and Al Salts for Efficient Sorption of PO43− and Cd2+ from Aqueous Solutions. J. Water Reuse Desalination 2019, 9, 57–66. [Google Scholar] [CrossRef]
- Manjunath, S.V.; Kumar, M. Evaluation of Single-Component and Multi-Component Adsorption of Metronidazole, Phosphate and Nitrate on Activated Carbon from Prosopıs Julıflora. Chem. Eng. J. 2018, 346, 525–534. [Google Scholar] [CrossRef]
- Bui, T.X.; Choi, H. Influence of Ionic Strength, Anions, Cations, and Natural Organic Matter on the Adsorption of Pharmaceuticals to Silica. Chemosphere 2010, 80, 681–686. [Google Scholar] [CrossRef]
CT | PFO | PSO | Elovich | IPD | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Qe [mg/g] | k1 [min−1] | Q [mg/g] | R2 | k2 | Q [g/mg min] | R2 | A | β | R2 | KIPD [mg/g min1/2] | b | R2 | |
DCF | |||||||||||||
CT9 | 51.67 | 0.002 | 3.607 | 0.9884 | 2.547 | 53.62 | 0.9944 | 4.210 | 0.138 | 0.9320 | 1.044 | 12.993 | 0.9097 |
CT11 | 49.60 | 23.250 | 3.267 | 0.9933 | 4.275 | 131.58 | 0.9986 | 33.05 | 0.192 | 0.9487 | 0.760 | 21.724 | 0.9453 |
CT13 | 34.72 | 0.415 | 2.467 | 0.9870 | 0.047 | 35.06 | 0.9997 | 1371.8 | 0.395 | 0.9725 | 0.354 | 21.973 | 0.8909 |
CT15 | 51.70 | 3.274 | 1.473 | 0.8298 | 0.010 | 12.99 | 0.9997 | 47.92 | 0.181 | 0.9800 | 0.737 | 25.574 | 0.8150 |
CBZ | |||||||||||||
CT9 | 21.25 | 0.003 | 1.740 | 0.9251 | 0.936 | 21.39 | 0.9999 | 258.484 | 0.539 | 0.7187 | 0.212 | 14.131 | 0.4389 |
CT11 | 20.02 | 27.292 | 0.703 | 0.7066 | 2.441 | 131.58 | 0.9999 | >10,000 | 1.092 | 0.8262 | 0.104 | 16.694 | 0.5022 |
CT13 | 18.98 | 0.459 | 0.316 | 0.9373 | 0.052 | 19.01 | 0.9999 | >10,000 | 2.519 | 0.8881 | 0.049 | 17.324 | 0.6282 |
CT15 | 17.70 | 3.274 | 1.473 | 0.8298 | 0.010 | 12.99 | 0.9997 | >10,000 | 1.094 | 0.8586 | 0.116 | 17.930 | 0.6479 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazur, M.; Shirvanimoghaddam, K.; Paul, M.; Naebe, M.; Klepka, T.; Sokołowski, A.; Czech, B. From Waste to Water Purification: Textile-Derived Sorbents for Pharmaceutical Removal. Materials 2024, 17, 3684. https://doi.org/10.3390/ma17153684
Mazur M, Shirvanimoghaddam K, Paul M, Naebe M, Klepka T, Sokołowski A, Czech B. From Waste to Water Purification: Textile-Derived Sorbents for Pharmaceutical Removal. Materials. 2024; 17(15):3684. https://doi.org/10.3390/ma17153684
Chicago/Turabian StyleMazur, Magdalena, Kamyar Shirvanimoghaddam, Moon Paul, Minoo Naebe, Tomasz Klepka, Artur Sokołowski, and Bożena Czech. 2024. "From Waste to Water Purification: Textile-Derived Sorbents for Pharmaceutical Removal" Materials 17, no. 15: 3684. https://doi.org/10.3390/ma17153684
APA StyleMazur, M., Shirvanimoghaddam, K., Paul, M., Naebe, M., Klepka, T., Sokołowski, A., & Czech, B. (2024). From Waste to Water Purification: Textile-Derived Sorbents for Pharmaceutical Removal. Materials, 17(15), 3684. https://doi.org/10.3390/ma17153684