Investigation into the Structure and Properties of Biochar Co-Activated by ZnCl2 and NaHCO3 under Low Temperature Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Procedure
2.2.1. Preparation of HPCs
2.2.2. The Load of HPW
2.2.3. Hydration Reaction
2.3. Products Analysis
2.4. Characterization of the Solid Samples
3. Results
3.1. Formation Mechanism and Characterization of HPCs
3.1.1. Thermogravimetric Analysis
3.1.2. Surface Morphology and Pore Characteristics Analysis
3.1.3. Analysis of Graphitization Degree
3.1.4. Analysis of Trace Elements and Surface Functional Groups
3.2. Characterization and Catalytic Activity of Catalysts
3.2.1. Characterization of Catalysts
3.2.2. Hydration Reaction of α-Pinene
3.2.3. Catalytic Activity of Catalyst
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bagreev, A.; Bandosz, T.J.; Locke, D.C. Pore Structure and Surface Chemistry of Adsorbents Obtained by Pyrolysis of Sewage Sludge-Derived Fertilizer. Carbon 2001, 39, 1971–1979. [Google Scholar] [CrossRef]
- Lee, J.H.; Kang, Y.; Roh, K.C. Enhanced Pore Formation in Petroleum Pitch Using Stabilization and Synergistic steam/CO2 Hybrid Activation. Mater. Chem. Phys. 2024, 312, 128587. [Google Scholar] [CrossRef]
- Anuchitsakol, S.; Dilokekunakul, W.; Khongtor, N.; Chaemchuen, S.; Klomkliang, N. Combined Experimental and Simulation Study On H2 Storage in Oxygen and Nitrogen Co-Doped Activated Carbon Derived From Biomass Waste: Superior Pore Size and Surface Chemistry Development. RSC Adv. 2023, 13, 36009–36022. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.A.; Panda, P.K.; Hota, A.; Tripathy, B.C.; Basu, S. Flexible Asymmetric Supercapacitor Based On Hyphaene Fruit Shell-Derived Multi-Heteroatom Doped Carbon and NiMoO4@NiCo2O4 Hybrid Structure Electrodes. Biomass Bioenergy 2023, 179, 106981. [Google Scholar] [CrossRef]
- Illingworth, J.M.; Rand, B.; Williams, P.T. Understanding the Mechanism of Two-Step, Pyrolysis-Alkali Chemical Activation of Fibrous Biomass for the Production of Activated Carbon Fibre Matting. Fuel Process. Technol. 2022, 235, 107348. [Google Scholar] [CrossRef]
- Demiral, H.; Güngör, C. Adsorption of copper(II) From Aqueous Solutions On Activated Carbon Prepared From Grape Bagasse. J. Clean. Prod. 2016, 124, 103–113. [Google Scholar] [CrossRef]
- Lin, F.; Liu, X.; Ma, M.; Qi, F.; Pan, Y.; Wang, L.; Ma, P.; Zhang, Y. Real-Time Monitoring the Carbonization and Activation Process of Activated Carbon Prepared From Chinese Parasol Via Zinc Chloride Activation. J. Anal. Appl. Pyrol. 2021, 155, 105089. [Google Scholar] [CrossRef]
- Tsai, W.T.; Chang, C.Y.; Lee, S.L. A Low Cost Adsorbent From Agricultural Waste Corn Cob by Zinc Chloride Activation. Bioresour. Technol. 1998, 64, 211–217. [Google Scholar] [CrossRef]
- Ahmadpour, A.; Do, D.D. The Preparation of Active Carbons From Coal by Chemical and Physical Activation. Carbon 1996, 34, 471–479. [Google Scholar] [CrossRef]
- Huidobro, A.; Pastor, A.C.; Rodrıguez-Reinoso, F. Preparation of activated carbon cloth from viscous rayon: Part IV. Chemical activation. Carbon 2001, 39, 389–398. [Google Scholar]
- Nasrullah, A.; Saad, B.; Bhat, A.H.; Khan, A.S.; Danish, M.; Isa, M.H.; Naeem, A. Mangosteen Peel Waste as a Sustainable Precursor for High Surface Area Mesoporous Activated Carbon: Characterization and Application for Methylene Blue Removal. J. Clean. Prod. 2019, 211, 1190–1200. [Google Scholar] [CrossRef]
- Önal, Y.; Akmil-Başar, C.; Sarıcı-Özdemir, Ç.; Erdoğan, S. Textural Development of Sugar Beet Bagasse Activated with ZnCl2. J. Hazard. Mater. 2007, 142, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Xiong, T.; Xu, F.; Li, M.; Han, C.; Gong, Y.; Wang, H.; Wang, Y. Inspired by Bread Leavening: One-Pot Synthesis of Hierarchically Porous Carbon for Supercapacitors. Green Chem. 2015, 17, 4053–4060. [Google Scholar] [CrossRef]
- Zhu, L.; Zhao, N.; Tong, L.; Lv, Y. Structural and Adsorption Characteristics of Potassium Carbonate Activated Biochar. RSC Adv. 2018, 8, 21012–21019. [Google Scholar] [CrossRef] [PubMed]
- Pundir, A.; Sil, A. Orange Peel Derived Hierarchical Porous Carbon/Sulfur Composite Cathode Material for Li–S Battery. Biomass Bioenergy 2024, 180, 106999. [Google Scholar] [CrossRef]
- Wang, H.; Shan, L.; Lv, Q.; Cai, S.; Quan, G.; Yan, J. Production of Hierarchically Porous Carbon From Natural Biomass Waste for Efficient Organic Contaminants Adsorption. J. Clean. Prod. 2020, 263, 121352. [Google Scholar] [CrossRef]
- Cuong, D.; Matsagar, B.; Lee, M.; Hossain, M.; Yamauchi, Y.; Vithanage, M.; Sarkar, B.; Ok, Y.; Wu, K.; Hou, C. A Critical Review On Biochar-Based Engineered Hierarchical Porous Carbon for Capacitive Charge Storage. Renew. Sust. Energy Rev. 2021, 145, 111029. [Google Scholar] [CrossRef]
- Sevilla, M.; Ferrero, G.A.; Fuertes, A.B. One-Pot Synthesis of Biomass-Based Hierarchical Porous Carbons with a Large Porosity Development. Chem. Mater. 2017, 29, 6900–6907. [Google Scholar] [CrossRef]
- Cesano, F.; Cravanzola, S.; Brunella, V.; Scarano, D. Porous Carbon Spheres From Poly(4-Ethylstyrene-Co-Divinylbenzene: Role of ZnCl2 and KOH Agents in Affecting Porosity, Surface Area and Mechanical Properties. Micropor. Mesopor. Mat. 2019, 288, 109605. [Google Scholar] [CrossRef]
- Qi, C.; Xu, L.; Zhang, M.; Zhang, M. Fabrication and Application of Hierarchical Porous Carbon for the Adsorption of Bulky Dyes. Micropor. Mesopor. Mat. 2019, 290, 109651. [Google Scholar] [CrossRef]
- Vinod, A.; Pulikkalparambil, H.; Jagadeesh, P.; Rangappa, S.M.; Siengchin, S. Recent Advancements in Lignocellulose Biomass-Based Carbon Fiber: Synthesis, Properties, and Applications. Heliyon 2023, 9, e13614. [Google Scholar] [CrossRef] [PubMed]
- Myglovets, M.; Poddubnaya, O.I.; Sevastyanova, O.; Lindström, M.E.; Gawdzik, B.; Sobiesiak, M.; Tsyba, M.M.; Sapsay, V.I.; Klymchuk, D.O.; Puziy, A.M. Preparation of Carbon Adsorbents From Lignosulfonate by Phosphoric Acid Activation for the Adsorption of Metal Ions. Carbon 2014, 80, 771–783. [Google Scholar] [CrossRef]
- Watkins, D.; Nuruddin, M.; Hosur, M.; Tcherbi-Narteh, A.; Jeelani, S. Extraction and Characterization of Lignin From Different Biomass Resources. J. Mater. Res. Technol. 2015, 4, 26–32. [Google Scholar] [CrossRef]
- Almeida, R.P.D.; Gomes Aciole, R.C.; Infantes-Molina, A.; Rodríguez-Castellón, E.; Andrade Pacheco, J.G.; Lopes Barros, I.D.C. Residue-Based Activated Carbon From Passion Fruit Seed as Support to H3PW12O40 for the Esterification of Oleic Acid. J. Clean. Prod. 2021, 282, 124477. [Google Scholar] [CrossRef]
- Sarve, D.T.; Dutta, R.; Rastogi, A.; Ekhe, J.D. Valorization of Industrial Waste Lignin Via Pyrolysis in the Presence of Additives: Formation, Characterization, and Application of Fuel Valued Bio-Oil and Activated Char. J. Indian Chem. Soc. 2022, 99, 100398. [Google Scholar] [CrossRef]
- Hayashi, J.I.; Kazehaya, A.; Muroyama, K.; Watkinson, A.P. Preparation of Activated Carbon From Lignin by Chemical Activation. Carbon 2000, 38, 1873–1878. [Google Scholar] [CrossRef]
- Balan, W.S.; Janaun, J.; Chung, C.H.; Semilin, V.; Zhu, Z.; Haywood, S.K.; Touhami, D.; Chong, K.P.; Yaser, A.Z.; Lee, P.C.; et al. Esterification of Residual Palm Oil Using Solid Acid Catalyst Derived From Rice Husk. J. Hazard. Mater. 2021, 404, 124092. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Yu, Z.; Li, X.; Yin, S.; Ji, W.; Hu, Y.; Cai, W.; Wang, X. Highly Porous Carbon Derived From Hydrothermal-Pyrolysis Synergistic Carbonization of Biomass for Enhanced CO2 Capture. Colloids Surf. A Physicochem. Eng. Asp. 2023, 673, 131787. [Google Scholar] [CrossRef]
- Konwar, L.J.; M Ki-Arvela, P.I.; Salminen, E.; Kumar, N.; Thakur, A.J.; Mikkola, J.P.; Deka, D. Towards Carbon Efficient Biorefining: Multifunctional Mesoporous Solid Acids Obtained From Biodiesel Production Wastes for Biomass Conversion. Appl. Catal. B Environ. 2015, 176, 20–35. [Google Scholar] [CrossRef]
- Tamargo-Martínez, K.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J.M.D. Surface Modification of High-Surface Area Graphites by Oxygen Plasma Treatments. Appl. Surf. Sci. 2022, 575, 151675. [Google Scholar] [CrossRef]
- González-González, R.B.; González, L.T.; Madou, M.; Leyva-Porras, C.; Martinez-Chapa, S.O.; Mendoza, A. Synthesis, Purification, and Characterization of Carbon Dots from Non-Activated and Activated Pyrolytic Carbon Black. Nanomaterials 2022, 12, 298. [Google Scholar] [CrossRef] [PubMed]
- Kiciński, W.; Szala, M.; Bystrzejewski, M. Sulfur-Doped Porous Carbons: Synthesis and Applications. Carbon 2014, 68, 1–32. [Google Scholar] [CrossRef]
- Pizzio, L.R.; Cáceres, C.V.; Blanco, M.N. Acid Catalysts Prepared by Impregnation of Tungstophosphoric Acid Solutions On Different Supports. Appl. Catal. A Gen. Gen. 1998, 167, 283–294. [Google Scholar] [CrossRef]
- Marcì, G.; García-López, E.I.; Palmisano, L. Comparison Between Catalytic and Catalytic Photo-Assisted Propene Hydration by Using Supported Heteropolyacid. Appl. Catal. A Gen. 2012, 421, 70–78. [Google Scholar] [CrossRef]
- Synowiec, M.; Radecka, M.; Micek-Ilnicka, A. UV Light Enhanced Catalytic Performance of heteropolyacid-TiO2 Systems. J. Catal. 2023, 417, 481–496. [Google Scholar] [CrossRef]
- Xie, J.; Han, Q.; Wang, J.; Bai, L.; Lu, J.; Liu, Z. Enhanced alpha-Terpineol Yield From alpha-Pinene Hydration Via Synergistic Catalysis Using Carbonaceous Solid Acid Catalysts. Ind. Eng. Chem. Res. 2019, 58, 22202–22211. [Google Scholar] [CrossRef]
- Yang, G.; Liu, Y.; Zhou, Z.; Zhang, Z. Kinetic Study of the Direct Hydration of Turpentine. Chem. Eng. J. 2011, 168, 351–358. [Google Scholar] [CrossRef]
- Salvador, V.; Silva, E.; Goncalves, P.; Cella, R. Biomass Transformation: Hydration and Isomerization Reactions of Turpentine Oil Using Ion Exchange Resins as Catalyst. Sustain. Chem. Pharm. 2020, 15, 100214. [Google Scholar] [CrossRef]
- Wei, Z.; Wei, G.; Che, H.; Xiong, D.; Zhang, L.; Xue, R.; Tang, Y.; Lu, X. A Novel Carbon-Based Solid Acid Catalyst with High Acidity for the Hydration of A-Pinene to A-Terpineol: Effect of Graphite Crystallite Size and Synergistic Effect of Defects. Mol. Catal. 2024, 552, 113631. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, H.; Wei, Z.; Xiong, D.; Bai, S.; Tong, M.; Ma, P. Structure and Catalytic Performance of Carbon-Based Solid Acids from Biomass Activated by ZnCl2. Catalysts 2023, 13, 1436. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.; Liao, Y.; Li, X.; Li, W. Sulfur Loaded in Micropore-Rich Carbon Aerogel as Cathode of Lithium-Sulfur Battery with Improved Cyclic Stability. J. Power Sources 2016, 334, 23–30. [Google Scholar] [CrossRef]
- Babucci, M.; Guntida, A.; Gates, B.C. Atomically Dispersed Metals On Well-Defined Supports Including Zeolites and Metal—Organic Frameworks: Structure, Bonding, Reactivity, and Catalysis. Chem. Rev. 2020, 120, 11956–11985. [Google Scholar] [CrossRef]
- Meng, Z.; Qin, R.; Wen, R.; Li, G.; Liang, Z.; Xie, J.; Yang, Z.; Zhou, Y. Study on the Hydration of alpha-Pinene Cata-lyzed by alpha-Hydroxycarboxylic Acid-Boric Acid Composite Catalysts. Molecules 2023, 28, 3202. [Google Scholar] [CrossRef]
- Aguilar-Elguezabal, A.; De la Torre-Sáenz, L.; Román-Aguirre, M.; Álvarez-Contreras, L. Ionic Liquid as Green Solvent for the Synthesis of α-Terpineol From α-Pinene. Sustain. Chem. Pharm. 2020, 15, 100207. [Google Scholar] [CrossRef]
- Sekerova, L.; Cerna, H.; Vyskocilova, E.; Vrbkova, E.; Cerveny, L. Preparation of alpha-Terpineol from Biomass Re-source Catalysed by Acid Treated Montmorillonite K10. Catal. Lett. 2021, 151, 2673–2683. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, X.; Yuan, B.; Yu, F.; Xie, C.; Yu, S. A Novel Green Catalytic Strategy for Hydration of A-Pinene by a Natural Deep Eutectic Solvent. Biomass Convers. Biorefinery 2022, 12, 2267–2275. [Google Scholar] [CrossRef]
HPCs | SBET (m2/g) | VTotal (mL/g) | Vmicro (mL/g) | Vmeso (mL/g) | Vmeso/VTotal (%) | Dpore (nm) |
---|---|---|---|---|---|---|
AC450-4:8:0 | 1017.1 | 0.595 | 0.402 | 0.193 | 32.4% | 2.34 |
AC450-4:8:2 | 736.5 | 0.752 | 0.273 | 0.479 | 63.9% | 4.35 |
AC450-4:8:4 | 553.9 | 0.656 | 0.229 | 0.427 | 65.1% | 4.74 |
HPCs | C1s (wt%) | O1s (wt%) | N1s (wt%) | S2p (wt%) |
---|---|---|---|---|
AC450-4:8:0 | 86.08 | 11.87 | 1.14 | 0.97 |
AC450-4:8:2 | 87.84 | 9.96 | 0.97 | 1.24 |
AC450-4:8:4 | 88.15 | 9.65 | 0.55 | 1.65 |
AC550-4:8:2 | 87.47 | 10.96 | 1.58 | 0 |
HPCs | C (wt%) | O (wt%) | ||||
---|---|---|---|---|---|---|
C-C/C-H | C-O-C | C=O | C=O | C-OH | -O-C | |
AC450-4:8:0 | 55.20 | 23.37 | 7.51 | 1.56 | 5.88 | 4.42 |
AC450-4:8:2 | 56.67 | 25.15 | 6.00 | 2.30 | 4.47 | 3.19 |
AC450-4:8:4 | 54.53 | 25.93 | 7.70 | 2.59 | 3.76 | 3.30 |
AC550-4:8:2 | 47.87 | 33.26 | 6.33 | 1.85 | 5.23 | 3.89 |
HPCs | ATotal (mmol/g) | ACOOH (mmol/g) | AOH (mmol/g) |
---|---|---|---|
AC450-4:8:0 | 0.83 | 0.37 | 0.46 |
AC450-4:8:2 | 0.93 | 0.56 | 0.37 |
AC450-4:8:4 | 0.86 | 0.46 | 0.40 |
Catalyst | Conversion Rate (%) | Selectivity (%) | Yield (%) | AHPW (mmol/g) |
---|---|---|---|---|
HPW/AC450-4:8:2(1) | 77.4 | 55.7 | 43.1 | 1.07 |
HPW/AC450-4:8:2(2) | 53.6 | 38.2 | 20.5 | 0.82 |
HPW/AC450-4:8:2(3) | 33.5 | 25.9 | 8.7 | 0.32 |
HPW/AC450-4:8:0(1) | 79.2 | 47.4 | 37.5 | 1.08 |
HPW/AC450-4:8:0(2) | 31.3 | 23.2 | 7.3 | 0.74 |
HPW/AC450-4:8:0(3) | 29.4 | 18.7 | 5.5 | 0.26 |
Entry | Catalyst | Conditions | Solvent | Conv. (%) α-Pinene | Selectivity (%) | Ref. |
---|---|---|---|---|---|---|
1 | Ternary composite catalysts | α-pinene: water: acetic acid: tartaric acid: boric acid = 10:10:25:0.5:0.4, 60 °C, 24 h | - | 96.1 | 58.7 | [43] |
2 | IL | α-pinene: water: H2SO4 = 10.2:12:3, 70 °C, 4 h | - | 93.2 | 26.8 | [44] |
3 | Montmorillonite K10 | α-pinene: water = 1:7.5, 80 °C, 24 h | 1,4-dioxane | 60 | 45 | [45] |
4 | Sulfonated carbon | α-pinene: water = 1:1, 80 °C, 24 h | isopropanol | 97.8 | 53.4 | [36] |
5 | Sulfonated carbon | α-pinene: water = 1:1, 80 °C, 24 h | acetone | 87.15 | 54.19 | [40] |
6 | OA·2H2O/Bet | α-pinene: water = 1:5, 80 °C, 8 h | - | 91.91 | 34.63 | [46] |
7 | HPW/AC450-4:8:2 | α-pinene: water = 1:1, 80 °C, 24 h | acetone | 77.4 | 55.7 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Wei, Z.; Xiong, D.; Wu, Y.; Tong, M.; Su, H.; Zhang, Z.; Liao, J. Investigation into the Structure and Properties of Biochar Co-Activated by ZnCl2 and NaHCO3 under Low Temperature Conditions. Materials 2024, 17, 942. https://doi.org/10.3390/ma17040942
Zhang H, Wei Z, Xiong D, Wu Y, Tong M, Su H, Zhang Z, Liao J. Investigation into the Structure and Properties of Biochar Co-Activated by ZnCl2 and NaHCO3 under Low Temperature Conditions. Materials. 2024; 17(4):942. https://doi.org/10.3390/ma17040942
Chicago/Turabian StyleZhang, Hao, Zhaozhou Wei, Deyuan Xiong, Yao Wu, Menglong Tong, Huiping Su, Zuoyuan Zhang, and Jian Liao. 2024. "Investigation into the Structure and Properties of Biochar Co-Activated by ZnCl2 and NaHCO3 under Low Temperature Conditions" Materials 17, no. 4: 942. https://doi.org/10.3390/ma17040942