Facile Synthesis, Sintering, and Optical Properties of Single-Nanometer-Scale SnO2 Particles with a Pyrrolidone Derivative for Photovoltaic Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of SnO2 Nanoparticles
2.3. Preparation of SnO2-Based Thin Films
2.4. Characterization of SnO2 Nanoparticles and Films
2.5. Fabrication and Evaluation of Perovskite Solar Cells
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jena, A.K.; Kulkarni, A.; Miyasaka, T. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chem. Rev. 2019, 119, 3036–3103. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Wang, S.; Li, X.; Zhang, F. Advances in SnO2-Based Perovskite Solar Cells: From Preparation to Photovoltaic Applications. J. Mater. Chem. A Mater. 2021, 9, 19554–19588. [Google Scholar] [CrossRef]
- Kim, M.; Jeong, J.; Lu, H.; Kyung Lee, T.; Eickemeyer, F.T.; Liu, Y.; Woo Choi, I.; Ju Choi, S.; Jo, Y.; Kim, H.-B.; et al. Conformal Quantum Dot-SnO2 Layers as Electron Transporters for Efficient Perovskite Solar Cells. Science 2022, 375, 302–306. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhang, X.; Zhang, Z.; Ling, H.; Tao, L.; Sohail, K.; Li, X.; Fu, X.; Zhang, X.; Wang, R.; et al. Annealing-Free SnO2 Layers for Improved Fill Factor of Perovskite Solar Cells. ACS Appl. Energy Mater. 2023, 6, 6554–6562. [Google Scholar] [CrossRef]
- DiMarco, B.N.; Sampaio, R.N.; James, E.M.; Barr, T.J.; Bennett, M.T.; Meyer, G.J. Efficiency Considerations for SnO2-Based Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 23923–23930. [Google Scholar] [CrossRef]
- Snaith, H.J.; Ducati, C. SnO2-Based Dye-Sensitized Hybrid Solar Cells Exhibiting Near Unity Absorbed Photon-to-Electron Conversion Efficiency. Nano Lett. 2010, 10, 1259–1265. [Google Scholar] [CrossRef]
- Ueda, T.; Torai, S.; Fujita, K.; Shimizu, Y.; Hyodo, T. Effects of Au Addition to Porous CuO2-Added SnO2 Gas Sensors on Their VOC-Sensing Properties. Chemosensors 2024, 12, 80153. [Google Scholar] [CrossRef]
- Ponzoni, A. A Statistical Analysis of Response and Recovery Times: The Case of Ethanol Chemiresistors Based on Pure SnO2. Sensors 2022, 22, 6346. [Google Scholar] [CrossRef]
- Kader, M.A.; Azmi, N.S.; Kafi, A.K.M.; Hossain, M.S.; Masri, M.F.B.; Ramli, A.N.M.; Tan, C.S. Synthesis and Characterization of a Multiporous SnO2 Nanofibers-Supported Au Nanoparticles-Based Amperometric Sensor for the Nonenzymatic Detection of H2O2. Chemosensors 2023, 11, 130. [Google Scholar] [CrossRef]
- Xiang, C.; Chen, T.; Zhao, Y.; Sun, J.; Jiang, K.; Li, Y.; Zhu, X.; Zhang, X.; Zhang, N.; Guo, R. Facile Hydrothermal Synthesis of SnO2 Nanoflowers for Low-Concentration Formaldehyde Detection. Nanomaterials 2022, 12, 2133. [Google Scholar] [CrossRef]
- Charrada, G.; Ajili, M.; Jebbari, N.; Hajji, M.; Bernardini, S.; Aguir, K.; Turki Kamoun, N. Investigation on Thermal Annealing Effect on the Physical Properties of CuO-SnO2:F Sprayed Thin Films for NO2 Gas Sensor and Solar Cell Simulation. Mater. Lett. 2024, 367, 136666. [Google Scholar] [CrossRef]
- Gautam, D.; Gautam, Y.K.; Sharma, K.; Kumar, A.; Kumar, A.; Srivastava, V.; Singh, B.P. Recent Developments in SnO2 Nanostructures Inspired Hydrogen Gas Sensors. Int. J. Hydrogen Energy 2024, 81, 313–345. [Google Scholar]
- Das, S.; Jayaraman, V. SnO2: A Comprehensive Review on Structures and Gas Sensors. Prog. Mater. Sci. 2014, 66, 112–255. [Google Scholar]
- Shang, R.; Kurban, M.; Ma, Y.; Ozkan, M.; Ozkan, C.S. Rational Design of SnO2 Thin Film Coated Cathode with Function of Entrapping Polysulfides for Performance Enhanced Li–S Batteries. J. Power Sources 2024, 597, 234144. [Google Scholar] [CrossRef]
- Liang, C.; Guo, J.; Yue, L.; Wang, M.; Liang, J.; Wang, X.; Li, Y.; Yu, K. MOF-SnO2 Nanoparticles Composited with Biomass-Derived Carbon Used as High-Performance Anodes for Lithium-Ion Batteries. Diam. Relat. Mater. 2023, 140, 110488. [Google Scholar] [CrossRef]
- Tripathi, R.M.; Chung, S.J. Eco-Friendly Synthesis of SnO2-Cu Nanocomposites and Evaluation of Their Peroxidase Mimetic Activity. Nanomaterials 2021, 11, 1798. [Google Scholar] [CrossRef]
- Salunkhe, T.T.; Bathula, B.; Kim, I.T.; Thirumal, V.; Yoo, K. Enhanced Supercapacitor Performance by Harnessing Carbon Nanoparticles and Colloidal SnO2 Quantum Dots. Crystals 2024, 14, 482. [Google Scholar] [CrossRef]
- Mukametkali, T.M.; Ilyassov, B.R.; Aimukhanov, A.K.; Serikov, T.M.; Baltabekov, A.S.; Aldasheva, L.S.; Zeinidenov, A.K. Effect of the TiO2 electron transport layer thickness on charge transfer processes in perovskite solar cells. Phys. B Condens. Matter 2023, 659, 414784. [Google Scholar] [CrossRef]
- Sławek, A.; Starowicz, Z.; Lipiński, M. The Influence of the Thickness of Compact TiO2 Electron Transport Layer on the Performance of Planar CH3NH3PbI3 Perovskite Solar Cells. Materials 2021, 14, 3295. [Google Scholar] [CrossRef]
- Girolami, M.; Matteocci, F.; Pettinato, S.; Serpente, V.; Bolli, E.; Paci, B.; Generosi, A.; Salvatori, S.; Carlo, A.D.; Trucchi, D.M. Metal-Halide Perovskite Submicrometer-Thick Films for Ultra-Stable Self-Powered Direct X-Ray Detectors. Nano-Micro Lett. 2024, 16, 182. [Google Scholar] [CrossRef]
- Qu, W.; Weng, S.; Zhang, L.; Sun, M.; Liu, B.; Du, W.; Zhang, Y. Self-powered ultraviolet–visible–near infrared perovskite/silicon hybrid photodetectors based on a novel Si/SnO2/MAPbI3/MoO3 heterostructure. Appl. Phys. Express 2020, 13, 121001. [Google Scholar] [CrossRef]
- Liu, S.; Li, J.; Xiao, W.; Chen, R.; Sun, Z.; Zhang, Y.; Lei, X.; Hu, S.; Kober-Czerny, M.; Wang, J.; et al. Buried interface molecular hybrid for inverted perovskite solar cells. Nature 2024, 632, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Paik, M.J.; Kim, Y.Y.; Kim, J.; Park, J.; Seok, S. Il Ultrafine SnO2 Colloids with Enhanced Interface Quality for High-Efficiency Perovskite Solar Cells. Joule 2024, 8, 2073–2086. [Google Scholar] [CrossRef]
- Utomo, D.S.; Svirskaite, L.M.; Prasetio, A.; Malinauskiene, V.; Dally, P.; Aydin, E.; Musiienko, A.; Getautis, V.; Malinauskas, T.; Azmi, R.; et al. Nonfullerene Self-Assembled Monolayers As Electron-Selective Contacts for n-i-p Perovskite Solar Cells. ACS Energy Lett. 2024, 9, 1682–1692. [Google Scholar] [CrossRef]
- Rosiles-Perez, C.; Ocampo Gaspar, M.; Padilla González, O.J.; Román Flores, L.F.; Jiménez- González, A.E. Size Controlled Synthesis of Hydrous TiO2 Spheres by a Thiol Structure Directing Agent and Its Application in Photocatalysis and Efficient DSSC Cells. Emergent Mater. 2024, 7, 1445–1462. [Google Scholar] [CrossRef]
- Hattori, N.; Vafaei, S.; Narita, R.; Nagaya, N.; Yoshida, N.; Sugiura, T.; Manseki, K. Growth and Dispersion Control of SnO2 Nanocrystals Employing an Amino Acid Ester Hydrochloride in Solution Synthesis: Micro-structures and Photovoltaic Applications. Materials 2023, 16, 7649. [Google Scholar] [CrossRef]
- Hattori, N.; Manseki, K.; Hibi, Y.; Nagaya, N.; Yoshida, N.; Sugiura, T.; Vafaei, S. Simultaneous Li-Doping and Formation of SnO2-Based Composites with TiO2: Applications for Perovskite Solar Cells. Materials 2024, 17, 2339. [Google Scholar] [CrossRef]
- Manseki, K.; Yamasaki, M.; Yoshida, N.; Sugiura, T.; Vafaei, S. Optimization of thermal evaporation process of gold deposition for perovskite solar cells. In Proceedings of the Thermal and Fluids Engineering Summer Conference, New Orleans, LA, USA, 5–8 April 2020; pp. 739–745. [Google Scholar]
- Li, F.; Wu, B.; Liu, R.; Wang, X.; Chen, L.; Zhao, D. An inexpensive N-methyl-2-pyrrolidone-based ionic liquid as efficient extractant and catalyst for desulfurization of dibenzothiophene. Chem. Eng. J. 2015, 274, 192–199. [Google Scholar] [CrossRef]
- Cheng, B.; Russell, J.M.; Shi, W.; Zhang, L.; Samulski, E.T. Large-Scale, Solution-Phase Growth of Single-Crystalline SnO2 Nanorods. J. Am. Chem. Soc. 2004, 126, 5972. [Google Scholar] [CrossRef]
- Matysiak, W.; Tański, T.; Smok, W.; Polishchuk, O. Synthesis of hybrid amorphous/crystalline SnO2 1D nanostructures: Investigation of morphology, structure and optical properties. Sci. Rep. 2020, 10, 14802. [Google Scholar] [CrossRef]
- Trotochaud Shannon, L.; Boettcher, W. Synthesis of Rutile-Phase SnxTi1–xO2 Solid-Solution and (SnO2)x/(TiO2)1–x Core/Shell Nanoparticles with Tunable Lattice Constants and Controlled Morphologies. Chem. Mater. 2011, 23, 4920. [Google Scholar] [CrossRef]
SnO2 Samples | Crystallite Sizes for Each Plane (nm) | |||
---|---|---|---|---|
(110) | (101) | (211) | ||
(a) | 110 °C reaction/500 °C Sintering | 5.8 | 6.7 | 6.3 |
(b) | 100 °C reaction/500 °C Sintering | 5.7 | 6.9 | 6.7 |
(c) | 110 °C reaction/400 °C Sintering | 4.3 | 5.3 | 4.8 |
(d) | 100 °C reaction/400 °C Sintering | 4.0 | 5.5 | 4.9 |
SnO2 Films (Nanoparticles Synthesis/Heat Treatment) | Bandgap (eV) |
---|---|
100 °C reaction, Annealing at 120 °C only | 3.86 |
110 °C reaction, Annealing at 120 °C only | 3.85 |
100 °C reaction, Sintering at 400 °C without TTIP | 3.86 |
100 °C reaction, Sintering at 500 °C without TTIP | 3.85 |
110 °C reaction, Sintering at 400 °C without TTIP | 3.87 |
110 °C reaction, Sintering at 500 °C without TTIP | 3.86 |
100 °C reaction, Sintering at 400 °C with TTIP | 3.60 |
100 °C reaction, Sintering at 500 °C with TTIP | 3.53 |
110 °C reaction, Sintering at 400 °C with TTIP | 3.60 |
110 °C reaction, Sintering at 500 °C with TTIP | 3.57 |
SnO2 films | Voc (mV) | Jsc (mA/cm2) | FF | H (%) |
---|---|---|---|---|
R-100 °C-SnO2 400 °C sintering | 939 | 23.58 | 0.491 | 10.88 |
F-100 °C-SnO2 400 °C sintering | 882 | 23.86 | 0.301 | 6.33 |
R-100 °CSnO2 500 °C sintering | 915 | 24.64 | 0.513 | 11.57 |
F-100 °CSnO2 500 °C sintering | 829 | 24.62 | 0.384 | 7.84 |
R-110 °CSnO2 400 °C sintering | 881 | 19.47 | 0.488 | 8.37 |
F-110 °CSnO2 400 °C sintering | 742 | 19.97 | 0.310 | 4.60 |
R-110 °CSnO2 500 °C sintering | 932 | 23.16 | 0.529 | 11.42 |
F-110 °CSnO2 500 °C sintering | 866 | 22.92 | 0.350 | 6.95 |
Samples | Oxygen Vacancy (%) | Sn-O (%) | |
---|---|---|---|
(a) | 100 °C reaction, 400 °C sintering with TTIP | 31.1 | 68.9 |
(b) | 100 °C reaction, 500 °C sintering with TTIP | 31.3 | 68.7 |
(c) | 110 °C reaction, 400 °C sintering with TTIP | 28.0 | 72.0 |
(d) | 110 °C reaction, 500 °C sintering with TTIP | 29.3 | 70.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hendra, W.M.; Nagaya, N.; Hibi, Y.; Yoshida, N.; Sugiura, T.; Vafaei, S.; Manseki, K. Facile Synthesis, Sintering, and Optical Properties of Single-Nanometer-Scale SnO2 Particles with a Pyrrolidone Derivative for Photovoltaic Applications. Materials 2024, 17, 5095. https://doi.org/10.3390/ma17205095
Hendra WM, Nagaya N, Hibi Y, Yoshida N, Sugiura T, Vafaei S, Manseki K. Facile Synthesis, Sintering, and Optical Properties of Single-Nanometer-Scale SnO2 Particles with a Pyrrolidone Derivative for Photovoltaic Applications. Materials. 2024; 17(20):5095. https://doi.org/10.3390/ma17205095
Chicago/Turabian StyleHendra, Wingki Mey, Naohide Nagaya, Yuto Hibi, Norimitsu Yoshida, Takashi Sugiura, Saeid Vafaei, and Kazuhiro Manseki. 2024. "Facile Synthesis, Sintering, and Optical Properties of Single-Nanometer-Scale SnO2 Particles with a Pyrrolidone Derivative for Photovoltaic Applications" Materials 17, no. 20: 5095. https://doi.org/10.3390/ma17205095
APA StyleHendra, W. M., Nagaya, N., Hibi, Y., Yoshida, N., Sugiura, T., Vafaei, S., & Manseki, K. (2024). Facile Synthesis, Sintering, and Optical Properties of Single-Nanometer-Scale SnO2 Particles with a Pyrrolidone Derivative for Photovoltaic Applications. Materials, 17(20), 5095. https://doi.org/10.3390/ma17205095