Effect of Heteroatom Doping on Electrochemical Properties of Olivine LiFePO4 Cathodes for High-Performance Lithium-Ion Batteries
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis and Doping of LFP/C
2.2. Material Characterization
2.3. Electrochemical Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LFP | LiFePO4 |
FP | FePO4 |
LFP/C | Carbon–coated LiFePO4 |
LFP/C–Fn | Carbon–coated LiFePO4 doped with n at.% F |
LFP/C–Nbn | Carbon–coated LiFePO4 doped with n at.% Nb |
LFP/C–Mnn | Carbon–coated LiFePO4 doped with n at.% Mn |
LFMP | LiFeMnPO4 |
LFP/C–Xn | Carbon–coated LiFePO4 doped with n at.% X dopant element |
References
- Karami, M.; Masoudpanah, S.M.; Rezaie, H.R. Solution combustion synthesis of hierarchical porous LiFePO4 powders as cathode materials for lithium-ion batteries. Adv. Powder Technol. 2021, 32, 1935–1942. [Google Scholar] [CrossRef]
- Huang, J.; Zhu, Y.; Feng, Y.; Han, Y.; Gu, Z.; Liu, R.; Yang, D.; Chen, K.; Zhang, X.; Sun, W.; et al. Research Progress on Key Materials and Technologies for Secondary Batteries. Acta Phys.-Chim. Sin. 2022, 38, 2208008. [Google Scholar] [CrossRef]
- Choi, J.; Zabihi, O.; Ahmadi, M.; Naebe, M. Advancing structural batteries: Cost-efficient high-performance carbon fiber-coated LiFePO4 cathodes. RSC Adv. 2023, 13, 30633–30642. [Google Scholar] [CrossRef]
- Catenaro, E.; Onori, S. Experimental data of lithium-ion batteries under galvanostatic discharge tests at different rates and temperatures of operation. Data Brief 2021, 35, 106894. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, H.W.; Wang, C.H.; Huang, A.F.; Su, W.N.; Hwang, B.J. Green chemical delithiation of lithium iron phosphate for energy storage application. Chem. Eng. J. 2021, 418, 129191. [Google Scholar] [CrossRef]
- Apachitei, G.; Heymer, R.; Lain, M.; Dogaru, D.; Hidalgo, M.; Marco, J.; Copley, M. Scale-Up of Lithium Iron Phosphate Cathodes with High Active Materials Contents for Lithium Ion Cells. Batteries 2023, 9, 518. [Google Scholar] [CrossRef]
- Gadomski, K.; Buchberger, D.A.; Pietrzak, T.K. Synthesis and electrical properties of glassy and nanocrystalline LiFePO4. J. Non Cryst. Solids 2024, 625, 122771. [Google Scholar] [CrossRef]
- Bal, B.; Ozdogru, B.; Nguyen, D.T.; Li, Z.; Murugesan, V.; Capraz, O.O. Probing the Formation of Cathode-Electrolyte Interphase on Lithium Iron Phosphate Cathodes via Operando Mechanical Measurements. ACS Appl. Interfaces 2023, 15, 42449–42459. [Google Scholar] [CrossRef]
- Dos Santos Junior, G.A.; Fortunato, V.D.S.; Gandra, F.G.; Nascentes, C.C.; Silva, G.G.; Ortega, P.F.R.; Lavall, R.L. Electrochemical performance of hybrid supercapacitor device based on Mn-doped LiFePO4/C and imidazolium ionic liquid electrolyte. J. Energy Storage 2023, 74, 109112. [Google Scholar] [CrossRef]
- Kanagaraj, A.B.; Chaturvedi, P.; Alkindi, T.S.; Susantyoko, R.A.; An, B.H.; Patole, S.P.; Shanmugam, K.; AlMheiri, S.; AlDahmani, S.; AlFadaq, H.; et al. Mechanical, thermal and electrical properties of LiFePO4/MWCNTs composite electrodes. Mater. Lett. 2018, 230, 57–60. [Google Scholar] [CrossRef]
- Mayer, S.F.; de la Calle, C.; Fernandez-Diaz, M.T.; Amarilla, J.M.; Alonso, J.A. Nitridation effect on lithium iron phosphate cathode for rechargeable batteries. RSC Adv. 2022, 12, 3696–3707. [Google Scholar] [CrossRef] [PubMed]
- Nitou, M.V.M.; Pang, Y.; Wan, Z.; Li, W.; Zhong, Z.; Muhammad, W.; Muhammad, S.; Muhammad, S.; Niu, Y.; Lv, W. LiFePO4 as a dual-functional coating for separators in lithium-ion batteries: A new strategy for improving capacity and safety. J. Energy Chem. 2023, 86, 490–498. [Google Scholar] [CrossRef]
- Reizabal, A.; Fidalgo-Marijuan, A.; Goncalves, R.; Gutierrez-Pardo, A.; Aguesse, F.; Perez-Alvarez, L.; Vilas-Vilela, J.L.; Costa, C.M.; Lanceros-Mendez, S. Silk fibroin and sericin polymer blends for sustainable battery separators. J. Colloid Interface Sci. 2022, 611, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Fagundes, W.S.; Xavier, F.F.S.; Santana, L.K.; Azevedo, M.E.; Canobre, S.C.; Amaral, F.A. PAni-coated LiFePO4 Synthesized by a Low Temperature Solvothermal Method. Mater. Res. 2018, 22, e20180566. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, D. Effect of organic carbon coating prepared by hydrothermal method on performance of lithium iron phosphate battery. Alex. Eng. J. 2023, 80, 1–7. [Google Scholar] [CrossRef]
- Apachitei, G.; Hidalgo, M.; Dogaru, D.; Lain, M.; Heymer, R.; Marco, J.; Copley, M. Optimisation of Industrially Relevant Electrode Formulations for LFP Cathodes in Lithium Ion Cells. Batteries 2023, 9, 192. [Google Scholar] [CrossRef]
- Bezerra, C.A.G.; Davoglio, R.A.; Biaggio, S.R.; Bocchi, N.; Rocha-Filho, R.C. High-purity LiFePO4 prepared by a rapid one-step microwave-assisted hydrothermal synthesis. J. Mater. Sci. 2021, 56, 10018–10029. [Google Scholar]
- Kroff, M.; Hevia, S.A.; O’Shea, J.N.; Muro, I.G.; Palomares, V.; Rojo, T.; Del Rio, R. Lithium Iron Phosphate/Carbon (LFP/C) Composite Using Nanocellulose as a Reducing Agent and Carbon Source. Polymers 2023, 15, 2628. [Google Scholar] [CrossRef] [PubMed]
- Kanagaraj, A.B.; Al Shibli, H.; Alkindi, T.S.; Susantyoko, R.A.; An, B.H.; AlMheiri, S.; AlDahmani, S.; Fadaq, H.; Choi, D.S. Hydrothermal synthesis of LiFePO4 micro-particles for fabrication of cathode materials based on LiFePO4/carbon nanotubes nanocomposites for Li-ion batteries. Ionics 2018, 24, 3685–3690. [Google Scholar] [CrossRef]
- Alsamet, M.A.M.M.; Burgaz, E. Synthesis and characterization of nano-sized LiFePO4 by using consecutive combination of sol-gel and hydrothermal methods. Electrochim. Acta 2021, 367, 137530. [Google Scholar] [CrossRef]
- Rikka, V.R.; Sahu, S.R.; Chatterjee, A.; Prakash, R.; Sundararajan, G.; Gopalan, R. Enhancing cycle life and usable energy density of fast charging LiFePO4-graphite cell by regulating electrodes’ lithium level. iScience 2022, 25, 104831. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Hu, Z.; Long, Z.; Tang, M.; Qiu, X. Improvement of electrochemical properties of lithium iron phosphate cathode by rare earth oxides modification. J. Alloys Compd. 2023, 947, 169581. [Google Scholar] [CrossRef]
- Sellami, M.; Barre, M.; Dammak, M.; Toumi, M. Local Structure, Thermal, Optical and Electrical Properties of LiFePO4 Polycrystalline Synthesized by Co-Precipitation Method. Braz. J. Phys. 2021, 51, 1521–1528. [Google Scholar] [CrossRef]
- Yi, W.; Sun, C.; Jiang, W.; Zhai, Y.; Gao, Y. Effect of different carbon and nitrogen co-doping on electrochemical performance of LiFePO4/CN. Mater. Lett. 2022, 324, 132713. [Google Scholar] [CrossRef]
- Jiao, L.X.; Li, Z.Q.; Zhu, Y.Z.; Wei, Z.; Liang, Y.; Wang, X.L.; Cui, Y.; Zhang, Z.H.; He, M.; Song, B. Enhanced electrical conductivity and lithium ion diffusion rate of LiFePO4 by Fe site and P site doping. AIP Adv. 2023, 13, 075306. [Google Scholar] [CrossRef]
- Hu, H.; Li, H.; Lei, Y.; Liu, J.; Liu, X.; Wang, R.; Peng, J.; Wang, X. Mg-doped LiMn0.8Fe0.2PO4/C nano-plate as a high-performance cathode material for lithium-ion batteries. J. Energy Storage 2023, 73, 109006. [Google Scholar] [CrossRef]
- Jiang, F.; Qu, K.; Wang, M.; Chen, J.; Liu, Y.; Xu, H.; Huang, Y.; Li, J.; Gao, P.; Zheng, J.; et al. Atomic scale insight into the fundamental mechanism of Mn doped LiFePO4. Sustain. Energy Fuels 2020, 4, 2741–2751. [Google Scholar] [CrossRef]
- Suarso, E.; Setyawan, F.A.; Subhan, A.; Ramli, M.M.; Ismail, N.S.; Zainuri, M.; Arifin, Z.; Darminto. Enhancement of LiFePO4 (LFP) electrochemical performance through the insertion of coconut shell-derived rGO-like carbon as cathode of Li-ion battery. J. Mater. Sci. Mater. Electron. 2021, 32, 28297–28306. [Google Scholar] [CrossRef]
- Hua, W.; Yang, X.; Casati, N.P.M.; Liu, L.; Wang, S.; Baran, V.; Knapp, M.; Ehrenberg, H.; Indris, S. Probing thermally-induced structural evolution during the synthesis of layered Li−, Na−, or K− containing 3d transition-metal oxides. eScience 2022, 2, 183–191. [Google Scholar] [CrossRef]
- Chuang, H.C.; Teng, J.W.; Kuan, W.F. Supercritical CO2-enhanced surface modification on LiFePO4 cathodes through ex-situ carbon coating for lithium-ion batteries. Colloids Surf. A Physicochem. Eng. Asp. 2024, 684, 133110. [Google Scholar] [CrossRef]
- Torabi, M.; Sadrnezhaad, S.K. Nanostructured-microfibrillar polypyrrole coated NiTi current collectors for high power and shape memory LiFePO4 cathodes for Li-ion batteries. J. Alloys Compd. 2023, 969, 172467. [Google Scholar] [CrossRef]
- Yang, G.; Liang, X.; Zheng, S.; Chen, H.; Zhang, W.; Li, S.; Pan, F. Li-rich channels as the material gene for facile lithium diffusion in halide solid electrolytes. eScience 2022, 2, 79–86. [Google Scholar] [CrossRef]
- Sun, C.; Rajasekhara, S.; Goodenough, J.B.; Zhou, F. Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. J. Am. Chem. Soc. 2011, 133, 2132–2135. [Google Scholar] [CrossRef] [PubMed]
- Chai, S.; Zhang, Y.; Wang, Y.; He, Q.; Zhou, S.; Pan, A. Biodegradable composite polymer as advanced gel electrolyte for quasi-solid-state lithium-metal battery. eScience 2022, 2, 494–508. [Google Scholar] [CrossRef]
- Dose, W.M.; Peebles, C.; Blauwkamp, J.; Jansen, A.N.; Liao, C.; Johnson, C.S. Synthesis of high-density olivine LiFePO4 from paleozoic siderite FeCO3 and its electrochemical performance in lithium batteries. APL Mater. 2022, 10, 041113. [Google Scholar] [CrossRef]
- Li, B.; Xiao, J.; Zhu, X.; Wu, Z.; Zhang, X.; Han, Y.; Niu, J.; Wang, F. Enabling high-performance lithium iron phosphate cathodes through an interconnected carbon network for practical and high-energy lithium-ion batteries. J. Colloid Interface Sci. 2024, 653, 942–948. [Google Scholar] [CrossRef]
- Li, Z.; Ren, X.; Tian, W.; Zheng, Y.; Sun, J.; An, L.; Wen, L.; Wang, L.; Liang, G. High Volumetric Energy Density of LiFePO4/KB Cathode Materials Based on Ketjen Black Additive. ChemElectroChem 2020, 7, 2174–2183. [Google Scholar] [CrossRef]
- Krishnan, S.; Yadav, V.; Devotta, I.; Srivastava, U.; Ssv, R. Effect of multi-walled carbon nanotubes diameter in electrochemical activity of lithium iron phosphate. Diam. Relat. Mater. 2024, 141, 110651. [Google Scholar] [CrossRef]
- Li, T.; Chang, X.; Xin, Y.; Liu, Y.; Tian, H. Synergistic Strategy Using Doping and Polymeric Coating Enables High-Performance High-Nickel Layered Cathodes for Lithium-Ion Batteries. J. Phys. Chem. C 2023, 127, 8448–8461. [Google Scholar] [CrossRef]
- Galaguz, V.; Korduban, O.; Panov, E.; Malovanyi, S. The use of Raman and XPS spectroscopy to study the cathode material of LiFePO4/C. J. Serbian Chem. Soc. 2020, 85, 1047–1054. [Google Scholar] [CrossRef]
- Connor, W.D.; Arisetty, S.; Yao, K.P.; Fu, K.; Advani, S.G.; Prasad, A.K. Analysis of solvent-free lithium-ion electrodes formed under high pressure and heat. J. Power Sources 2022, 546, 231972. [Google Scholar] [CrossRef]
- Levin, O.V.; Eliseeva, S.N.; Alekseeva, E.V.; Tolstopjatova, E.G.; Kondratiev, V.V. Composite LiFePO4/poly-3,4-ethylenedioxythiophene Cathode for Lithium-Ion Batteries with Low Content of Non-Electroactive Components. Int. J. Electrochem. Sci. 2015, 10, 8175–8189. [Google Scholar] [CrossRef]
- Valvo, M.; Chien, Y.C.; Liivat, A.; Tai, C.W. Detecting voltage shifts and charge storage anomalies by iron nanoparticles in three-electrode cells based on converted iron oxide and lithium iron phosphate. Electrochim. Acta 2023, 440, 141747. [Google Scholar] [CrossRef]
- Naik, A.; Zhou, J.; Gao, C.; Wang, L. Microwave Assisted Solid State Synthesis of LiFePO4/C Using Two Different Carbon Sources. Int. J. Electrochem. Sci. 2014, 9, 6124–6133. [Google Scholar] [CrossRef]
- Sundarayya, Y.; Vijeth, H.; Nagaraju, D.; Kumara Swamy, K.C.; Sunandana, C.S. Isovalent substitution of vanadium in LiFePO4: Evolution of monoclinic α-Li3Fe2(PO4)3 phase. Inorg. Chem. Commun. 2023, 150, 110530. [Google Scholar] [CrossRef]
- Rastgoo-Deylami, M.; Javanbakht, M.; Ghaemi, M.; Naji, L.; Omidvar, H.; Ganjali, M.R. Synthesis and Electrochemical Properties of Rhombohedral LiFePO4/C Microcrystals Via a Hydrothermal Route for Lithium Ion Batteries. Int. J. Electrochem. Sci. 2014, 9, 3199–3208. [Google Scholar] [CrossRef]
- Ma, C.; Wang, X.; Song, Y.; Hu, H.; Li, W.; Qiu, Z.; Cui, Y.; Xing, W. Low-temperature performance optimization of LiFePO4-based batteries. Asia-Pac. J. Chem. Eng. 2022, 18, e2841. [Google Scholar] [CrossRef]
- Na, Y.; Sun, X.; Fan, A.; Cai, S.; Zheng, C. Methods for enhancing the capacity of electrode materials in low-temperature lithium-ion batteries. Chin. Chem. Lett. 2021, 32, 973–982. [Google Scholar] [CrossRef]
- Myalo, Z.; Ikpo, C.O.; Nwanya, A.C.; Ndipingwi, M.M.; Duoman, S.F.; Mokwebo, K.V.; Iwuoha, E.I. Graphenised Lithium Iron Phosphate and Lithium Manganese Silicate Hybrid Cathodes: Potentials for Application in Lithium-ion Batteries. Electroanalysis 2020, 32, 2982–2999. [Google Scholar] [CrossRef]
- Zaki, N.H.M.; Ahmad, S.I.; Sazman, F.N.; Badrudin, F.W.; Abdullah, A.L.A.; Taib, M.F.M.; Hassan, O.H.; Yahya, M.Z.A. The influence of Cl doping on the structural, electronic properties and Li-ion migration of LiFePO4: A DFT study. Comput. Theor. Chem. 2023, 1221, 114029. [Google Scholar] [CrossRef]
- Seo, S.B.; Song, Y.; Choi, Y.R.; Kang, M.; Choi, G.B.; Kim, J.H.; Han, J.H.; Hong, S.; Muramatsu, H.; Kim, M.Y.; et al. Double-walled carbon nanotubes as effective conducting agents for lithium iron phosphate cathodes. Carbon 2023, 218, 118731. [Google Scholar] [CrossRef]
- Sharmila, V.; Parthibavarman, M. Lithium manganese phosphate associated with MWCNT: Enhanced positive electrode for lithium hybrid batteries. J. Alloys Compd. 2021, 858, 157715. [Google Scholar] [CrossRef]
- Jheng, S.C.; Chen, J.S. The Synthesis of LiFePO4/C Composite by the Precipitation Between Two Water/Oil Emulsions. Int. J. Electrochem. Sci. 2013, 8, 4901–4913. [Google Scholar] [CrossRef]
- Shaji, N.; Jiang, F.; Sung, J.Y.; Nanthagopal, M.; Kim, T.; Jeong, B.J.; Jung, S.P.; Lee, C.W. Heteroatoms-doped carbon effect on LiFePO4 cathode for Li-ion batteries. J. Energy Storage 2023, 72, 108710. [Google Scholar] [CrossRef]
- Vásquez, F.A.; Rosero-Navarro, N.C.; Miura, A.; Goto, Y.; Tadanaga, K.; Calderón, J.A. Beneficial Effect of LiFePO4/C coating on Li0.9Mn1.6Ni0.4O4 obtained by microwave heating. Electrochim. Acta 2023, 437, 141544. [Google Scholar] [CrossRef]
- Zhu, H.; Li, Z.; Li, C.; Jia, H.; Fang, H.; Qiao, L.; Lv, P.; Li, X. Near-in-situ electrochemical impedance spectroscopy analysis based on lithium iron phosphate electrode. Electrochim. Acta 2023, 464, 142919. [Google Scholar] [CrossRef]
- Yücel, Y.D.; Zenkert, D.; Lindström, R.W.; Lindbergh, G. LiFePO4-coated carbon fibers as positive electrodes in structural batteries: Insights from spray coating technique. Electrochem. Commun. 2024, 160, 107670. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Meng, Y.; Xiao, M.; Kang, T.; Gao, H.; Huang, L.; Zhu, F. Preparation and electrochemical properties of Co doped core-shell cathode material on a lithium iron phosphate surface. J. Alloys Compd. 2022, 923, 166326. [Google Scholar] [CrossRef]
- Kim, J.; Song, S.; Lee, C.S.; Lee, M.; Bae, J. Prominent enhancement of stability under high current density of LiFePO4-based multidimensional nanocarbon composite as cathode for lithium-ion batteries. J. Colloid Interface Sci. 2023, 650, 1958–1965. [Google Scholar] [CrossRef]
- Karimzadeh, S.; Safaei, B.; Huang, W.; Jen, T.C. Theoretical investigation on niobium doped LiFePO4 cathode material for high performance lithium-ion batteries. J. Energy Storage 2023, 67, 107572. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Xin, Y.; He, B.; Zhang, F.; Tian, H. Effect of Heteroatom Doping on Electrochemical Properties of Olivine LiFePO4 Cathodes for High-Performance Lithium-Ion Batteries. Materials 2024, 17, 1299. https://doi.org/10.3390/ma17061299
Jiang X, Xin Y, He B, Zhang F, Tian H. Effect of Heteroatom Doping on Electrochemical Properties of Olivine LiFePO4 Cathodes for High-Performance Lithium-Ion Batteries. Materials. 2024; 17(6):1299. https://doi.org/10.3390/ma17061299
Chicago/Turabian StyleJiang, Xiukun, Yan Xin, Bijiao He, Fang Zhang, and Huajun Tian. 2024. "Effect of Heteroatom Doping on Electrochemical Properties of Olivine LiFePO4 Cathodes for High-Performance Lithium-Ion Batteries" Materials 17, no. 6: 1299. https://doi.org/10.3390/ma17061299
APA StyleJiang, X., Xin, Y., He, B., Zhang, F., & Tian, H. (2024). Effect of Heteroatom Doping on Electrochemical Properties of Olivine LiFePO4 Cathodes for High-Performance Lithium-Ion Batteries. Materials, 17(6), 1299. https://doi.org/10.3390/ma17061299