Nanostructured Medical Devices: Regulatory Perspective and Current Applications
Abstract
:1. Introduction
- diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of disease,
- diagnosis, monitoring, treatment, alleviation of, or compensation for, an injury or disability,
- investigation, replacement or modification of the anatomy or of a physiological or pathological process or state,
- providing information by means of in vitro examination of specimens derived from the human body, including organ, blood and tissue donations, and which does not achieve its principal intended action by pharmacological, immunological or metabolic means, in or on the human body, but which may be assisted in its function by such means.”
2. Nanomaterials and Medical Devices
- A high degree of chemical reactivity;
- A high surface-to-volume ratio, which entails a high reaction rate due to the increased surface available for reactions;
- A high potential for nanoparticle internalization and subsequent cellular responses;
- The materials’ properties at the nanoscale are affected by quantum mechanical effects, which do not apply to materials at larger scales; in the former case, size-dependent properties are also observable (e.g., emission frequency in quantum dots).
3. Evaluation of Nanomaterials in MDs
- “(a)
- The tests must be performed on the final product, or on representative samples taken from the final product or from materials processed in the same manner as the final product
- (b)
- The choice of test procedures must take into account:
- (1)
- the nature, degree, duration, frequency and conditions of exposure or contact of humans with the device in normal intended use;
- (2)
- the chemical and physical nature of the end product;
- (3)
- the toxicological activity of the chemical elements or compounds in the formulation of the final product; […]
- (c)
- If device extracts are prepared, the solvents and extraction conditions used must be appropriate to the nature and use of the final product.”
4. Potential Health Effects Associated with Nanomaterials
5. Methods
6. Fabrication of Nanostructured Medical Devices
7. Examples of Nanomaterials Used in the Fabrication of Medical Devices
7.1. NM to Confer Antibiotic Activity
7.2. Orthopedic Applications of NM
7.3. Nanocomposites for Dentistry Applications
7.4. NPs for Image-Guided Cancer Therapy
7.5. Photothermal Therapy
7.6. Bioelectronic Interfaces
7.7. Drug/Protein Delivery Systems
7.8. Nano-Imaging Agents
7.9. Medical Devices for Wound Healing
8. Regulation of Nanostructured Medical Devices in Europe
8.1. Medical Device Directive
8.2. Medical Device Regulation
- Class IIb if the MD presents a low potential for internal exposure;
- Class IIa if the MD presents a negligible potential for internal exposure.
9. Normative Situation with Respect to Nanostructured Medical Devices
10. Conclusions
- Comparing test results obtained through different methodologies may be necessary to achieve the required level of certainty about safety evaluations;
- When a medical device incorporates nanomaterials, it is imperative to evaluate the latter separately from the device itself, rather than extracting them, contrary to conventional approaches used for testing biomaterials or medical devices [3];
- In general, the process of release of nanomaterials from MDs during their operational lifetime, needs to be characterized more thoroughly. Different release mechanisms may cause different modifications of the nanomaterials, with a consequent impact on their biological effect upon contact with body tissues;
- Nanoparticles of the type shed from MDs must be always tested in physiological conditions since the protein corona effect has a remarkable effect on the biological interactions of the NPs with cells/tissues [24].
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Regulation (EU) 2017/745 of the European Parliament and of the Council of 5 April 2017 on Medical Devices, Amending Directive 2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 1223/2009 and Repealing Council Directives 90/385/EEC and 93/42/EEC (Text with EEA Relevance) (OJ L 117 05.05.2017, p. 1, ELI). Available online: http://data.europa.eu/eli/reg/2017/745/oj (accessed on 15 January 2024).
- Pallotta, A.; Clarot, I.; Sobocinski, J.; Fattal, E.; Boudier, A. Nanotechnologies for Medical Devices: Potentialities and Risks. ACS Appl. Bio. Mater. 2019, 2, 1–13. [Google Scholar] [CrossRef] [PubMed]
- ISO 10993-1:2018; Biological Evaluation of Medical Devices Evaluation and Testing within a Risk Management Process. ISO: Geneva, Switzerland, 2018.
- SCENIHR (Scientific Committee on Emerging and Newly Identified Health Risks). Final Opinion on the Guidance on the Determination of Potential Health Effects of Nanomaterials Used in Medical Devices, January 2015. Guidance on the Determination of Potential Health Effects; SCENIHR: Luxembourg, 2015. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Brayden, D.J. Development of nanotoxicology: Implications for drug delivery and medical devices. Nanomedicine 2015, 10, 2289–2305. [Google Scholar] [CrossRef] [PubMed]
- Geiser, M.; Rothen-Rutishauser, B.; Kapp, N.; Schurch, S.; Kreyling, W.; Schulz, H.; Semmler, M.; Hof, V.I.; Heyder, J.; Gehr, P. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ. Health Perspect. 2005, 113, 1555–1560. [Google Scholar] [CrossRef] [PubMed]
- Jarockyte, G.; Daugelaite, E.; Stasys, M.; Statkute, U.; Poderys, V.; Tseng, T.C.; Hsu, S.H.; Karabanovas, V.; Rotomskis, R. Accumulation and Toxicity of Superparamagnetic Iron Oxide Nanoparticles in Cells and Experimental Animals. Int. J. Mol. Sci. 2016, 17, 1193. [Google Scholar] [CrossRef] [PubMed]
- Sousa de Almeida, M.; Susnik, E.; Drasler, B.; Taladriz-Blanco, P.; Petri-Fink, A.; Rothen-Rutishauser, B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem. Soc. Rev. 2021, 50, 5397–5434. [Google Scholar] [CrossRef] [PubMed]
- Kreuter, J.; Alyautdin, R.N.; Kharkevich, D.A.; Ivanov, A.A. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res. 1995, 674, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Kolter, M.; Ott, M.; Hauer, C.; Reimold, I.; Fricker, G. Nanotoxicity of poly(n-butylcyano-acrylate) nanoparticles at the blood–brain barrier, in human whole blood and in vivo. J. Control. Release 2015, 197, 65–179. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Jin, W.; Ma, J. Lung inflammation perturbation by engineered nanoparticles. Front. Bioeng. Biotechnol. 2023, 11, 1199230. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.N.; Yang, Y.; Xu, B.L.; Wang, S.H.; Li, B.; Ma, J.; Gao, J.; Zuo, Y.Y.; Liu, S. Mesoporous carbon nanomaterials induced pulmonary surfactant inhibition, cytotoxicity, inflammation and lung fibrosis. J. Environ. Sci. 2017, 62, 100–114. [Google Scholar] [CrossRef]
- Weiss, M.; Fan, J.H.; Claudel, M.; Lebeau, L.; Pons, F.; Ronzani, C. Combined in vitro and in vivo approaches to propose a putative adverse outcome pathway for acute lung inflammation induced by nanoparticles: A study on carbon dots. Nanomaterials 2021, 11, 180. [Google Scholar] [CrossRef]
- De Luna, L.V.; Loret, T.; Fordham, A.; Arshad, A.; Drummond, M.; Dodd, A.; Lozano, N.; Kostarelos, K.; Bussy, C. Lung recovery from DNA damage induced by graphene oxide is dependent on size, dose and inflammation profile. Part. Fibre Toxicol. 2022, 19, 62. [Google Scholar] [CrossRef]
- Ryman-Rasmussen, J.P.; Tewksbury, E.W.; Moss, O.R.; Cesta, M.F.; Wong, B.A.; Bonner, J.C. Inhaled multiwalled carbon nanotubes potentiate airway fibrosis in murine allergic asthma. Am. J. Respir. Cell. Mol. Biol. 2009, 40, 349–358. [Google Scholar] [CrossRef]
- Inoue, K.; Koike, E.; Yanagisawa, R.; Hirano, S.; Nishikawa, M.; Takano, H. Effects of multi-walled carbon nanotubes on a murine allergic airway inflammation model. Toxicol. Appl. Pharmacol. 2009, 237, 306–316. [Google Scholar] [CrossRef]
- Tutty, M.A.; Vella, G.; Vennemann, A.; Wiemann, M.; Prina-Mello, A. Evaluating nanobiomaterial-induced DNA strand breaks using the alkaline comet assay. Drug Deliv. Transl. Res. 2022, 12, 2243–2258. [Google Scholar] [CrossRef]
- Bozzuto, G.; D’Avenio, G.; Condello, M.; Sennato, S.; Battaglione, E.; Familiari, G.; Molinari, A.; Grigioni, M. Label-free cell based impedance measurements of ZnO nanoparticles-human lung cell interaction: A comparison with MTT, NR, Trypan blue and cloning efficiency assays. J. Nanobiotechnol. 2021, 19, 306. [Google Scholar] [CrossRef]
- Ilinskaya, A.N.; Dobrovolskaia, M.A. Nanoparticles and the blood coagulation system. Part II: Safety concerns. Nanomedicine 2013, 8, 969–981. [Google Scholar] [CrossRef]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A., III; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.S.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef]
- Utell, M.J.; Frampton, M.W.; Zareba, W.; Devlin, R.B.; Cascio, W.E. Cardiovascular effects associated with air pollution: Potential mechanisms and methods of testing. Inhal. Toxicol. 2002, 14, 1231–1247. [Google Scholar] [CrossRef]
- Radomski, A.; Jurasz, P.; Alonso-Escolano, D.; Drews, M.; Morandi, M.; Malinski, T.; Radomski, M.W. Nanoparticle-induced platelet aggregation and vascular thrombosis. Br. J. Pharmacol. 2005, 146, 882–893. [Google Scholar] [CrossRef]
- Nel, A.E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E.M.V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543–557. [Google Scholar] [CrossRef]
- Tenzer, S.; Docter, D.; Rosfa, S.; Wlodarski, A.; Kuharev, J.; Rekik, A.; Knauer, S.K.; Bantz, C.; Nawroth, T.; Bier, C.; et al. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: A comprehensive quantitative proteomic analysis. ACS Nano 2011, 5, 7155–7167. [Google Scholar] [CrossRef] [PubMed]
- Van der Zee, M.; de Vries, C.; Masa, M.; Morales, M.; Rayo, M.; Hegger, I. Regulatory aspects of a nanomaterial for imaging therapeutic cells. Drug Deliv. Transl. Res. 2023, 13, 2693–2703. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Huang, T.; Lee, P.; Easton, C.D.; Voelcker, N.H.; Heath, D.E.; O’Brien-Simpson, N.M.; O’Connor, A.J.; Thissen, H. One step antimicrobial coatings for medical device applications based on low fouling polymers containing selenium nanoparticles. Chem. Eng. J. 2023, 467, 143546. [Google Scholar] [CrossRef]
- Murugan, C.; Park, S. Cerium ferrite@molybdenum disulfide nanozyme for intracellular ROS generation and photothermal-based cancer therapy. J. Photochem. Photobiol. A Chem. 2023, 437, 114466. [Google Scholar] [CrossRef]
- Lee, G.; Choi, H.E.; Hong, S.H.; Choi, M.; Han, D.W.; Lee, J.; Kim, K.S.; Hahn, S.K. Upconversion nanomaterials and delivery systems for smart photonic medicines and healthcare devices. Adv. Drug Deliv. Rev. 2022, 188, 114419. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, N.; Erickson, B.; Murphy, B.B.; Richardson, A.G.; Robbins, G.; Apollo, N.V.; Mentzelopoulos, G.; Mathis, T.; Hantanasirisakul, K.; Bagga, P.; et al. MXene-infused bioelectronic interfaces for multiscale electrophysiology and stimulation. Sci. Transl. Med. 2021, 13, eabf8629. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zou, Q.; Qiao, Z.; Jang, Y.O.; Koo, B.; Kim, M.G.; Lee, H.J.; Kim, S.H.; Shin, Y. Facile Homobifunctional Imidoester Modification of Advanced Nanomaterials for Enhanced Antibiotic Synergistic Effect. ACS Appl. Mater. Interfaces 2021, 13, 40401–40414. [Google Scholar] [CrossRef] [PubMed]
- Melzer, J.E.; McLeod, E. Assembly of multicomponent structures from hundreds of micron-scale building blocks using optical tweezers. Microsyst. Nanoeng. 2021, 7, 45. [Google Scholar] [CrossRef]
- Darwish, M.S.A.; Kim, H.; Bui, M.P.; Le, T.-A.; Lee, H.; Ryu, C.; Lee, J.Y.; Yoon, J. The Heating Efficiency and Imaging Performance of Magnesium Iron Oxide@tetramethyl Ammonium Hydroxide Nanoparticles for Biomedical Applications. Nanomaterials 2021, 11, 1096. [Google Scholar] [CrossRef]
- Jesus, S.; Bernardi, N.; da Silva, J.; Colaço, M.; Panão Costa JFonte, P.; Borges, O. Unravelling the Immunotoxicity of Polycaprolactone Nanoparticles—Effects of Polymer Molecular Weight, Hydrolysis, and Blends. Chem. Res. Toxicol. 2020, 33, 2819–2833. [Google Scholar] [CrossRef]
- Sandri, G.; Aguzzi, C.; Rossi, S.; Bonferoni, M.C.; Bruni, G.; Boselli, C.; Cornaglia, A.I.; Riva, F.; Viseras, C.; Caramella, C.; et al. Halloysite and chitosan oligosaccharide nanocomposite for wound healing. Acta Biomater. 2017, 57, 216–224. [Google Scholar] [CrossRef] [PubMed]
- McCloskey, A.P.; Draper, E.R.; Gilmore, B.F.; Laverty, G. Ultrashort self-assembling Fmoc-peptide gelators for anti-infective biomaterial applications. J. Pept. Sci. 2017, 23, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Naik, K.; Srivastava, P.; Deshmukh, K.; Monsoor, M.S.; Kowshik, M. Nanomaterial-Based Approaches for Prevention of Biofilm-Associated Infections on Medical Devices and Implants. J. Nanosci. Nanotechnol. 2015, 15, 10108–10119. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.; Tran, P.A. Nanomaterial-Based Treatments for Medical Device-Associated Infections. ChemPhysChem 2012, 13, 2481–2494. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.K.; Kwok, C.T. Corrosion of nano-hydroxyapatite coating on titanium alloy fabricated by electrophoretic deposition. In Proceedings of the Medical Device Materials IV: Proceedings of the Materials and Processes for Medical Devices Conference, Palm Desert, CA, USA, 23–27 September 2007; pp. 213–218, ISBN 978-0-87170-861-8. [Google Scholar]
- Chen, Y.F. Nanofabrication by electron beam lithography and its applications: A review. Microelectron. Eng. 2015, 135, 57–72. [Google Scholar] [CrossRef]
- Du, J.; Hsieh, Y.L. Nanofibrous membranes from aqueous electrospinning of carboxymethyl chitosan. Nanotechnology 2008, 19, 125707. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.F.; Ding, B.; Sun, G.; Wang, M.R.; Yu, J.Y. Electro-spinning/netting: A strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Prog. Mater. Sci. 2013, 58, 1173–1243. [Google Scholar] [CrossRef] [PubMed]
- Fang, B.-Z.; Kim, J.-H.; Kim, M.-S.; Yu, J.-S. Ordered Hierarchical Nanostructured Carbon as a Highly Efficient Cathode Catalyst Support in Proton Exchange Membrane Fuel Cell. Chem. Mater. 2009, 21, 789–796. [Google Scholar] [CrossRef]
- Fang, B.; Kim, J.H.; Kim, M.S.; Yu, J.S. Hierarchical Nanostructured Carbons with Meso-Macroporosity: Design, Characterization, and Applications. Acc. Chem. Res. 2013, 46, 1397–1406. [Google Scholar] [CrossRef]
- Serbin, J.; Egbert, A.; Ostendorf, A.; Chichkov, B.N.; Houbertz, R.; Domann, G.; Schulz, J.; Cronauer, C.; Fröhlich, L.; Popall, M. Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics. Opt. Lett. 2003, 28, 301–303. [Google Scholar] [CrossRef]
- Tan, D.; Li, Y.; Qi, F.; Yang, H.; Gong, Q.; Dong, X.; Duan, X. Reduction in feature size of two-photon polymerization using SCR500. Appl. Phys. Lett. 2007, 90, 071106. [Google Scholar] [CrossRef]
- Wu, B.; Tang, Y.; Wang, K.; Zhou, X.; Xiang, L. Nanostructured Titanium Implant Surface Facilitating Osseointegration from Protein Adsorption to Osteogenesis: The Example of TiO2 NTAs. Int. J. Nanomed. 2022, 17, 1865–1879. [Google Scholar] [CrossRef] [PubMed]
- Rindelaub, J.D.; Baird, Z.; Lindner, B.A.; Strantz, A.A. Identifying extractable profiles from 3D printed medical devices. PLoS ONE 2019, 14, e0217137. [Google Scholar] [CrossRef] [PubMed]
- Zabaglo, M.; Sharman, T. Postoperative Wound Infection. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Scott, R.D., II. The Direct Medical Costs of Healthcare-Associated Infections in US Hospitals and the Benefits of Prevention; CDC: Atlanta, GA, USA, 2009. [Google Scholar]
- Maki, D.G.; Tambyah, P.A. Engineering out the risk for infection with urinary catheters. Emerg. Infect. Dis. 2001, 7, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.M.; Tran, H.; Booth, M.A.; Fox, K.E.; Nguyen, T.H.; Tran, N.; Tran, P.A. Nanomaterials for Treating Bacterial Biofilms on Implantable Medical Devices. Nanomaterials 2020, 10, 2253. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Zhang, P.; Kieft, T.L.; Ryan, S.J.; Baker, S.M.; Wiesmann, W.P.; Rogelj, S. Antibacterial action of a novel functionalized chitosan-arginine against Gram-negative bacteria. Acta Biomater. 2010, 6, 2562–2571. [Google Scholar] [CrossRef] [PubMed]
- Gordon, T.; Perlstein, B.; Houbara, O.; Felner, I.; Banin, E.; Margel, S. Properties of Zinc Ferrite Nanoparticles Due to PVP Mediation and Annealing at 500 °C. Colloids Surf. A 2010, 374, 1–8. [Google Scholar] [CrossRef]
- Elsner, J.J.; Zilberman, M. Antibiotic-eluting bioresorbable composite fibers for wound healing applications: Microstructure, drug delivery and mechanical properties. Acta Biomater. 2009, 5, 2872–2883. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Peng, C.; Luo, W.; Lv, M.; Li, X.; Li, D.; Huang, Q.; Fan, C. Graphene-Based Antibacterial Paper. ACS Nano 2010, 4, 4317–4323. [Google Scholar] [CrossRef]
- Huang, L.; Dai, T.; Xuan, Y.; Tegos, G.P.; Hamblin, M.R. Synergistic Combination of Chitosan Acetate with Nanoparticle Silver as a Topical Antimicrobial: Efficacy against Bacterial Burn Infections. Antimicrob. Agents Chemother. 2011, 55, 3432. [Google Scholar] [CrossRef]
- Wei, D.; Sun, W.; Qian, W.; Ye, Y.; Ma, X. The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr. Res. 2009, 344, 2375–2382. [Google Scholar] [CrossRef]
- Kowal, K.; Wysocka-Krl, K.; Kopaczynska, M.; Dworniczek, E.; Franiczek, R.; Wawrzynska, M.; Vargov, M.; Zahoran, M.; Rakovskı, E.; Kus, P.J. In situ photoexcitation of silver-doped titania nanopowders for activity against bacteria and yeasts. Colloid Interface Sci. 2011, 362, 50–57. [Google Scholar] [CrossRef]
- Antunes, J.C.; Pereira, C.L.; Teixeira, G.Q.; Silva, R.V.; Caldeira, J.; Grad, S.; Gonçalves, R.M.; Barbosa, M.A. Poly(γ-glutamic acid) and poly(γ-glutamic acid)-based nanocomplexes enhance type II collagen production in intervertebral disc. J. Mater. Sci. Mater. Med. 2017, 28, 6. [Google Scholar] [CrossRef]
- Teixeira, G.Q.; Leite Pereira, C.; Castro, F.; Ferreira, J.R.; Gomez-Lazaro, M.; Aguiar, P.; Barbosa, M.A.; Neidlinger-Wilke, C.; Goncalves, R.M. Anti-inflammatory chitosan/poly-γ-glutamic acid nanoparticles control inflammation while remodeling extracellular matrix in degenerated intervertebral disc. Acta Biomater. 2016, 42, 168–179. [Google Scholar] [CrossRef]
- Hsu, W.K.; Goldstein, C.L.; Shamji, M.F.; Cho, S.K.; Arnold, P.M.; Fehlings, M.G.; Mroz, T.E. Novel Osteobiologics and biomaterials in the treatment of spinal disorders. Neurosurgery 2017, 80, S100–S107. [Google Scholar] [CrossRef]
- Tran, P.A.; Sarin, L.; Hurt, R.H.; Webster, T.J. Differential effects of nanoselenium doping on healthy and cancerous osteoblasts in coculture on titanium. Int. J. Nanomed. 2010, 5, 351–358. [Google Scholar]
- Gusić, N.; Ivković, A.; VaFaye, J.; Vukasović, A.; Ivković, J.; Hudetz, D.; Janković, S. Nanobiotechnology and bone regeneration: A mini-review. Int. Orthop. 2014, 38, 1877–1884. [Google Scholar] [CrossRef]
- Serra, G.; Morais, L.; Elias, C.N.; Semenova, I.P.; Valiev, R.; Salimgareeva, G.; Pithon, M.; Lacerda, R. Nanostructured severe plastic deformation processed titanium for orthodontic mini-implants. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 4197–4202. [Google Scholar] [CrossRef]
- Puértolas, J.A.; Kurtz, S.M. Evaluation of carbon nanotubes and graphene as reinforcements for UHMWPE-based composites in arthroplastic applications: A review. J. Mech. Behav. Biomed. Mater. 2014, 39, 129–145. [Google Scholar] [CrossRef]
- Ajayan, P.M.; Schadler, L.S.; Braun, P.V. Nanocomposite Science and Technology; Wiley: New York, NY, USA, 2003; ISBN 978-3-527-30359-5. [Google Scholar]
- Du, M.; Zheng, Y. Modification of silica nanoparticles and their application in UDMA dental polymeric composites. Polym. Compos. 2007, 28, 198–207. [Google Scholar] [CrossRef]
- Waltimo, T.; Brunner, T.J.; Vollenweider, M.; Stark, W.J.; Zehnder, M. Antimicrobial Effect of Nanometric Bioactive Glass 45S5. J. Dent. Res. 2007, 86, 754–757. [Google Scholar] [CrossRef]
- Sauro, S.; Osorio, R.; Watson, T.F.; Toledano, M. Therapeutic effects of novel resin bonding systems containing bioactive glasses on mineral-depleted areas within the bonded-dentine interface. J. Mater. Sci. Mater. Med. 2012, 23, 1521–1532. [Google Scholar] [CrossRef]
- Moraes, R.R.; Garcia, J.W.; Barros, M.D.; Lewis, S.H.; Pfeifer, C.S.; Liu, J.; Stansbury, J.W. Control of polymerization shrinkage and stress in nanogel-modified monomer and composite materials. Dent. Mater. 2011, 27, 509–519. [Google Scholar] [CrossRef]
- Azami, M.; Sasan, J.; Mozafari, M.; Rabiee, M. Synthesis and solubility of calcium fluoride/hydroxyl-fluorapatite nanocrystals for dental applications. Ceram. Int. 2011, 37, 2007–2014. [Google Scholar] [CrossRef]
- Van Landuyt, K.L.; Hellack, B.; Van Meerbeek, B.; Peumans, M.; Hoet, P.; Wiemann, M.; Kuhlbusch, T.A.J.; Asbach, C. Nanoparticle release from dental composites. Acta Biomater. 2014, 10, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Quain, E.; Mathis, T.S.; Kurra, N.; Maleski, K.; Van Aken, K.L.; Alhabeb, M.; Alshareef, H.N.; Gogotsi, Y. Direct Writing of Additive-Free MXene-in-Water Ink for Electronics and Energy Storage. Adv. Mater. Technol. 2019, 4, 1800256. [Google Scholar] [CrossRef]
- Parveen, S.; Arjmand, F.; Tabassum, S. Clinical developments of antitumor polymertherapeutics. RSC Adv. 2019, 9, 24699–24721. [Google Scholar] [CrossRef]
- Avramović, N.; Mandić, B.; Savić-Radojević, A.; Simić, T. Polymeric Nanocarriers of Drug Delivery Systems in Cancer Therapy. Pharmaceutics 2020, 12, 298. [Google Scholar] [CrossRef]
- Guo, X.; Wang, L.; Wei, X.; Zhou, S. Polymer-Based Drug Delivery Systems for Cancer Treatment. J. Polym. Sci. A Polym. Chem. 2016, 54, 3525–3550. [Google Scholar] [CrossRef]
- Nocca, G.; D’Avenio, G.; Amalfitano, A.; Chronopoulou, L.; Mordente, A.; Palocci, C.; Grigioni, M. Controlled Release of 18-β-Glycyrrhetinic Acid from Core-Shell Nanoparticles: Effects on Cytotoxicity and Intracellular Concentration in HepG2 Cell Line. Materials 2021, 14, 3893. [Google Scholar] [CrossRef] [PubMed]
- ISO 14971:2019; Medical Devices—Application of Risk Management to Medical Devices. ISO: Geneva, Switzerland, 2019.
- Regulation (EU) 2017/746 of the European Parliament and of the Council of 5 April 2017 on In Vitro Diagnostic Medical Devices and Repealing Directive 98/79/EC and Commission Decision 2010/227/EU. Available online: https://eur-lex.europa.eu/eli/reg/2017/746/2023-03-20 (accessed on 15 January 2024).
- Press Room. Parliament Decides to Postpone New Requirements for Medical Devices. Available online: https://www.europarl.europa.eu/news/en/press-room/20200415IPR77113/parliament-decides-to-postpone-new-requirements-for-medical-devices (accessed on 22 January 2024).
- Regulation (EU) 2020/561 of the European Parliament and of the Council of 23 April 2020 Amending Regulation (EU) 2017/745 on Medical Devices, as Regards the Dates of Application of Certain of Its Provisions. Available online: https://eur-lex.europa.eu/eli/reg/2020/561/oj (accessed on 22 January 2024).
- European Union. Commission Recommendation of 18 October 2011 on the Definition of Nanomaterial (2011/696/EU). Off. J. Eur. Union 2011, L 275, 38. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32011H0696 (accessed on 22 January 2024).
- Single Market and Standards. Available online: https://ec.europa.eu/growth/single-market/ (accessed on 15 January 2024).
- European Union. Commission Implementing Decision (EU) 2020/437 of 24 March 2020 on the Harmonised Standards for Medical Devices Drafted in Support of Council Directive 93/42/EEC. Off. J. Eur. Union 2020, L 90 I, 1. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2020:090I:TOC (accessed on 15 January 2024).
- European Parliament. Commission Implementing Decision of 15.5.2020 on a Standardisation Request to the European Committee for Standardization and the European Committee for Electrotechnical Standardization as Regards Medical Devices in Support of Regulation (EU) 2017/745 of the European Parliament and of the Council and In Vitro Diagnostic Medical Devices in Support of Regulation (EU) 2017/746 of the European Parliament and of the Council; European Parliament: Brussels, Belgium, 2020. [Google Scholar]
- Single Market and Standards. Available online: https://single-market-economy.ec.europa.eu/single-market/european-standards/harmonised-standards/medical-devices_en (accessed on 15 January 2024).
- IMDRF (International Medical Device Regulators Forum) Standards Working Group. Optimizing Standards for Regulatory Use; Available online: https://www.imdrf.org/documents/optimizing-standards-regulatory-use (accessed on 15 January 2024).
- ISO/TR 10993-22:2017; Biological Evaluation of Medical Devices—Part 22: Guidance on Nanomaterials. ISO: Geneva, Switzerland, 2017.
- ISO 10993-5:2009; Biological Evaluation of Medical Devices. Part 5: Tests for In Vitro Cytotoxicity. ISO: Geneva, Switzerland, 2009.
- Lupu, A.R.; Popescu, T. The noncellular reduction of MTT tetrazolium salt by TiO2 nanoparticles and its implications for cytotoxicity assay. Toxicol. Vitr. 2013, 27, 1445–1450. [Google Scholar] [CrossRef] [PubMed]
- Wörle-Knirsch, J.M.; Pulskamp, K.; Krug, H.F. Oops They Did It Again! Carbon Nanotubes Hoax Scientists in Viability Assays. Nano Lett. 2006, 6, 1261–1268. [Google Scholar] [CrossRef] [PubMed]
Authors | DOI | Publication Year | Reference |
---|---|---|---|
van der Zee, M. et al. | 10.1007/s13346-023-01359-y | 2023 | [25] |
Li, F.Y. et al. | 10.1016/j.cej.2023.143546 | 2023 | [26] |
Murugan, C. et al. | 10.1016/j.jphotochem.2022.114466 | 2023 | [27] |
Lee, G. et al. | 10.1016/j.addr.2022.114419 | 2022 | [28] |
Tutty, M.A. et al. | 10.1007/s13346-022-01178-7 | 2022 | [17] |
Driscoll, N. et al. | 10.1126/scitranslmed.abf8629 | 2021 | [29] |
Liu, H.F. et al. | 10.1021/acsami.1c12352 | 2021 | [30] |
Melzer, J.E. et al. | 10.1038/s41378-021-00272-z | 2021 | [31] |
Darwish, M.S.A. et al. | 10.3390/nano11051096 | 2021 | [32] |
Jesus, S. et al. | 10.1021/acs.chemrestox.0c00208 | 2020 | [33] |
Sandri, G. et al. | 10.1016/j.actbio.2017.05.032 | 2017 | [34] |
McCloskey, A.P. et al. | 10.1002/psc.2951 | 2017 | [35] |
Naik, K. et al. | 10.1166/jnn.2015.11688 | 2015 | [36] |
Bhattacharjee, S. et al. | 10.2217/NNM.15.69 | 2015 | [5] |
Tran, N. et al. | 10.1002/cphc.201200091 | 2012 | [37] |
Wong, P.K. et al. | 10.1361/cp2007mpmd213 | 2008 | [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Avenio, G.; Daniele, C.; Grigioni, M. Nanostructured Medical Devices: Regulatory Perspective and Current Applications. Materials 2024, 17, 1787. https://doi.org/10.3390/ma17081787
D’Avenio G, Daniele C, Grigioni M. Nanostructured Medical Devices: Regulatory Perspective and Current Applications. Materials. 2024; 17(8):1787. https://doi.org/10.3390/ma17081787
Chicago/Turabian StyleD’Avenio, Giuseppe, Carla Daniele, and Mauro Grigioni. 2024. "Nanostructured Medical Devices: Regulatory Perspective and Current Applications" Materials 17, no. 8: 1787. https://doi.org/10.3390/ma17081787
APA StyleD’Avenio, G., Daniele, C., & Grigioni, M. (2024). Nanostructured Medical Devices: Regulatory Perspective and Current Applications. Materials, 17(8), 1787. https://doi.org/10.3390/ma17081787