Bentonite in Korea: A Resource and Research Focus for Biomedical and Cosmetic Industries
Abstract
:1. Introduction
2. Chemical Nature of Bentonite
3. Bentonite Applications in Bio-Industries and Adjuvant Properties in Biomedicine
- -
- As a suspending agent: It keeps insoluble particles suspended in liquid formulations. Biophammer Co. in South Korea developed a bentonite–sorafenib complex that improved the solubility of an oral anticancer drug, sorafenib. The sorafenib molecules were encapsulated in the molecular state within the bentonite structure. Biobetters are aiming to develop an alternative drug delivery system (DDS) with bentonite [33].
- -
- As a disintegrant: Bentonite can be used as a disintegrant to help break down a tablet or capsule and release the active ingredient [34]. The gel-like structure of bentonite allows it to retain drugs and vaccines in a controlled manner, releasing them gradually over time and improving their bioavailability. It is possible to develop a release-type formulation that enables the controlled release of the drug [35]. By adsorbing the drug to bentonite, the sustained release of the drug and long-term drug effects can be achieved. In one particular study on bentonite, most of the water-soluble drugs showed significantly higher adsorption rates over acidic to neutral hydrogen ion concentrations and significantly lower release rates than existing drugs in dissolution tests. With these features, it is possible to develop sustained-release formulations, for example, metformin with bentonite [36]. In addition to its drug delivery properties, bentonite has also been shown to enhance the immune response. Sodium bentonite was shown to improve the immunity of stinging catfish against Aeromonas hydrophila when it was included in their diet as a supplement/feed additive [37].
- -
- As a thickener: Bentonite can be used as a thickener in ointments, creams, and lotions to give them a smooth, spreadable texture [38].
- -
- As a clarifying agent: Bentonite can be used as a clarifying agent in the production of liquids such as syrups, suspensions, and emulsions to remove impurities and improve clarity [39].
3.1. Antimicrobial Activity of Bentonite
3.2. Side Effects and Adverse Effects
4. Bentonite Is a Popular Ingredient in the Cosmetics Industry
5. Source of Bentonite in South Korea
6. Bentonite Research in South Korea
7. Future Research Directions Regarding Bentonite in Biomedical and Cosmetics Industries
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Christidis, G.E.; Huff, W.D. Geological Aspects and Genesis of Bentonites. Elements 2009, 5, 93–98. [Google Scholar] [CrossRef]
- Bell, K. McGraw-Hill Encyclopedia of the Geological Sciences, 2nd ed.; Parker, S., Ed.; McGraw-Hill: New York, NY, USA, 1988; Volume 335, p. 309. [Google Scholar]
- Odom, I.E. Smectite clay minerals: Properties and uses. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1984, 311, 391–409. [Google Scholar]
- Eisenhour, D.D.; Brown, R.K. Bentonite and Its Impact on Modern Life. Elements 2009, 5, 83–88. [Google Scholar] [CrossRef]
- Mi, J.Z.; Gregorich, E.G.; Xu, S.T.; McLaughlin, N.B.; Ma, B.; Liu, J.H. Changes in soil biochemical properties following application of bentonite as a soil amendment. Eur. J. Soil Biol. 2021, 102, 103251. [Google Scholar] [CrossRef]
- Soliemanzadeh, A.; Fekri, M. The application of green tea extract to prepare bentonite-supported nanoscale zero-valent iron and its performance on removal of Cr(VI): Effect of relative parameters and soil experiments. Microporous Mesoporous Mater. 2017, 239, 60–69. [Google Scholar] [CrossRef]
- Gens, A.; Guimaraes, L.D.N.; Garcia-Molina, A.; Alonso, E.E. Factors controlling rock–clay buffer interaction in a radioactive waste repository. J. Eng. Geol. 2002, 64, 297–308. [Google Scholar] [CrossRef]
- Dardir, F.M.; Mohamed, A.S.; Abukhadra, M.R.; Ahmed, E.A.; Soliman, M.F. Cosmetic and pharmaceutical qualifications of Egyptian bentonite and its suitability as drug carrier for Praziquantel drug. Eur. J. Pharm. Sci. 2018, 115, 320–329. [Google Scholar] [CrossRef]
- Park, J.H.; Shin, H.J.; Kim, M.H.; Kim, J.S.; Kang, N.; Lee, J.Y.; Kim, K.T.; Lee, J.I.; Kim, D.D. Application of montmorillonite in bentonite as a pharmaceutical excipient in drug delivery systems. J. Pharm. Investig. 2016, 46, 363–375. [Google Scholar] [CrossRef]
- Gamoudi, S.; Srasra, E. Characterization of Tunisian clay suitable for pharmaceutical and cosmetic applications. Appl. Clay Sci. 2017, 146, 162–166. [Google Scholar] [CrossRef]
- Viseras, C.; Sánchez-Espejo, R.; Palumbo, R.; Liccardi, N.; García-Villén, F.; Borrego-Sánchez, A.; Massaro, M.; Riela, S.; López-Galindo, A. Clays in cosmetics and personal-care products. Clays Clay Miner. 2021, 69, 561–575. [Google Scholar] [CrossRef]
- Williams, L.B.; Haydel, S.E.; Ferrell, R.E., Jr. Bentonite, bandaids, and borborygmi. Elements 2009, 5, 99–104. [Google Scholar] [CrossRef]
- Damato, A.; Vianello, F.; Novelli, E.; Balzan, S.; Gianesella, M.; Giaretta, E.; Gabai, G. Comprehensive review on the interactions of clay minerals with animal physiology and production. Front. Vet. Sci. 2022, 9, 889612. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Jang, K.B.; Jalukar, S.; Du, X.; Kim, S.W. Efficacy of Feed Additive Containing Bentonite and Enzymatically Hydrolyzed Yeast on Intestinal Health and Growth of Newly Weaned Pigs under Chronic Dietary Challenges of Fumonisin and Aflatoxin. Toxins 2023, 15, 433. [Google Scholar] [CrossRef] [PubMed]
- Diamond, J.M. Evolutionary biology. Dirty eating for healthy living. Nature 1999, 400, 120–121. [Google Scholar] [CrossRef] [PubMed]
- Kreulen, D.A. Lick Use by Large Herbivores—A Review of Benefits and Banes of Soil Consumption. Mamm. Rev. 1985, 15, 107–123. [Google Scholar] [CrossRef]
- Kim, S.O.; Wang, S. Behavior of Heavy Metals Studies on the Hydrothermal Alteration Characteristics of Bentonite; Use as Medicinal Mineral. Econ. Environ. Geol. 2023, 56, 229–238. [Google Scholar] [CrossRef]
- Damrau, F. The value of bentonite for diarrhea. Med. Ann. Dist. Columbia 1961, 30, 326–328. [Google Scholar]
- Kim, G.J.; Kim, D.; Lee, K.J.; Kim, D.; Chung, K.H.; Choi, J.W.; An, J.H. Effect of Nano-Montmorillonite on Osteoblast Differentiation, Mineral Density, and Osteoclast Differentiation in Bone Formation. Nanomaterials 2020, 10, 230. [Google Scholar] [CrossRef]
- Roh, K.-M. Technical Development for Practicalizing Medical Clays; M. o. S. a. ICT: 2019. Available online: https://www.law.go.kr/%ED%96%89%EC%A0%95%EA%B7%9C%EC%B9%99/%EB%8C%80%ED%95%9C%EB%AF%BC%EA%B5%AD%EC%95%BD%EC%A0%84 (accessed on 21 April 2024).
- Jin, S.E.; Lee, J.I.; Hwang, S.J. Case Study of Pharmaceutical Ingredients Derived from Clay Minerals. Econ. Environ. Geol. 2015, 48, 221–229. [Google Scholar] [CrossRef]
- Pohl, P.; Bielawska-Pohl, A.; Dzimitrowicz, A.; Jamroz, P.; Welna, M. Impact and practicability of recently introduced requirements on elemental impurities. TrAC Trends Anal. Chem. 2018, 101, 43–55. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Taghizadeh, A.; Taghizadeh, M.; Baglou, M.A.S. Surface modified montmorillonite with cationic surfactants: Preparation, characterization, and dye adsorption from aqueous solution. J. Environ. Chem. Eng. 2019, 7, 103243. [Google Scholar] [CrossRef]
- Zakaria, R.M.; Hassan, I.; El-Abd, M.Z.; El-Tawil, Y.A. Lactic acid removal from wastewater by using different types of activated clay. In Proceedings of the Thirteenth International Water Technology Conference (IWTC), Hurghada, Egypt, 12–15 March 2009; Volume 13, pp. 403–416. [Google Scholar]
- Rethinasabapathy, M.; Kang, S.M.; Lee, I.; Lee, G.W.; Hwang, S.K.; Roh, C.; Huh, Y.S. Layer-Structured POSS-Modified Fe-Aminoclay/Carboxymethyl Cellulose Composite as a Superior Adsorbent for the Removal of Radioactive Cesium and Cationic Dyes. Ind. Eng. Chem. Res. 2018, 57, 13731–13741. [Google Scholar] [CrossRef]
- Nadziakiewicza, M.; Kehoe, S.; Micek, P. Physico-Chemical Properties of Clay Minerals and Their Use as a Health Promoting Feed Additive. Animals 2019, 9, 714. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A.J.; FinkGremmels, J.; Hernandez, E. Prevention of toxic effects of mycotoxins by means of nonnutritive adsorbent compounds. J. Food Prot. 1996, 59, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Gomez, M.D.M.; Brandt, R.; Jakubowski, N.; Andersson, J.T. Changes of the metal composition in German white wines through the winemaking process. A study of 63 elements by inductively coupled plasma-mass spectrometry. J. Agric. Food Chem. 2004, 52, 2953–2961. [Google Scholar]
- Liu, J.; Zhao, L.; Liu, Q.; Li, J.; Qiao, Z.; Sun, P.; Yang, Y. A critical review on soil washing during soil remediation for heavy metals and organic pollutants. Int. J. Environ. Sci. Technol. 2022, 19, 601–624. [Google Scholar] [CrossRef]
- Singh, G.; Ramadass, K.; Sooriyakumar, P.; Hettithanthri, O.; Vithange, M.; Bolan, N.; Tavakkoli, E.; Van Zwieten, L.; Vinu, A. Nanoporous materials for pesticide formulation and delivery in the agricultural sector. J. Control. Release 2022, 343, 187–206. [Google Scholar] [CrossRef]
- Carretero, M.I.; Pozo, M. Clay and non-clay minerals in the pharmaceutical and cosmetic industries Part II. Active ingredients. Appl. Clay Sci. 2010, 47, 171–181. [Google Scholar] [CrossRef]
- Kalasz, H.; Antal, I. Drug Excipients. Curr. Med. Chem. 2006, 13, 2535–2563. [Google Scholar] [CrossRef]
- Viseras, C.; Cerezo, P.; Sanchez, R.; Salcedo, I.; Aguzzi, C. Current challenges in clay minerals for drug delivery. Appl. Clay Sci. 2010, 48, 291–295. [Google Scholar] [CrossRef]
- Carretero, M.I.; Pozo, M. Clay and non-clay minerals in the pharmaceutical industry Part I. Excipients and medical applications. Appl. Clay Sci. 2009, 46, 73–80. [Google Scholar] [CrossRef]
- Bonina, F.P.; Giannossi, M.L.; Medici, L.; Puglia, C.; Summa, V.; Tateo, F. Adsorption of salicylic acid on bentonite and kaolin and release experiments. Appl. Clay Sci. 2007, 36, 77–85. [Google Scholar] [CrossRef]
- Alkrad, J.A.; Abu Shmeis, R.; Alshwabkeh, I.; Abazid, H.; Mohammad, M.A. Investigation of the potential application of sodium bentonite as an excipient in formulation of sustained release tablets. Asian J. Pharm. 2017, 12, 259–265. [Google Scholar] [CrossRef]
- Jawahar, S.; Nafar, A.; Paray, B.A.; Al-Sadoon, M.K.; Balasundaram, C.; Harikrishnan, R. Bentonite clay supplemented diet on immunity in stinging catfish, Heteropneustes fossilis against Aeromonas hydrophila. Fish Shellfish Immunol. 2018, 75, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Viseras, C.; Aguzzi, C.; Cerezo, P.; Lopez-Galindo, A. Uses of clay minerals in semisolid health care and therapeutic products. Appl. Clay Sci. 2007, 36, 37–50. [Google Scholar] [CrossRef]
- Gora, W.; Gora, P.; Jaszczyszyn, K. Perspectives of natural bentonite application in industrial wastewater treatment. Rocz. Ochr. Srodowiska 2016, 18, 940–951. [Google Scholar]
- Suman, J.D. Current understanding of nasal morphology and physiology as a drug delivery target. Drug Deliv. Transl. Res. 2013, 3, 4–15. [Google Scholar] [CrossRef]
- Fais, F.; Juskeviciene, R.; Francardo, V.; Mateos, S.; Guyard, M.; Viollet, C.; Constant, S.; Borelli, M.; Hohenfeld, I.P. Drug-free nasal spray as a barrier against SARS-CoV-2 and its delta variant: In vitro study of safety and efficacy in human nasal airway epithelia. Int. J. Mol. Sci. 2022, 23, 4062. [Google Scholar] [CrossRef] [PubMed]
- Cabuk, M.; Alan, Y.; Unal, H.I. Enhanced electrokinetic properties and antimicrobial activities of biodegradable chitosan/organo-bentonite composites. Carbohydr. Polym. 2017, 161, 71–81. [Google Scholar] [CrossRef]
- Pouraboulghasem, H.; Ghorbanpour, M.; Shayegh, R.; Lotfiman, S. Synthesis, characterization and antimicrobial activity of alkaline ion-exchanged ZnO/bentonite nanocomposites. J. Cent. South Univ. 2016, 23, 787–792. [Google Scholar] [CrossRef]
- Luukkonen, T.; Bhuyan, M.; Hokajarvi, A.M.; Pitkanen, T.; Miettinen, I.T. Water disinfection with geopolymer-bentonite composite foam containing silver nanoparticles. Mater. Lett. 2022, 311, 131636. [Google Scholar] [CrossRef]
- Meschke, J.S.; Sobsey, M.D. Comparative adsorption of Norwalk virus, poliovirus 1 and F+ RNA coliphage MS2 to soils suspended in treated wastewater. Water Sci. Technol. 1998, 38, 187–189. [Google Scholar] [CrossRef]
- Williams, L.B.; Haydel, S.E. Evaluation of the medicinal use of clay minerals as antibacterial agents. Int. Geol. Rev. 2010, 52, 745–770. [Google Scholar] [CrossRef]
- Mokhtari-Hosseini, Z.B.; Hatamian-Zarmi, A.; Mahdizadeh, S.; Ebrahimi-Hosseinzadeh, B.; Alvandi, H.; Kianirad, S. Environmentally-Friendly Synthesis of Ag Nanoparticles by Fusarium sporotrichioides for the Production of PVA/Bentonite/Ag Composite Nanofibers. J. Polym. Environ. 2022, 30, 4146–4156. [Google Scholar] [CrossRef]
- Motshekga, S.C.; Ray, S.S.; Onyango, M.S.; Momba, M.N.B. Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay. J. Hazard. Mater. 2013, 262, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.F.; Oliveira, C.M.; Tachinski, C.T.; Fernandes, M.P.; Pich, C.T.; Angioletto, E.; Riella, H.G.; Fiori, M.A. Bactericidal properties of bentonite treated with Ag plus and acid. Int. J. Miner. Process. 2011, 100, 51–53. [Google Scholar] [CrossRef]
- Schiffenbauer, M.; Stotzky, G. Adsorption of coliphages T1 and T7 to clay minerals. Appl. Environ. Microbiol. 1982, 43, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Haydel, S.E.; Remenih, C.M.; Williams, L.B. Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens. J. Antimicrob. Chemother. 2008, 61, 353–361. [Google Scholar] [CrossRef]
- Plachá, D.; Rosenbergová, K.; Slabotínský, J.; Kutláková, K.M.; Študentová, S.; Martynková, G.S. Modified clay minerals efficiency against chemical and biological warfare agents for civil human protection. J. Hazard. Mater. 2014, 271, 65–72. [Google Scholar] [CrossRef]
- Shameli, K.; Ahmad, M.B.; Zargar, M.; Yunus, W.M.Z.W.; Ibrahim, N.A.; Shabanzadeh, P.; Moghaddam, M.G. Synthesis and characterization of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity. Int. J. Nanomed. 2011, 6, 271–284. [Google Scholar] [CrossRef]
- Khan, M.M.; Bhatti, Q.A.; Akhlaq, M.; Ishaq, M.; Ali, D.; Jalil, A.; Asghar, J.; Alarifi, S.; Elaissari, A. Assessment of Antimicrobial Potential of Plagiochasma rupestre Coupled with Healing Clay Bentonite and AGNPS. BioMed Res. Int. 2022, 2022, 4264466. [Google Scholar] [CrossRef] [PubMed]
- Maxim, L.D.; Niebo, R.; McConnell, E.E. Bentonite toxicology and epidemiology—A review. Inhal. Toxicol. 2016, 28, 591–617. [Google Scholar] [CrossRef] [PubMed]
- Bennett, A.; Stryjewski, G. Severe hypokalemia caused by oral and rectal administration of bentonite in a pediatric patient. Pediatr. Emerg. Care 2006, 22, 500–502. [Google Scholar] [CrossRef] [PubMed]
- Horwell, C.J.; Baxter, P.J. The respiratory health hazards of volcanic ash: A review for volcanic risk mitigation. Bull. Volcanol. 2006, 69, 1–24. [Google Scholar] [CrossRef]
- Maxim, L.D.; Niebo, R.; McConnell, E.E. Perlite toxicology and epidemiology—A review. Inhal. Toxicol. 2014, 26, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Bangar, S.P.; Ilyas, R.A.; Chowdhury, A.; Navaf, M.; Sunooj, K.V.; Siroha, A.K. Bentonite clay as a nanofiller for food packaging applications. Trends Food Sci. Technol. 2023, 2023, 104242. [Google Scholar] [CrossRef]
- Sharma, A.K.; Schmidt, B.; Frandsen, H.; Jacobsen, N.R.; Larsen, E.H.; Binderup, M.L. Genotoxicity of unmodified and organo-modified montmorillonite. Mutat. Res. 2010, 700, 18–25. [Google Scholar] [CrossRef]
- Li, X.X.; Zhang, M.B.; Lu, Y.Z.; Yan, S.X.; Chen, Q.; Xing, M.L.; Zou, H.; Chen, S.J.; and He, J.L. Genotoxicity of organic bentonite particles in vitro. Chinese Journal of Industrial Hygiene and Occupational Diseases. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2010, 28, 914–917. (In Chinese) [Google Scholar]
- Geh, S.; Shi, T.; Shokouhi, B.; Schins, R.P.; Armbruster, L.; Rettenmeier, A.W.; Dopp, E. Genotoxic potential of respirable bentonite particles with different quartz contents and chemical modifications in human lung fibroblasts. Inhal. Toxicol. 2006, 18, 405–412. [Google Scholar] [CrossRef]
- Bazbouz, M.B.; Russell, S.J. Cellulose acetate/sodium-activated natural bentonite clay nanofibres produced by free surface electrospinning. J. Mater. Sci. 2018, 53, 10891–10909. [Google Scholar] [CrossRef]
- Timothy, G.R.A.Y.; Cziryak, P.; Kljuic, A. Mineral Sunscreen Composition and Process for Protecting Skin from Photodamage and Aging. U.S. Patent 9,034,302, 19 May 2015. [Google Scholar]
- Babahoum, N.; Ould Hamou, M. Characterization and purification of Algerian natural bentonite for pharmaceutical and cosmetic applications. BMC Chem. 2021, 15, 50. [Google Scholar] [CrossRef] [PubMed]
- Bae, K.B.; Choi, B.H.; Jang, Y.J.; Kim, D.Y.; Lee, E.J. Cosmetic Composition for Preventing or Improving Skin Anti-Aging Containing Bentonite Extract for Increasing Telomerase Activity. (K. R. Patent No. 102228930B1); Korean Intellectual Property Office: Daejeon, Republic of Korea, 2021. [Google Scholar]
- Moraes, C.A.P.; Vieira, A.R. Nanomaterials for lip and nail cares applications. In Nanocosmetics; Elsevier: Amsterdam, The Netherlands, 2020; pp. 375–389. [Google Scholar]
- Grigale-Soročina, Z.; Birks, I.; Kalniņš, M. Processing Technology Development for Organic Clay Suspension System. Solid State Phenom. 2017, 267, 109–113. [Google Scholar] [CrossRef]
- Greenwall, L.H.; Greenwall-Cohen, J.; Wilson, N.H. Charcoal-containing dentifrices. Br. Dent. J. 2019, 226, 697–700. [Google Scholar] [CrossRef]
- Lee, J.H.; Choi, G.; Oh, Y.J.; Park, J.W.; Choy, Y.B.; Park, M.C.; Choy, J.H. A nanohybrid system for taste masking of sildenafil. Int. J. Nanomed. 2012, 7, 1635–1649. [Google Scholar]
- Nguyen, J.K.; Masub, N.; Jagdeo, J. Bioactive ingredients in Korean cosmeceuticals: Trends and research evidence. Cosmet. Dermatol. 2020, 19, 1555–1569. [Google Scholar] [CrossRef]
- Gosavi, D.S.; Akarte, A.M.; Chaudhari, P.M.; Wagh, K.S.; Patil, P.H. Mouth dissolving films: A review. World J. Pharm. Res. 2021, 10, 187–209. [Google Scholar]
- Kim, M.; Lee, S.; Cheon, E.; Kim, M.; Yoon, S. Thermochemical changes on swelling pressure of compacted bentonite. Ann. Nucl. Energy 2021, 151, 107882. [Google Scholar] [CrossRef]
- Gray, M.N.; Cheung, S.C.H.; Dixon, D.A. The Influence of Sand Content on Swelling Pressures and Structure Developed in Statically Compacted Na-Bentonite (No. AECL--7825); Atomic Energy of Canada Ltd.: Chalk River, ON, Canada, 1984. [Google Scholar]
- Villar, M.V.; Rivas, P. Hydraulic properties of montmorillonite-quartz and saponite-quartz mixtures. Appl. Clay Sci. 1994, 9, 1–9. [Google Scholar] [CrossRef]
- Hong, S.; Kim, J.; Um, W. Surface Modification of Bentonite for the Improvement of Radionuclide Sorption. J. Nucl. Fuel Cycle Waste Technol. 2022, 20, 1–12. [Google Scholar] [CrossRef]
- Park, S.S.; Doan, N.P.; Jeong, S.W. Numerical simulation of water content dependent undrained shear strength of clays. Mar. Georesour. Geotechnol. 2020, 38, 621–632. [Google Scholar] [CrossRef]
- Kong, M.; Lee, M.; Kim, G.Y.; Jang, J.; Kim, J.S. Characterization of Compacted Ca- and Na-Bentonite with Copper Corrosion Products in the KAERI Underground Research Tunnel. Minerals 2023, 13, 898. [Google Scholar] [CrossRef]
- Kim, C.; Kim, J.H.; Chwae, U. Geophysical Investigations of Quaternary Fault in the Southeastern Coast of Korean Peninsula. In Proceedings of the 8th SEGJ International Symposium, Kyoto, Japan, 26–28 November 2006; Society of Exploration Geophysicists of Japan: Tokyo, Japan, 2006; pp. 1–6. [Google Scholar]
- Fiorentin, L.; Vieira, N.D.; Barioni, W., Jr.; Cruz, C. Detection and in vitro antibiotic sensitivity of salmonella spp. isolated from healthy and diarrheic piglets in southern Brazil. Pesqui Vet. Bras. 2005, 25, 135–140. [Google Scholar]
- Koh, S.M.; Song, M.S. Mineralogy and physicochemistry of smectites saturated with inorganic and organic cations. Clay Sci. 2008, 13, 167–180. [Google Scholar]
- Lusiastuti, A.M.; Tabbu, C.R.; Kusdiyantini, E.; Sediawan, W.B. Utilization of clay-iron nanoparticle composites in combination with biosurfactants as antibacterial agents against Salmonella Typhimurium. Molecules 2019, 24, 4435. [Google Scholar]
- Littman, E.; Winningham, N.; Carson, T.B.; Hidalgo, I.M. Black Seed Oil, Bentonite Clay, and Probiotics: A Comprehensive Holistic Cure for Clostridium difficile Infection in a 2-Year-Old Female Child. Case Rep. Infect. Dis. 2022, 2022, 2002488. [Google Scholar] [CrossRef]
- Kim, J.; Hlaing, S.P.; Lee, J.; Saparbayeva, A.; Kim, S.; Hwang, D.S.; Lee, E.H.; Yoon, I.S.; Yun, H.; Kim, M.S.; et al. Exfoliated bentonite/alginate nanocomposite hydrogel enhances intestinal delivery of probiotics by resistance to gastric pH and on-demand disintegration. Carbohydr. Polym. 2021, 272, 118462. [Google Scholar] [CrossRef] [PubMed]
- Moosavi, M. Bentonite clay as a natural remedy: A brief review. Iran. J. Public Health 2017, 46, 1176. [Google Scholar]
- Behroozian, S.; Svensson, S.L.; Davies, J. Kisameet clay exhibits potent antibacterial activity against the ESKAPE pathogens. MBio 2016, 7, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Sturino, J.M.; Pokusaeva, K.; Carpenter, R. Effective sequestration of Clostridium difficile protein toxins by calcium aluminosilicate. Antimicrob. Agents Chemother. 2015, 59, 7178–7183. [Google Scholar] [CrossRef]
- Gilbert, B.; Lienhardt, A.; Palomera, S.; Barberis, L.; Borreda, D. The efficacy of smectite in acute infantile diarrhea, compared to a placebo and loperamide. Ann. Pediatr. 1991, 38, 633–636. [Google Scholar]
- Pérez-Gaxiola, G.; Cuello-García, C.A.; Florez, I.D.; Pérez-Pico, V.M. Smectite for acute infectious diarrhoea in children. Cochrane Database Syst. Rev. 2018, 4, CD011526. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Tadikonda, B.V. Bentonite clay: A potential natural sanitizer for preventing neurological disorders. ACS Chem. Neurosci. 2020, 11, 3188–3190. [Google Scholar] [CrossRef] [PubMed]
- Hernández, D.; Montalvo, A.; Pérez, I.; Charnay, C.; Sánchez-Espejo, R.; Cerezo, P.; Viseras, C.; Riela, S.; Cinà, G.; Rivera, A. Antioxidant Efficacy and “In Vivo” Safety of a Bentonite/Vitamin C Hybrid. Pharmaceutics 2023, 15, 1171. [Google Scholar] [CrossRef] [PubMed]
- Rudayni, H.A.; Shemy, M.H.; Aladwani, M.; Alneghery, L.M.; Abu-Taweel, G.M.; Allam, A.A.; Abukhadra, M.R.; Bellucci, S. Synthesis and Biological Activity Evaluations of Green ZnO-Decorated Acid-Activated Bentonite-Mediated Curcumin Extract (ZnO@ CU/BE) as Antioxidant and Antidiabetic Agents. J. Funct. Biomater. 2023, 14, 198. [Google Scholar] [CrossRef]
- da Silva Favero, J.; dos Santos, V.; Weiss-Angeli, V.; Gomes, L.B.; Veras, D.G.; Dani, N.; Mexias, A.S.; Bergmann, C.P. Evaluation and characterization of Melo Bentonite clay for cosmetic applications. Appl. Clay Sci. 2019, 175, 40–46. [Google Scholar] [CrossRef]
Company | Reagent | Usages | Function | Reference |
---|---|---|---|---|
L’Oreal | Face masks | Skin care products | To help absorb excess oil and impurities from the skin | [11] |
Revlon | Nanocosmetics | Lipstick and Nail polish products | Have unique rheological properties, ensure improved application on the skin, dry quickly, enhance adherence, and are easy to remove | [67] |
Burt’s Bees | Detoxifying Clay Mask | Skin care products | To help draw out impurities and purify the skin | [68] |
Colgate-Palmolive | Toothpaste | Oral care products | To help prevent plaque and tartar buildup on teeth | [69] |
Pfizer | Tablets | Drug formulations | As an excipient, helps to bind the active ingredients and provide a smooth tablet surface | [70] |
Company | Reagent | Usages | Function | Reference |
---|---|---|---|---|
Amorepacific | Cosmetics | Skin care products: clay mask | To help absorb impurities and control sebum | [11] |
Innisfree | Cosmetics | Skin care products: volcanic clay mask | To help draw out impurities and excess oil from the skin | [71] |
LG Household & Health Care | Toothpaste and cosmetics | Toothpaste, rip rouge | To help remove plaque | [11] |
Kwangdong Pharmaceutical | Pharmaceuticals | Nanohybrid coated with acid-soluble polymer | To enhance both taste masking and the rapid drug delivery | [72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rana, M.S.; Kim, S. Bentonite in Korea: A Resource and Research Focus for Biomedical and Cosmetic Industries. Materials 2024, 17, 1982. https://doi.org/10.3390/ma17091982
Rana MS, Kim S. Bentonite in Korea: A Resource and Research Focus for Biomedical and Cosmetic Industries. Materials. 2024; 17(9):1982. https://doi.org/10.3390/ma17091982
Chicago/Turabian StyleRana, Md Shohel, and Shukho Kim. 2024. "Bentonite in Korea: A Resource and Research Focus for Biomedical and Cosmetic Industries" Materials 17, no. 9: 1982. https://doi.org/10.3390/ma17091982
APA StyleRana, M. S., & Kim, S. (2024). Bentonite in Korea: A Resource and Research Focus for Biomedical and Cosmetic Industries. Materials, 17(9), 1982. https://doi.org/10.3390/ma17091982