Land Use Change Impacts on Hydrology in the Nenjiang River Basin, Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Land Use/Land Cover Prediction
2.4. Model Description
3. Results and Discussion
3.1. Model Performance
3.2. Land Use Changes in the NRB
3.3. Hydrological Impacts of Land Use Change in the NRB
3.3.1. Combined Hydrological Impacts of Land Use Change under the Historical Landuse Scenarios
3.3.2. Individual Hydrological Impacts of Land Use Changes
3.4. Prediction of Hydrological Process under Future Land Use Condition
3.5. Limitations of this Study
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mallinis, G.; Koutsias, N.; Arianoutsou, M. Monitoring land use/land cover transformations from 1945 to 2007 in two peri-urban mountainous areas of Athens metropolitan area, Greece. Sci. Total. Environ. 2014, 490, 262–278. [Google Scholar] [CrossRef]
- Stonestrom, D.A.; Scanlon, B.R.; Zhang, L. Introduction to special section on impacts of land use change on water resources. Water Resour. Res. 2009, 45, 160–169. [Google Scholar] [CrossRef]
- Nie, W.; Yuan, Y.; Kepner, W.; Nash, M.S.; Jackson, M.; Erickson, C. Assessing impacts of Landuse and Landcover changes on hydrology for the upper San Pedro watershed. J. Hydrol. 2011, 407, 105–114. [Google Scholar] [CrossRef]
- Yihdego, Y.; Webb, J. An Empirical Water Budget Model as a Tool to Identify the Impact of Land-use Change in Stream Flow in Southeastern Australia. Water Resour. Manag. 2013, 27, 4941–4958. [Google Scholar] [CrossRef]
- Mosquera, G.M.; Lazo, P.X.; Célleri, R.; Wilcox, B.P.; Crespo, P. Runoff from tropical alpine grasslands increases with areal extent of wetlands. Catena 2015, 125, 120–128. [Google Scholar] [CrossRef]
- Gebremicael, T.G.; Mohamed, Y.A.; Betrie, G.D.; van der Zaag, P.; Teferi, E. Trend analysis of runoff and sediment fluxes in the Upper Blue Nile basin: A combined analysis of statistical tests, physically-based models and landuse maps. J. Hydrol. 2013, 482, 57–68. [Google Scholar] [CrossRef]
- Lin, B.; Chen, X.; Yao, H.; Chen, Y.; Liu, M.; Gao, L.; James, A. Analyses of landuse change impacts on catchment runoff using different time indicators based on SWAT model. Ecol. Indic. 2015, 58, 55–63. [Google Scholar] [CrossRef]
- Siriwardena, L.; Finlayson, B.; McMahon, T. The impact of land use change on catchment hydrology in large catchments: The Comet River, Central Queensland, Australia. J. Hydrol. 2006, 326, 199–214. [Google Scholar] [CrossRef]
- Niehoff, D.; Fritsch, U.; Bronstert, A. Land-use impacts on storm-runoff generation: scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW-Germany. J. Hydrol. 2002, 267, 80–93. [Google Scholar] [CrossRef]
- Gwate, O.; Woyessa, Y.; Wiberg, D. Dynamics of land cover and impact on streamflow in the Modder River Basin of South Africa: case study of a Quaternary catchment. Int. J. Environ. Prot. Policy 2015, 3, 31–38. [Google Scholar] [CrossRef]
- Zhang, L.; Nan, Z.; Yu, W.; Ge, Y. Modeling Land-Use and Land-Cover Change and Hydrological Responses under Consistent Climate Change Scenarios in the Heihe River Basin, China. Water Resour. Manag. 2015, 29, 4701–4717. [Google Scholar] [CrossRef]
- Gao, C.; Zhou, P.; Jia, P.; Liu, Z.; Wei, L.; Tian, H. Spatial driving forces of dominant land use/land cover transformations in the Dongjiang River watershed, Southern China. Environ. Monit. Assess. 2016, 188, 84. [Google Scholar] [CrossRef] [PubMed]
- Malmer, A.; Murdiyarso, D.; Bruijnzeel, L.A.; Ilstedt, U. Carbon sequestration in tropical forests and water: a critical look at the basis for commonly used generalizations. Glob. Chang. Biol. 2009, 16, 1–6. [Google Scholar] [CrossRef]
- Yan, R.; Zhang, X.; Yan, S.; Zhang, J.; Chen, H. Spatial patterns of hydrological responses to land use/cover change in a catchment on the Loess Plateau, China. Ecol. Indic. 2018, 92, 151–160. [Google Scholar] [CrossRef]
- Zuo, D.; Xu, Z.; Yao, W.; Jin, S.; Xiao, P.; Ran, D. Assessing the effects of changes in land use and climate on runoff and sediment yields from a watershed in the Loess Plateau of China. Sci. Total. Environ. 2016, 544, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Beighley, R.E.; Melack, J.M.; Dunne, T. IMPACTS OF CALIFORNIA’S CLIMATIC REGIMES AND COASTAL LAND USE CHANGE ON STREAMFLOW CHARACTERISTICS. JAWRA J. Am. Water Resour. Assoc. 2003, 39, 1419–1433. [Google Scholar] [CrossRef]
- Brandes, D.; Cavallo, G.J.; Nilson, M.L. BASE FLOW TRENDS IN URBANIZING WATERSHEDS OF THE DELAWARE RIVER BASIN. JAWRA J. Am. Water Resour. Assoc. 2005, 41, 1377–1391. [Google Scholar] [CrossRef]
- Kim, Y.; Engel, B.A.; Lim, K.J.; Larson, V.; Duncan, B. Runoff Impacts of Land-Use Change in Indian River Lagoon Watershed. J. Hydrol. Eng. 2002, 7, 245–251. [Google Scholar] [CrossRef]
- Shi, X.; Yang, Z.; Yan, D.; Ying, L.I.; Zhe, Y. On hydrological response to land-use/cover change in Luanhe River basin. Adv. Water Resour. 2014, 25, 21–27. [Google Scholar]
- Wang, S.; Zhao, Y.; Yin, X.; Yu, L.; Xu, F. Land use and landscape pattern changes in Nenjiang River basin during 1988–2002. Front. Earth Sci. China 2010, 4, 33–41. [Google Scholar] [CrossRef]
- Tang, J.; Bu, K.; Yang, J.; Zhang, S.; Chang, L. Multitemporal analysis of forest fragmentation in the upstream region of the Nenjiang River Basin, Northeast China. Ecol. Indic. 2012, 23, 597–607. [Google Scholar] [CrossRef]
- Yuan, L.H.; Jiang, W.G.; Luo, Z.L.; He, X.H.; Liu, Y.H. Analysis of wetland change in the Songhua River Basin from 1995 to 2008. In Proceedings of the 35th International Symposium on Remote Sensing of Environment, IOP Conference Series: Earth and Environmental Science, Inst Remote Sensing & Digital Earth, Beijing, China, 22–26 April 2013; Institute of Physics Publishing: Bristol, England, 2014; pp. 12125–12131. [Google Scholar]
- Feng, X.; Zhang, G.; Yin, X. Hydrological responses to climate change in Nenjiang River basin, Northeastern China. Water Resour. Manag. 2011, 25, 677–689. [Google Scholar] [CrossRef]
- Li, F.; Zhang, G.; Xu, Y.J. Separating the Impacts of Climate Variation and Human Activities on Runoff in the Songhua River Basin, Northeast China. Water 2014, 6, 3320–3338. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.K.; Mustak, S.; Srivastava, P.K.; Szabó, S.; Islam, T. Predicting Spatial and Decadal LULC Changes Through Cellular Automata Markov Chain Models Using Earth Observation Datasets and Geo-information. Environ. Process. 2015, 2, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W. Modeling the hydrological impacts of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Sci. Total Environ. 2018, 619–620, 1394–1408. [Google Scholar] [CrossRef]
- Jahanishakib, F.; Mirkarimi, S.H.; Salmanmahiny, A.; Poodat, F. Land use change modeling through scenario-based cellular automata Markov: improving spatial forecasting. Environ. Monit. Assess. 2018, 190, 332. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, P.; Ma, X.; Li, X. Detection and prediction of land use/land cover change using spatiotemporal data fusion and the Cellular Automata-Markov model. Environ. Monit. Assess. 2019, 191, 68. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment—Part 1: model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Setegn, S.G.; Rayner, D.; Melesse, A.M.; Dargahi, B.; Srinivasan, R. Impact of climate change on the hydroclimatology of Lake Tana Basin, Ethiopia. Water Resour. 2011, 47, 289–306. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, R.; Bao, Y.; Wang, J.; Yu, W.; Shen, Z. Uncertainty of SWAT model at different DEM resolutions in a large mountainous watershed. Water Resour. 2014, 53, 132–144. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, F.; Hao, Z.; Xu, C.; Yu, Z.; Wang, L.; Tong, K. Impact of projected climate change on the hydrology in the headwaters of the Yellow River basin. Hydrol. Process. 2015, 29, 4379–4397. [Google Scholar] [CrossRef]
- Li, F.; Zhang, G.; Xu, Y.J. Assessing Climate Change Impacts on Water Resources in the Songhua River Basin. Water 2016, 8, 420. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I-A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Abdullah, S.A.; Nakagoshi, N. Changes in landscape spatial pattern in the highly developing state of Selangor. peninsular Malaysia. Landsc. Urban Plan. 2006, 77, 263–275. [Google Scholar] [CrossRef]
- Weng, Q. Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. J. Environ. Manag. 2002, 64, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Huang, N.; Luo, L.; Li, X.; Ren, C.; Song, K.; Chen, J.M. Shrinkage and fragmentation of marshes in the West Songnen Plain, China, from 1954 to 2008 and its possible causes. Int. J. Appl. Earth Obs. Geoinforma. 2011, 13, 477–486. [Google Scholar] [CrossRef]
- Li, K.; Zhang, M. The resource and conservation suggestion of wetlands in China. Wetl. Sci. 2005, 3, 81–86. (In Chinese) [Google Scholar]
- Wang, G.; Zhang, Y. Impacts of reservoir project on hydrological and ecological environment of Xianghai wetlands. Resour. Sci. 2002, 24, 26–30. (In Chinese) [Google Scholar]
- Li, X.; Wang, Z.; Song, K.; Zhang, B.; Liu, D.; Guo, Z. Assessment for Salinized Wasteland Expansion and Land Use Change Using GIS and Remote Sensing in the West Part of Northeast China. Environ. Monit. Assess. 2007, 131, 421–437. [Google Scholar] [CrossRef]
- Cui, X.; Liu, S.; Wei, X. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reach of Yangtze River Basin. Hydrol. Earth Sci. Discuss. 2012, 9, 6507–6531. [Google Scholar] [CrossRef]
- Price, K.; Jackson, C.R.; Parker, A.J.; Reitan, T.; Dowd, J.; Cyterski, M. Effects of watershed land use and geomorphology on stream low flows during severe drought conditions in the southern Blue Ridge Mountains, Georgia and North Carolina, United States. Water Resour. Res. 2011, 47, 1198–1204. [Google Scholar] [CrossRef]
- Bruijnzeel, L. Hydrological functions of tropical forests: not seeing the soil for the trees? Agric. Ecosyst. 2004, 104, 185–228. [Google Scholar] [CrossRef]
- Eisenbies, M.; Aust, W.; Burger, J.; Adams, M.B. Forest operations, extreme flooding events, and considerations for hydrologic modeling in the Appalachians—A review. Ecol. Manag. 2007, 242, 77–98. [Google Scholar] [CrossRef]
- Webb, A.; Jarrett, B.; Turner, L. Effects of plantation forest harvesting on water quality and quantity: Canobolas State Forest, NSW. In Proceedings of the 5th Australian Stream Management Conference, Australian Rivers: Making a Difference, Albury, New South Wales, Australia, 19–25 May 2007; Wilson, A., Deehan, R., Watts, R., Page, K., Bownan, K., Curtis, A., Eds.; Charles Sturt University: Thurgoona, Australia, 2007. [Google Scholar]
- Kheereemangkla, Y.; Shrestha, R.P.; Shrestha, S.; Jourdain, D. Modeling hydrologic responses to land management scenarios for the Chi River Sub-basin Part II, Northeast Thailand. Environ. Earth Sci. 2016, 75, 793. [Google Scholar] [CrossRef]
- Wang, H.; Sun, F.; Xia, J.; Liu, W. Impact of LUCC on streamflow based on the SWAT model over the Wei River basin on the Loess Plateau in China. Hydrol. Earth Sci. 2017, 21, 1929–1945. [Google Scholar] [CrossRef] [Green Version]
- Crespo, P.J.; Feyen, J.; Buytaert, W.; Bücker, A.; Breuer, L.; Frede, H.-G.; Ramirez, M.; Driemel, A. Identifying controls of the rainfall–runoff response of small catchments in the tropical Andes (Ecuador). J. Hydrol. 2011, 407, 164–174. [Google Scholar] [CrossRef]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Neupane, R.P.; Kumar, S. Estimating the effects of potential climate and land use changes on hydrologic processes of a large agriculture dominated watershed. J. Hydrol. 2015, 529, 418–429. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, W.; Guo, Q.; Wu, S. Effects of landuse change on surface runoff and sediment yield at different watershed scales on the Loess Plateau. Int. J. Sediment 2010, 25, 283–293. [Google Scholar] [CrossRef]
- Sun, G.; Mcnulty, S.G.; Amatya, D.M.; Skaggs, R.W.; Liang, Y.; Kolka, R.K. A Comparison of the Watershed Hydrology of Coastal Forested Wetlands and Mountainous Uplands in the Southern U.S. J. Hydrol. 2002, 263, 92–104. [Google Scholar] [CrossRef]
- Golden, H.E.; Sander, H.A.; Lane, C.R.; Zhao, C.; Price, K.; D’Amico, E.; Christensen, J.R. Relative effects of geographically isolated wetlands on streamflow: a watershed-scale analysis. Ecohydrol. 2016, 9, 21–38. [Google Scholar] [CrossRef]
- Acreman, M.; Holden, J. How wetlands affect floods. Wetlands 2013, 33, 773–786. [Google Scholar] [CrossRef]
Hydrological Gauging Stations | Drainage Area (km2) | Calibration (1980–1994) | Validation (1995–2009) | ||||
---|---|---|---|---|---|---|---|
Ens | R2 | Er | Ens | R2 | Er | ||
Shihuiyao | 17,205 | 0.55 | 0.58 | −0.73 | 0.53 | 0.56 | 9.43 |
Liujiatun | 19,665 | 0.67 | 0.72 | −7.60 | 0.73 | 0.74 | −8.03 |
Tongmeng | 108,029 | 0.73 | 0.77 | −3.60 | 0.77 | 0.77 | 0.39 |
Jiangqiao | 162,569 | 0.78 | 0.83 | −1.50 | 0.75 | 0.76 | 8.73 |
Dalai | 221,715 | 0.70 | 0.75 | −1.88 | 0.68 | 0.72 | 17.81 |
1975 | 2000 | 2010 | 1975–2000 | 2000–2010 | |||
---|---|---|---|---|---|---|---|
Area (103 km2) | Area Changes (103 km2) | Annual Rate of Change 1 (km2/a) | Area Changes (103 km2) | Annual Rate of Change 1 (km2/a) | |||
Paddy land | 1.88 | 5.31 | 5.80 | 3.43 | 137.20 | 0.49 | 49.00 |
Dry land | 82.50 | 98.90 | 100.10 | 16.40 | 656.00 | 1.20 | 120.00 |
Forest | 113.00 | 102.3 | 102.50 | −10.70 | −428.00 | 0.20 | 20.00 |
Grassland | 49.10 | 39.50 | 38.70 | −9.60 | −384.00 | −0.80 | −80.00 |
Water | 5.92 | 6.39 | 5.60 | 0.47 | 18.80 | −0.79 | −79.00 |
Urban | 1.13 | 1.84 | 2.00 | 0.71 | 28.40 | 0.16 | 16.00 |
Bare land | 9.46 | 11.60 | 11.70 | 2.14 | 85.60 | 0.10 | 10.00 |
Wetland | 30.50 | 27.80 | 27.70 | −2.70 | −108.00 | −0.10 | −10.00 |
2000 | 1975 (103 km2) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Paddy Land | Dry Land | Forest | Grassland | Water | Urban | Bare Land | Wetland | Total | |
Paddy land | 1.821 | 2.078 | 0.037 | 0.275 | 0.003 | 0.004 | 0.003 | 1.090 | 5.311 |
Dry land | 0.052 | 78.480 | 8.029 | 10.350 | 0.057 | 0.01 | 0.047 | 1.888 | 98.920 |
Forest | 0.000 | 0.350 | 100.300 | 1.453 | 0.000 | 0.001 | 0.002 | 0.224 | 102.300 |
Grassland | 0.002 | 0.704 | 4.091 | 33.700 | 0.02 | 0.002 | 0.397 | 0.587 | 39.510 |
Water | 0.002 | 0.034 | 0.009 | 0.101 | 5.758 | 0.000 | 0.045 | 0.443 | 6.392 |
Urban | 0.004 | 0.500 | 0.034 | 0.160 | 0.003 | 1.111 | 0.009 | 0.022 | 1.843 |
Bare land | 0.001 | 0.177 | 0.058 | 2.304 | 0.051 | 0.002 | 8.824 | 0.156 | 11.570 |
Wetland | 0.000 | 0.143 | 0.626 | 0.748 | 0.034 | 0.000 | 0.133 | 26.070 | 27.760 |
Total | 1.882 | 82.470 | 113.100 | 49.100 | 5.926 | 1.130 | 9.460 | 30.480 | 293.600 |
2000 | 1975 | |||||||
---|---|---|---|---|---|---|---|---|
Paddy Land | Dry Land | Forest | Grassland | Water | Urban | Bare Land | Wetland | |
Paddy land | 96.76 | 2.52 | 0.03 | 0.56 | 0.05 | 0.35 | 0.03 | 3.58 |
Dry land | 2.76 | 95.17 | 7.10 | 21.09 | 0.96 | 0.88 | 0.50 | 6.19 |
Forest | 0.00 | 0.42 | 88.61 | 2.96 | 0.00 | 0.09 | 0.02 | 0.73 |
Grassland | 0.11 | 0.85 | 3.62 | 68.65 | 0.34 | 0.18 | 4.20 | 1.93 |
Water | 0.11 | 0.04 | 0.01 | 0.21 | 97.17 | 0.00 | 0.48 | 1.45 |
Urban | 0.21 | 0.61 | 0.03 | 0.33 | 0.05 | 98.32 | 0.10 | 0.07 |
Bare land | 0.05 | 0.21 | 0.05 | 4.69 | 0.86 | 0.18 | 93.28 | 0.51 |
Wetland | 0.00 | 0.17 | 0.55 | 1.52 | 0.57 | 0.00 | 1.41 | 85.53 |
Evapotranspiration (mm) | Surface Runoff (mm) | Baseflow (mm) | Water Yield (mm) | |
---|---|---|---|---|
Landuse in 1975 | 354.4 | 85.4 | 22.5 | 104.0 |
Landuse in 2000 | 361.8 | 84.0 | 18.9 | 100.5 |
Landuse | Evapotranspiration | Surface Runoff | Baseflow | Water Yield |
---|---|---|---|---|
(mm) | (mm) | (mm) | (mm) | |
All Forest | 368.2 | 59.2 | 28.8 | 84.4 |
All Grassland | 352.9 | 92.7 | 11.3 | 98.3 |
All Dry land | 347.0 | 106.9 | 10.5 | 110.9 |
All Paddy land | 344.4 | 101.5 | 7.5 | 105.1 |
All Wetland | 372.5 | 71.9 | 7.5 | 75.4 |
Flow Duration | Discharge (m3/s) | ||||
---|---|---|---|---|---|
All Forest | All Grassland | All Dry land | All Paddy land | All Wetland | |
5% | 1878 | 2558 | 2757 | 2645 | 1897 |
25% | 749 | 773 | 920 | 796 | 664 |
50% | 430 | 356 | 418 | 385 | 316 |
75% | 257 | 172 | 190 | 151 | 146 |
95% | 139 | 85 | 90 | 69 | 58 |
Evapotranspiration | Surface Runoff | Baseflow | Water Yield | |
---|---|---|---|---|
(mm) | (mm) | (mm) | (mm) | |
Landuse in 2000 | 361.8 | 84.0 | 18.9 | 100.5 |
Landuse in 2038 | 356.1 | 88.1 | 18.3 | 104.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Zhang, G.; Li, H.; Lu, W. Land Use Change Impacts on Hydrology in the Nenjiang River Basin, Northeast China. Forests 2019, 10, 476. https://doi.org/10.3390/f10060476
Li F, Zhang G, Li H, Lu W. Land Use Change Impacts on Hydrology in the Nenjiang River Basin, Northeast China. Forests. 2019; 10(6):476. https://doi.org/10.3390/f10060476
Chicago/Turabian StyleLi, Fengping, Guangxin Zhang, Hongyan Li, and Wenxi Lu. 2019. "Land Use Change Impacts on Hydrology in the Nenjiang River Basin, Northeast China" Forests 10, no. 6: 476. https://doi.org/10.3390/f10060476
APA StyleLi, F., Zhang, G., Li, H., & Lu, W. (2019). Land Use Change Impacts on Hydrology in the Nenjiang River Basin, Northeast China. Forests, 10(6), 476. https://doi.org/10.3390/f10060476