Screw Coating as a Solution to Solve Screw Loosening Complications: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Size Calculation and Preparation
2.2. Measurement of the Screw Preload and RTV
2.3. Cyclic Loading (CL) Tests
2.4. Micro-CT Evaluation
2.5. SEM Evaluation
2.6. Statistical Analysis
3. Results
3.1. Results for Group 1 (nCL)
3.2. Results for Group 2 (CL)
3.3. Results for Micro-CT Analysis
3.4. Results for SEM Analysis Results
4. Discussion
4.1. Preload Analysis
4.2. Micro-CT Analysis
4.3. RTV Analysis
5. Conclusions
- -
- The application of PTFE tape on the prosthetic screw significantly reduces the preload.
- -
- The application of GapSeal® and PTFE tape did not create microgaps between the implant and the abutment.
- -
- Under nCL conditions, wrapping the prosthetic screw with PTFE tape significantly reduces the RTV, almost 49% of the preload was lost.
- -
- Under CL conditions in a warm and humid environment simulating the oral cavity, wrapping the prosthetic screw with PTFE tape results in a significantly greater RTV, and in addition to not having the expected loss of preload, there was still a gain of around 1.8%.
- -
- SEM analysis showed that the coatings flow into the innermost areas of the screw threads, corresponding to the hypothetical free spaces between the implant and the screw. In the case of PTFE tape, as it expands, this complex becomes a single unique structure, making it more resistant to loosening.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pjetursson, B.E.; Thoma, D.; Jung, R.; Zwahlen, M.; Zembic, A. A systematic review of the survival and complication rates of implant-supported fixed dental prostheses (FDPs) after a mean observation period of at least 5 years. Clin. Oral Implant. Res. 2012, 23, 22–38. [Google Scholar] [CrossRef]
- Zembic, A.; Kim, S.; Zwahlen, M.; Kelly, J.R. Systematic Review of the Survival Rate and Incidence of Biologic, Technical, and Esthetic Complications of Single Implant Abutments Supporting Fixed Prostheses. Int. J. Oral Maxillofac. Implant. 2014, 29, 99–116. [Google Scholar] [CrossRef]
- Jung, R.E.; Pjetursson, B.E.; Glauser, R.; Zembic, A.; Zwahlen, M.; Lang, N.P. Systematic review of the 5-year survival and complication rates of implant-supported single crowns. Clin. Oral. Implant. Res. 2008, 19, 119–130. [Google Scholar] [CrossRef]
- Siamos, G.; Winkler, S.; Boberick, K.G. The Relationship Between Implant Preload and Screw Loosening on Implant-supported Prostheses. J. Oral Implant. 2002, 28, 67–73. [Google Scholar] [CrossRef]
- Londhe, S.; Gowda, E.M.; Mandlik, V.; Shashidhar, M. Factors associated with abutment screw loosening in single implant supported crowns: A cross-sectional study. Med. J. Armed Forces India 2020, 76, 37–40. [Google Scholar] [CrossRef]
- Pardal-Peláez, B.; Montero, J. Preload loss of abutment screws after dynamic fatigue in single implant-supported restorations. A systematic review. J. Clin. Exp. Dent. 2017, 9, e1355–e1361. [Google Scholar] [CrossRef]
- Pitman, J.; Craenenbroeck, M.V.; Glibert, M.; Christiaens, V. Screw loosening in angulation-correcting single implant restorations: A systematic review of in vitro studies. J. Prosthet. Dent. 2024, 132, 520–527. [Google Scholar] [CrossRef]
- Winkler, S.; Ring, K.; Ring, J.D.; Boberick, K.G. Implant Screw Mechanics and the Settling Effect: An Overview. J. Oral Implantol. 2003, 29, 242–245. [Google Scholar] [CrossRef]
- Tzenakis, G.K.; Nagy, W.W.; Fournelle, R.A.; Dhuru, V.B. The effect of repeated torque and salivary contamination on the preload of slotted gold implant prosthetic screws. J. Prosthet. Dent. 2002, 88, 183–191. [Google Scholar] [CrossRef]
- Park, J.; Choi, J.; Jeon, Y.; Choi, K.; Jeong, C. Effects of Abutment Screw Coating on Implant Preload. J. Prosthodont. 2010, 19, 458–464. [Google Scholar] [CrossRef]
- Bacchi, A.; Regalin, A.; Bhering, C.L.B.; Alessandretti, R.; Spazzin, A.O. Loosening torque of Universal Abutment screws after cyclic loading: Influence of tightening technique and screw coating. J. Adv. Prosthodont. 2015, 7, 375–379. [Google Scholar] [CrossRef]
- Stüker, R.A.; Teixeira, E.R.; Beck, J.C.P.; da Costa, N.P. Preload and torque removal evaluation of three different abutment screws for single standing implant restorations. J. Appl. Oral Sci. 2008, 16, 55–58. [Google Scholar] [CrossRef]
- Seddigh, M.A.; Mostafavi, A.S. Implant Abutment Screw Loosening: A Review of Effective Factors. J. Clin. Diagn. Res. 2019, 13, ZE6–ZE9. [Google Scholar] [CrossRef]
- Butt, M.A. Thin-Film Coating Methods: A Successful Marriage of High-Quality and Cost-Effectiveness—A Brief Exploration. Coatings 2022, 12, 1115. [Google Scholar] [CrossRef]
- Nigro, F.; Sendyk, C.L.; Francischone, C.E., Jr.; Francischone, C.E. Removal torque of zirconia abutment screws under dry and wet conditions. Braz. Dent. J. 2010, 21, 225–228. [Google Scholar] [CrossRef]
- Basílio, M.d.A.; Abi-Rached, F.d.O.; Butignon, L.E.; Filho, J.N.A. Influence of Liquid Lubrication on the Screw-Joint Stability of Y-TZP Implant Abutment Systems. J. Prosthodont. 2017, 26, 656–658. [Google Scholar] [CrossRef]
- Shemtov-Yona, K.; Arieli, A.; Barhum, M.; Pilo, R.; Levartovsky, S. The effect of contaminating media on the static and dynamic mechanical resilience of dental implant abutments’ screws: In vitro study. Clin. Implant. Dent. Relat. Res. 2024, 26, 289–298. [Google Scholar] [CrossRef]
- Yu, P.; Li, Z.; Tan, X.; Yu, H. Effect of sealing gel on the microleakage resistance and mechanical behavior during dynamic loading of 3 implant systems. J. Prosthet. Dent. 2022, 127, 308–317. [Google Scholar] [CrossRef]
- Félix, L.F.; Medina, M.; Gómez-Polo, C.; Agustín-Panadero, R.; Ortega, R.; Gómez-Polo, M. A Novel Technique Using Polytetrafluoroethylene Tape to Solve Screw Loosening Complication in Implant-Supported Single Crowns. Int. J. Environ. Res. Public Health 2020, 18, 125. [Google Scholar] [CrossRef]
- Seloto, C.; Sahyon, H.; dos Santos, P.; Delben, J.; Assunção, W. Efficacy of Sealing Agents on Preload Maintenance of Screw-Retained Implant-Supported Prostheses. Int. J. Oral Maxillofac. Implant. 2018, 33, 123–126. [Google Scholar] [CrossRef]
- Smojver, I.; Bjelica, R.; Ćatić, A.; Budimir, A.; Vuletić, M.; Gabrić, D. Sealing Efficacy of the Original and Third-Party Custom-Made Abutments—Microbiological In Vitro Pilot Study. Materials 2022, 15, 1597. [Google Scholar] [CrossRef]
- Zarbakhsh, A.; Mazaheri, A.; Shamshirgar, F.; Khosroshahial, H. Effect of GapSeal® as a Sealing Material on Microgap and Microleakage at External Hexagon Implant Connections Following Cyclic Loading: An In Vitro Study. J. Res. Dent. Maxillofac. Sci. 2018, 3, 42–48. [Google Scholar] [CrossRef]
- Sattar, M.M.; Patel, M.; Alani, A. Clinical applications of polytetrafluoroethylene (PTFE) tape in restorative dentistry. Br. Dent. J. 2017, 222, 151–158. [Google Scholar] [CrossRef]
- Hess, T.A. A technique to eliminate subgingival cement adhesion to implant abutments by using polytetrafluoroethylene tape. J. Prosthet. Dent. 2014, 112, 365–368. [Google Scholar] [CrossRef]
- Moráguez, O.D.; Belser, U.C. The use of polytetrafluoroethylene tape for the management of screw access channels in implant-supported prostheses. J. Prosthet. Dent. 2010, 103, 189–191. [Google Scholar] [CrossRef]
- UNE EN ISO 14801:2017; Dentistry—Implants—Dynamic Loading Test for Endosseous Dental Implants (ISO 14801:2016). In-ternational Organization for Standardization: Plzen, Czech Republic, 2016. Available online: https://www.en-standard.eu/une-en-iso-14801-2017-dentistry-implants-dynamic-loading-test-for-endosseous-dental-implants-iso-14801-2016/ (accessed on 18 January 2025).
- R Foundation for Statistical Computing. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 18 December 2024).
- Coelho, L.; Mendes, J.M.; Mendes, J.; Aroso, C.; Silva, A.S.; Manzanares-Céspedes, M.-C. Preload and Removal Torque of Two Different Prosthetic Screw Coatings—A Laboratory Study. Materials 2024, 17, 1414. [Google Scholar] [CrossRef]
- Chen, X.; Ma, R.; Min, J.; Li, Z.; Yu, P.; Yu, H. Effect of PEEK and PTFE coatings in fatigue performance of dental implant retaining screw joint: An in vitro study. J. Mech. Behav. Biomed. Mater. 2020, 103, 103530. [Google Scholar] [CrossRef]
- Biscoping, S.; Ruttmann, E.; Rehmann, P.; Wöstmann, B. Do Sealing Materials Influence Superstructure Attachment in Implants? Int. J. Prosthodont. 2018, 31, 163–165. [Google Scholar] [CrossRef]
- Rathe, F.; Ratka, C.; Kaesmacher, C.; Winter, A.; Brandt, S.; Zipprich, H. Influence of different agents on the preload force of implant abutment screws. J. Prosthet. Dent. 2021, 126, 581–585. [Google Scholar] [CrossRef]
- Ozdiler, A.; Dayan, S.C.; Gencel, B.; Ozkol, G.I. Reverse Torque Values of Abutment Screws After Dynamic Loading: Effects of Sealant Agents and the Taper of Conical Connections. J. Oral Implant. 2021, 47, 287–293. [Google Scholar] [CrossRef]
- Ceruso, F. Implant-abutment connections on single crowns: A systematic review. Oral Implantol. 2017, 10, 349–353. [Google Scholar] [CrossRef]
- Kowalski, J.; Puszkarz, A.K.; Radwanski, M.; Sokolowski, J.; Cichomski, M.; Bourgi, R.; Hardan, L.; Sauro, S.; Lukomska-Szymanska, M. Micro-CT Evaluation of Microgaps at Implant-Abutment Connection. Materials 2023, 16, 4491. [Google Scholar] [CrossRef]
- Çetin, T.; Aslan, Y.U. 3D evaluation of microgaps at the implant-abutment connection before and after thermodynamic cycling. Int. J. Prosthodont. 2024, 37, e99–e111. [Google Scholar] [CrossRef]
- Vinhas, A.S.; Salazar, F.; Mendes, J.M.; Silva, A.S.; Ríos-Carrasco, B.; Ríos-Santos, J.V.; Gil, J.; Herrero-Climent, M.; Aroso, C. SEM Analysis and Micro-CT Evaluation of Four Dental Implants after Three Different Mechanical Requests—In Vitro Study. Materials 2024, 17, 434. [Google Scholar] [CrossRef]
- Keklikoglou, K.; Arvanitidis, C.; Chatzigeorgiou, G.; Chatzinikolaou, E.; Karagiannidis, E.; Koletsa, T.; Magoulas, A.; Makris, K.; Mavrothalassitis, G.; Papanagnou, E.-D.; et al. Micro-CT for Biological and Biomedical Studies: A Comparison of Imaging Techniques. J. Imaging 2021, 7, 172. [Google Scholar] [CrossRef]
- Elias, C.; Figueira, D.; Rios, P. Influence of the coating material on the loosing of dental implant abutment screw joints. Mater. Sci. Eng. C 2006, 26, 1361–1366. [Google Scholar] [CrossRef]
- Scharf, T.W.; Prasad, S.V. Solid lubricants: A review. J. Mater. Sci. 2013, 48, 511–531. [Google Scholar] [CrossRef]
- Widziewicz-Rzońca, K.; Tytła, M. Water Sorption by Different Types of Filter Media Used for Particulate Matter Collection Under Varying Temperature and Humidity Conditions. Int. J. Environ. Res. Public Health 2020, 17, 5180. [Google Scholar] [CrossRef]
Total Sample | Groups | Subgroups | Screw Tightening and Preload Register | Micro-CT Analysis | Untightening and RTV Register | CL | Untightening and RTV Register | SEM Analysis |
---|---|---|---|---|---|---|---|---|
n = 90 | Group 1 n = 45 | CG n = 15 | n = 15 | n = 2 | n = 15 | X | X | n = 2 |
GG n = 15 | n = 15 | n = 2 | n = 15 | X | X | n = 2 | ||
GP n = 15 | n = 15 | n = 2 | n = 15 | X | X | n = 2 | ||
Group 2 n = 45 | CG n = 15 | n = 15 | X | X | n = 15 | n = 15 | n = 2 | |
GP n = 15 | n = 15 | X | X | n = 15 | n = 15 | n = 2 | ||
PG n = 15 | n = 15 | X | X | n = 15 | n = 15 | n = 2 | ||
Total | n = 90 | n = 90 | n = 90 | n = 6 | n = 45 | n = 45 | n = 45 | n = 12 |
CG (n = 15) M (SD) | GG (n = 15) M (SD) | PG (n = 15) M (SD) | ANOVA | |
---|---|---|---|---|
Preload (Ncm) | 30.95 (1.00) | 31.19 (1.22) | 29.92 (0.76) | F(2, 42) = 6.56 (p = 0.003), η2=0.24 |
RTV (Ncm) | 27.98 (1.20) | 28.48 (1.47) | 15.30 (1.21) | F(2, 42) = 496.50 (p < 0.001), η2=0.94 |
CG (n = 15) M (SD) | GG (n = 15) M (SD) | PG (n = 15) M (SD) | ANOVA | |
---|---|---|---|---|
Preload (Ncm) | 31.72 (1.16) | 31.42 (0.98) | 30.29 (0.83) | F(2, 42)=8.51 (p < 0.001), η2 = 0.29 |
RTV (Ncm) | 26.00 (2.00) | 27.44 (3.76) | 31.50 (0.80) | F(2, 42)=19.43 (p < 0.001), η2 = 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coelho, L.; Manzanares-Céspedes, M.-C.; Mendes, J.; Aroso, C.; Mendes, J.M. Screw Coating as a Solution to Solve Screw Loosening Complications: An In Vitro Study. Materials 2025, 18, 2921. https://doi.org/10.3390/ma18122921
Coelho L, Manzanares-Céspedes M-C, Mendes J, Aroso C, Mendes JM. Screw Coating as a Solution to Solve Screw Loosening Complications: An In Vitro Study. Materials. 2025; 18(12):2921. https://doi.org/10.3390/ma18122921
Chicago/Turabian StyleCoelho, Lara, Maria-Cristina Manzanares-Céspedes, Joana Mendes, Carlos Aroso, and José Manuel Mendes. 2025. "Screw Coating as a Solution to Solve Screw Loosening Complications: An In Vitro Study" Materials 18, no. 12: 2921. https://doi.org/10.3390/ma18122921
APA StyleCoelho, L., Manzanares-Céspedes, M.-C., Mendes, J., Aroso, C., & Mendes, J. M. (2025). Screw Coating as a Solution to Solve Screw Loosening Complications: An In Vitro Study. Materials, 18(12), 2921. https://doi.org/10.3390/ma18122921