Study on Magnetic and Plasmonic Properties of Fe3O4-PEI-Au and Fe3O4-PEI-Ag Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Fe3O4 Nanoparticles
2.3. Synthesis of Au Nanoparticles
2.4. Synthesis of Ag Nanoparticles
2.5. Synthesis of Fe3O4-PEI-M (M = Au or Ag) NPs
2.6. Electric Field Simulation
2.7. Characterization
3. Results and Discussion
3.1. Study on the Plasmonic Metal Nanoparticles
3.1.1. Au Nanoparticles
3.1.2. Ag Nanoparticles
3.2. Study on the Properties of the Fe3O4-PEI-Au Nanoparticles
3.2.1. Fe3O4-PEI-Au Nanoparticles
3.2.2. X-ray Diffraction (XRD) Analysis
3.2.3. Analysis of Magnetic and Plasmonic Properties
3.3. Study on the Properties of the Fe3O4-PEI-Ag Nanoparticles
3.3.1. Fe3O4-PEI-Ag Nanoparticles
3.3.2. X-ray Diffraction Analysis
3.3.3. Analysis of Magnetic and Plasmonic Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Price, P.M.; Mahmoud, W.E.; Al-Ghamdi, A.A.; Bronstein, L.M. Magnetic Drug Delivery: Where the Field Is Going. Front. Chem. 2018, 6, 619. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Li, X.; Xu, Z.; Du, F.; Wang, W.; Shi, R.; Gao, D. Hyaluronic acid-modified mesoporous silica-coated superparamagnetic Fe3O4 nanoparticles for targeted drug delivery. Int. J. Nanomed. 2019, 14, 5785–5797. [Google Scholar] [CrossRef] [PubMed]
- Mokhodoeva, O.; Vlk, M.; Málková, E.; Kukleva, E.; Mičolová, P.; Štamberg, K.; Šlouf, M.; Dzhenloda, R.; Kozempel, J. Study of 223Ra uptake mechanism by Fe3O4 nanoparticles: Towards new prospective theranostic SPIONs. J. Nanoparticle Res. 2016, 18, 301. [Google Scholar] [CrossRef]
- Efimova, N.V.; Krasnopyorova, A.P.; Yuhno, G.D.; Sofronov, D.S.; Rucki, M. Uptake of Radionuclides 60Co, 137Cs, and 90Sr with α-Fe2O3 and Fe3O4 Particles from Aqueous Environment. Materials 2021, 14, 2899. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Dai, X.; Zhang, P.; Tan, X.; Zhong, Y.; Yao, C.; Song, M.; Song, G.; Zhang, Z.; Peng, G.; et al. Fe3O4@Au composite magnetic nanoparticles modified with cetuximab for targeted magneto-photothermal therapy of glioma cells. Int. J. Nanomed. 2018, 13, 2491–2505. [Google Scholar] [CrossRef] [PubMed]
- Fotukian, S.M.; Barati, A.; Soleymani, M.; Alizadeh, A.M. Solvothermal synthesis of CuFe2O4 and Fe3O4 nanoparticles with high heating efficiency for magnetic hyperthermia application. J. Alloys Compd. 2020, 816, 152548. [Google Scholar] [CrossRef]
- Qu, J.; Liu, G.; Wang, Y.; Hong, R. Preparation of Fe3O4–chitosan nanoparticles used for hyperthermia. Adv. Powder Technol. 2010, 21, 461–467. [Google Scholar] [CrossRef]
- Żuk, M.; Podgórski, R.; Ruszczyńska, A.; Ciach, T.; Majkowska-Pilip, A.; Bilewicz, A.; Krysiński, P. Multifunctional Nanoparticles Based on Iron Oxide and Gold-198 Designed for Magnetic Hyperthermia and Radionuclide Therapy as a Potential Tool for Combined HER2-Positive Cancer Treatment. Pharmaceutics 2022, 14, 1680. [Google Scholar] [CrossRef]
- Dukenbayev, K.; Korolkov, I.V.; Tishkevich, D.I.; Kozlovskiy, A.L.; Trukhanov, S.V.; Gorin, Y.G.; Shumskaya, E.E.; Kaniukov, E.Y.; Vinnik, D.A.; Zdorovets, M.V.; et al. Fe3O4 Nanoparticles for Complex Targeted Delivery and Boron Neutron Capture Therapy. Nanomaterials 2019, 9, 494. [Google Scholar] [CrossRef]
- Shen, L.; Li, B.; Qiao, Y. Fe3O4 Nanoparticles in Targeted Drug/Gene Delivery Systems. Materials 2018, 11, 324. [Google Scholar] [CrossRef]
- Luan, D.; Zheng, A.; Gao, X.; Xu, K.; Tang, B. Fishing out Methionine-Containing Proteins from Complex Biological Systems Based on a Non-Enzymatic Biochemical Reaction. Nano Lett. 2021, 21, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Kristianto, H.; Reynaldi, E.; Prasetyo, S.K.; Sugih, A. Adsorbed leucaena protein on citrate modified Fe3O4 nanoparticles: Synthesis, characterization, and its application as magnetic coagulant. Environ. Res. 2020, 30, 32. [Google Scholar] [CrossRef]
- Jose, L.; Lee, C.; Hwang, A.; Park, J.H.; Song, J.K.; Paik, H. Magnetically steerable Fe3O4@Ni2+-NTA-polystyrene nanoparticles for the immobilization and separation of his6-protein. Eur. Polym. J. 2019, 112, 524–529. [Google Scholar] [CrossRef]
- Loh, K.S.; Lee, Y.H.; Musa, A.; Salmah, A.A.; Zamri, I. Use of Fe3O4 Nanoparticles for Enhancement of Biosensor Response to the Herbicide 2,4-Dichlorophenoxyacetic Acid. Sensors 2008, 8, 5775–5791. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, X.; Yang, X. A sensitive choline biosensor using Fe3O4 magnetic nanoparticles as peroxidase mimics. Analyst 2011, 136, 4960–4965. [Google Scholar] [CrossRef] [PubMed]
- Kore, R.; Sawant, A.D.; Rogers, R.D. Recyclable Magnetic Fe3O4 Nanoparticle-Supported Chloroaluminate Ionic Liquids for Heterogeneous Lewis Acid Catalysis. ACS Sustain. Chem. Eng. 2021, 9, 8797–8802. [Google Scholar] [CrossRef]
- Li, S.; Zhao, X.; Yu, X.; Wan, Y.; Yin, M.; Zhang, W.; Cao, B.; Wang, H. Fe3O4 Nanozymes with Aptamer-Tuned Catalysis for Selective Colorimetric Analysis of ATP in Blood. Anal. Chem. 2019, 91, 14737–14742. [Google Scholar] [CrossRef]
- Akram, N.; Ma, W.; Guo, J.; Guo, Y.; Zhao, Y.; Hassan, A.; Wang, J. Synergistic catalysis of Fe3O4/CuO bimetallic catalyst derived from Prussian blue analogues for the efficient decomposition of various organic pollutants. Chem. Phys. 2021, 540, 110974. [Google Scholar] [CrossRef]
- Sohn, C.H.; Park, S.P.; Choi, S.H.; Park, S.H.; Kim, S.; Xu, L.; Kim, S.H.; Hur, J.A.; Choi, J.; Choi, T.H. MRI molecular imaging using GLUT1 antibody-Fe3O4 nanoparticles in the hemangioma animal model for differentiating infantile hemangioma from vascular malformation. Nanomedicine 2015, 11, 127–135. [Google Scholar] [CrossRef]
- Zou, X.; Li, K.; Zhao, Y.; Zhang, Y.; Li, B.; Song, C. Ferroferric oxide/l-cysteine magnetic nanospheres for capturing histidine-tagged proteins. J. Mater. Chem. B 2013, 1, 5108–5113. [Google Scholar] [CrossRef]
- Gawali, S.L.; Shelar, S.B.; Gupta, J.; Barick, K.C.; Hassan, P.A. Immobilization of protein on Fe3O4 nanoparticles for magnetic hyperthermia application. Int. J. Biol. Macromol. 2021, 166, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Li, C.H.; Chan, M.H.; Chang, Y.C.; Hsiao, M. Gold Nanoparticles as a Biosensor for Cancer Biomarker Determination. Molecules 2023, 28, 364. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Hou, Y.; Sun, S. Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J. Am. Chem. Soc. 2007, 129, 8698–8699. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, R.; Geerthana, M.; Prabhu, S.; Sohila, S. Synthesis and Characterization of the Superparamagnetic Fe3O4/Ag Nanocomposites. J. Clust. Sci. 2017, 28, 963–969. [Google Scholar] [CrossRef]
- Abdollahi, S.N.; Naderi, M.; Amoabediny, G. Synthesis and physicochemical characterization of tunable silica-gold nanoshells via seed growth method. Colloids Surf. A Physicochem. Eng. Asp. 2012, 414, 345–351. [Google Scholar] [CrossRef]
- Abkenar, A.K.; Naderi, M. Chemical synthesis of gold nanoparticles with different morphology from a secondary source. J. Iran. Chem. Soc. 2016, 13, 2173–2184. [Google Scholar] [CrossRef]
- Rajan, A.; Vilas, V.; Philip, D. Studies on catalytic, antioxidant, antibacterial and anticancer activities of biogenic gold nanoparticles. J. Mol. Liq. 2015, 212, 331–339. [Google Scholar] [CrossRef]
- Lie, J.; Huang, J.; You, R.; Lu, Y. Preparation and Application of Magnetic Molecularly Imprinted Plasmonic SERS Composite Nanoparticles. Crit. Rev. Anal. Chem. 2023, 1–20. [Google Scholar] [CrossRef]
- Han, D.; Li, B.; Chen, Y.; Wu, T.; Kou, Y.; Xue, X.; Chen, L.; Liu, Y.; Duan, Q. Facile synthesis of Fe3O4@Au core–shell nanocomposite as a recyclable magnetic surface enhanced Raman scattering substrate for thiram detection. Nanotechnology 2019, 30, 465703. [Google Scholar] [CrossRef]
- Dheyab, A.M.; Aziz, A.A.; Jameel, M.S.; Khaniabadi, M.P. Recent Advances in Synthesis, Medical Applications and Challenges for Gold-Coated Iron Oxide: Comprehensive Study. Nanomaterials 2021, 11, 2147. [Google Scholar] [CrossRef]
- Liu, C.H.; Zhou, Z.D.; Yu, X.; Lv, B.Q.; Mao, J.F.; Xiao, D. Preparation and characterization of Fe3O4/Ag composite magnetic nanoparticles. Inorg. Mater. 2008, 44, 291–295. [Google Scholar] [CrossRef]
- Rajkumar, S.; Prabaharan, M. Theranostics Based on Iron Oxide and Gold Nanoparticles for Imaging-Guided Photothermal and Photodynamic Therapy of Cancer. Curr. Top. Med. Chem. 2017, 17, 1858–1871. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Zhou, Y.; Zhang, Y.; Xuan, S.; Gong, X. Superparamagnetic Ag@Fe3O4 core–shell nanospheres: Fabrication, characterization and application as reusable nanocatalysts. Dalton Trans. 2012, 41, 4594–4601. [Google Scholar] [CrossRef] [PubMed]
- Gai, K.; Qi, H.; Li, X.; Liu, X. Detection of Residual Methomyl in Vegetables with an Electrochemical Sensor based on a glassy carbon electrode modified with Fe3O4/Ag composite. Int. J. Electrochem. Sci. 2019, 14, 1283–1292. [Google Scholar] [CrossRef]
- Amarjargal, A.; Tijing, L.D.; Im, I.T.; Kim, C.S. Simultaneous preparation of Ag/Fe3O4 core–shell nanocomposites with enhanced magnetic moment and strong antibacterial and catalytic properties. Chem. Eng. J. 2013, 226, 243–254. [Google Scholar] [CrossRef]
- Benvidi, A.; Jahanbani, S. Self-assembled monolayer of SH-DNA strand on a magnetic bar carbon paste electrode modified with Fe3O4@Ag nanoparticles for detection of breast cancer mutation. J. Electroanal. Chem. 2016, 768, 47–54. [Google Scholar] [CrossRef]
- Kou, Y.; Wu, T.; Xing, G.; Huang, X.; Han, D.; Yang, S.; Guo, C.; Gao, W.; Yang, J.; Liu, Y.; et al. Highly efficient and recyclable catalyst: Porous Fe3O4-Au magnetic nanocomposites with tailored synthesis. Nanotechnology 2020, 31, 225701. [Google Scholar] [CrossRef]
- Aarthi, A.; Umadevi, M.; Parimaladevi, R.; Sathe, G.V.; Arumugam, S.; Sivaprakash, P. A Negatively Charged Hydrophobic Hemi-micelle of Fe3O4/Ag MNP Role Towards SERS, Photocatalysis and Bactericidal. J. Inorg. Organomet. Polym. Mater. 2021, 31, 1469–1479. [Google Scholar] [CrossRef]
- Oguzlar, S. Development of highly sensitive [Ru(bpy)3]2+-Based optical oxygen sensing thin films in the presence with Fe3O4 and Fe3O4@Ag NPs. Opt. Mater. 2020, 101, 109772. [Google Scholar] [CrossRef]
- Du, B.W.; Chu, C.Y.; Lin, C.C.; Ko, F.H. The Multifunctionally Graded System for a Controlled Size Effect on Iron Oxide–Gold Based Core-Shell Nanoparticles. Nanomaterials 2021, 11, 1695. [Google Scholar] [CrossRef]
- Salimi, Z.; Ehsani, M.H.; Dezfuli, A.S.; Alamzadeh, Z. Evaluation of Iron and Au-Fe3O4 Ferrite Nanoparticles for Biomedical Application. J. Supercond. Nov. Magn. 2022, 35, 215–222. [Google Scholar] [CrossRef]
- Lv, X.; Fang, Z.; Sun, Y.; Yang, Y.; Wang, X.; Chen, Y.; Qin, Y.; Li, N.; Li, C.; Xu, J.; et al. Interfacial preparation of multi-branched magneto-plasmonic Fe3O4@Au core@shell nanocomposites as efficient photothermal agents for antibacterial application. J. Alloys Compd. 2023, 932, 167712. [Google Scholar] [CrossRef]
- Mikoliunaite, L.; Talaikis, M.; Michalowska, A.; Dobilas, J.; Stankevic, V.; Kudelski, A.; Niaura, G. Thermally Stable Magneto-Plasmonic Nanoparticles for SERS with Tunable Plasmon Resonance. Nanomaterials 2022, 12, 2860. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, R.; Annamalai, K.; Annamalai, A.; Elumalai, S. Solid state—Green construction of starch- beaded Fe3O4@Ag nanocomposite as superior redox catalyst. Colloids Surf. A Physicochem. Eng. Asp. 2023, 664, 131117. [Google Scholar] [CrossRef]
- Iranzad, F.; Gheibi, M.; Eftekhari, M. Synthesis and application of polythiophene-coated Fe3O4 nanoparticles for preconcentration of ultra-trace levels of cadmium in different real samples followed by electrothermal atomic absorption spectrometry. Int. J. Environ. Anal. Chem. 2018, 98, 16–30. [Google Scholar] [CrossRef]
- Wojtysiak, S.; Kudelski, A. Influence of oxygen on the process of formation of silver nanoparticles during citrate/borohydride synthesis of silver sols. Colloids Surf. A Physicochem. Eng. Asp. 2012, 410, 45–51. [Google Scholar] [CrossRef]
- Song, Y.; Chen, J.; Yang, X.; Zhang, D.; Zou, Y.; Ni, D.; Ye, J.; Yu, Z.; Chen, Q.; Jin, S.; et al. Fabrication of Fe3O4@Ag magnetic nanoparticles for highly active SERS enhancement and paraquat detection. Microchem. J. 2022, 173, 107019. [Google Scholar] [CrossRef]
- Johnson, P.; Christy, R. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Iqbal, M.; Usanase, G.; Oulmi, K.; Aberkane, F.; Bendaikha, T.; Fessi, H.; Zine, N.; Agusti, G.; Errachid, E.; Elaissari, A. Preparation of gold nanoparticles and determination of their particles size via different methods. Mater. Res. Bull. 2016, 79, 97–104. [Google Scholar] [CrossRef]
- Zulikifli, F.W.A.; Yazid, H.; Halim, M.Z.B.A.; Jani, A.M.M. Synthesis of gold nanoparticles on multi-walled carbon nanotubes (Au-MWCNTs) via deposition precipitation method. AIP Conf. Proc. 2017, 1877, 070003. [Google Scholar]
- Acharya, D.; Mohanta, B.; Pandey, P.; Singha, M.; Nasiri, F. Optical and antibacterial properties of synthesised silver nanoparticles. Micro Nano Lett. 2017, 12, 223–226. [Google Scholar] [CrossRef]
- Boussif, O.; Lezoualc’h, F.; Zanta, M.A.; Mergny, M.D.; Scherman, D.; Demeneix, B.; Behr, J.P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. USA 1995, 92, 7297–7301. [Google Scholar] [CrossRef] [PubMed]
- Salihov, S.V.; Ivanenkov, Y.A.; Krechetov, S.P.; Veselov, M.S.; Sviridenkova, N.V.; Savchenko, A.G.; Klyachko, N.L.; Golovin, Y.I.; Chufarova, N.V.; Beloglazkina, E.K.; et al. Recent advances in the synthesis of Fe3O4@Au core/shell nanoparticles. J. Magn. Magn. Mater. 2015, 394, 173–178. [Google Scholar] [CrossRef]
- Xing, Y.; Jin, Y.Y.; Si, J.C.; Peng, M.L.; Wang, X.F.; Chen, C.; Cui, Y.L. Controllable synthesis and characterization of Fe3O4/Au composite nanoparticles. J. Magn. Magn. Mater. 2015, 380, 150–156. [Google Scholar] [CrossRef]
- Gerulová, K.; Kucmanová, A.; Sanny, Z.; Garaiová, Z.; Seiler, E.; Čaplovičová, M.; Čaplovič, Ľ.; Palcut, M. Fe3O4-PEI Nanocomposites for Magnetic Harvesting of Chlorella vulgaris, Chlorella ellipsoidea, Microcystis aeruginosa, and Auxenochlorella protothecoides. Nanomaterials 2022, 12, 1786. [Google Scholar] [CrossRef] [PubMed]
- Félix, L.; Martínez, M.A.R.; Salazar, D.G.P.; Coaquira, J.A.H. One-step synthesis of polyethyleneimine-coated magnetite nanoparticles and their structural, magnetic, and power absorption study. RSC Adv. 2020, 10, 41807–41815. [Google Scholar] [CrossRef]
- Liang, R.; Yao, G.; Fan, L.; Qiu, J. Magnetic Fe3O4@Au composite-enhanced surface plasmon resonance for ultrasensitive detection of magnetic nanoparticle-enriched α-fetoprotein. Anal. Chim. Acta 2012, 737, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Ilawe, N.V.; Oviedo, M.B.; Wong, B.M. Effect of quantum tunneling on the efficiency of excitation energy transfer in plasmonic nanoparticle chain waveguides. J. Mater. Chem. C 2018, 6, 5857–5864. [Google Scholar] [CrossRef]
- Terrés-Haro, J.M.; Monreal-Trigo, J.; Hernández-Montoto, A.; Ibáñez-Civera, F.J.; Masot-Peris, R.; Martínez-Máñez, R. Finite Element Models of Gold Nanoparticles and Their Suspensions for Photothermal Effect Calculation. Bioengineering 2023, 10, 232. [Google Scholar] [CrossRef]
- Lin, C.; Zhu, G.; Liu, G.; Zhu, L. FDTD simulation of the optical properties for gold nanoparticles. Mater. Res. Express 2020, 7, 125009. [Google Scholar]
- Chu, D.T.; Sai, D.C.; Luu, Q.M.; Tran, H.T.; Quach, T.D.; Kim, D.H.; Nguyen, N.H. Synthesis of Bifunctional Fe3O4@SiO2-Ag Magnetic–Plasmonic Nanoparticles by an Ultrasound Assisted Chemical Method. J. Electron. Mater. 2017, 46, 3646–3653. [Google Scholar] [CrossRef]
Fe3O4 | Au | Fe3O4-PEI-Au PEI: 5 mg/mL | Fe3O4-PEI-Au PEI: 15 mg/mL | Fe3O4-PEI-Au PEI: 25 mg/mL | Fe3O4-PEI-Au PEI: 35 mg/mL | |
---|---|---|---|---|---|---|
Absorption peak (nm) | / | 519 | 526 | 535 | 552 | 578 |
Saturation magnetization (emu/g) | 60 | / | 55 | 46 | 31 | 16 |
Fe3O4 | Ag | Fe3O4-PEI-Ag PEI: 5 mg/mL | Fe3O4-PEI-Ag PEI: 15 mg/mL | Fe3O4-PEI-Ag PEI: 25 mg/mL | Fe3O4-PEI-Ag PEI: 35 mg/mL | |
---|---|---|---|---|---|---|
Absorption peak (nm) | / | 406 | 417 | 425 | 442 | 472 |
Saturation magnetization (emu/g) | 60 | / | 56 | 49 | 36 | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, S.; Wang, S.; Liu, Z.; Zhang, N.; Yang, B.; Zhang, F. Study on Magnetic and Plasmonic Properties of Fe3O4-PEI-Au and Fe3O4-PEI-Ag Nanoparticles. Materials 2024, 17, 509. https://doi.org/10.3390/ma17020509
Ning S, Wang S, Liu Z, Zhang N, Yang B, Zhang F. Study on Magnetic and Plasmonic Properties of Fe3O4-PEI-Au and Fe3O4-PEI-Ag Nanoparticles. Materials. 2024; 17(2):509. https://doi.org/10.3390/ma17020509
Chicago/Turabian StyleNing, Shuya, Shuo Wang, Zhihui Liu, Naming Zhang, Bin Yang, and Fanghui Zhang. 2024. "Study on Magnetic and Plasmonic Properties of Fe3O4-PEI-Au and Fe3O4-PEI-Ag Nanoparticles" Materials 17, no. 2: 509. https://doi.org/10.3390/ma17020509
APA StyleNing, S., Wang, S., Liu, Z., Zhang, N., Yang, B., & Zhang, F. (2024). Study on Magnetic and Plasmonic Properties of Fe3O4-PEI-Au and Fe3O4-PEI-Ag Nanoparticles. Materials, 17(2), 509. https://doi.org/10.3390/ma17020509