Impact of Recent Climate Change on Water-Use Efficiency Strategies of Larix sibirica in the Altai-Sayan Mountain Range
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Stable Carbon Isotope Chronologies and Intrinsic Water-Use Efficiency (iWUE)
2.3. Statistical Analyses
3. Results
3.1. iWUE Chronologies
3.2. Trends Analysis
3.3. Spatial Climate Patterns
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, D.; Yang, Y.; Lan, B. Climate variability in the northern and southern Altai Mountains during the past 50 years. Sci. Rep. 2018, 8, 3238. [Google Scholar] [CrossRef] [PubMed]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2013, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; 138p. [Google Scholar] [CrossRef]
- Fischer, H.; Meissner, K.J.; Mix, A.C.; Abram, N.J.; Austermann, J.; Brovkin, V.; Capron, E.; Colombaroli, D.; Daniau, A.L.; Dyez, K.A.; et al. Palaeoclimate constraints on the impact of 2 C anthropogenic warming and beyond. Nat. Geosci. 2018, 11, 474–485. Available online: https://www.nature.com/articles/s41561-018-0146-0 (accessed on 25 June 2020). [CrossRef]
- Knorre, A.A.; Siegwolf, R.; Saurer, M.; Sidorova, O.V.; Vaganov, E.A.; Kirdyanov, A.V. Twentieth century trends in tree ring stable isotopes (δ13C and δ18O) of Larix sibiricaunder dry conditions in the forest steppe in Siberia. Geophys. Res. Biogeosci. 2010, 115, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Cook, E.R.; Solomina, O.; Matskovsky, V.; Cook, B.I.; Agafonov, L.; Dolgova, E.; Karpukhin, A.; Knysh, N.; Kulakova, M.; Kuynetsova, V.; et al. The European Russia Drought Atlas (1400–2016 CE). Clim. Dyn. 2020, 54, 2317–2335. [Google Scholar] [CrossRef]
- Saurer, M.; Spahni, R.; Frank, D.C.; Joos, F.; Leuenberger, M.; Loader, N.J.; McCarroll, D.; Gagen, M.; Poulter, B.; Siegwolf, R.T.W.; et al. Spatial variability and temporal trends in water-use efficiency of European forests. Glob. Chang. Biol. 2014, 20, 3700–3712. [Google Scholar] [CrossRef] [PubMed]
- McDowell, N.; Pockman, W.T.; Allen, C.D.; Breshears, D.D.; Cobb, N.; Kolb, T.; Plaut, J.; Sperry, J.; West, A.; Williams, D.G.; et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytol. 2008, 178, 719–739. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.; Allen, C.D.; Macalady, A.K.; Griffin, D.; Woodhouse, C.A.; Meko, D.M.; Swetnam, T.W.; Rauscher, S.A.; Seager, R.; Grissino-Mayer, H.D.; et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 2013, 3, 292–297. [Google Scholar] [CrossRef]
- Zhang, Q.; Ficklin, D.L.; Manzoni, S.; Wang, L.; Way, D.; Phillips, R.P.; Novick, K.A. Response of ecosystem intrinsic water use efficiency and gross primary productivity to rising vapor pressure deficit. Environ. Res. Lett. 2019, 14, 074023. [Google Scholar] [CrossRef]
- Yuan, W.; Zheng, Y.; Piao, S.; Ciais, P.; Lombardozzi, D.; Wang, Y.; Ryu, Y.; Chen, G.; Dong, W.; Hu, Z.; et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 2019, 5, eaax1396. [Google Scholar] [CrossRef] [Green Version]
- Franks, P.J.; Adams, M.K.; Amthor, J.S.; Barbour, M.M.; Berry, J.A.; Ellsworth, D.S.; Farquhar, G.D.; Ghannoum, O.; Lloyd, J.; McDowwell, N.; et al. Sensitivity of plants to changing atmospheric CO2 concentration: From the geological past to the next century. New Phytol. 2013, 197, 1077–1094. [Google Scholar] [CrossRef] [PubMed]
- Battipaglia, G.; Saurer, M.; Cherubini, P.; Calfapietra, C.; McCarthy, H.R.; Norby, R.J.; Cotrufo, M.F. Elevated CO2 increases tree-level intrinsic water use efficiency: Insights from carbon and oxygen isotope analyses in tree rings across three forest FACE sites. New Phytol. 2012, 197, 544–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lévesque, M.; Siegwolf, R.; Saurer, M.; Eilmann, B.; Rigling, A. Increased water-use efficiency does not lead to enhanced tree growth under xeric and mesic conditions. New Phytol. 2014, 203, 94–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, D.C.; Poulter, B.; Saurer, M.; Esper, J.; Huntingford, C.; Helle, G.; Treydte, K.; Zimmermann, N.E.; Schleser, G.H.; Ahlström, A.; et al. Water-use efficiency and transpiration across European forests during the Anthropocene. Nat. Clim. Chang. 2015, 5, 579–583. [Google Scholar] [CrossRef] [Green Version]
- Churakova Sidorova, O.V.; Saurer, M.; Bryukhanova, M.; Siegwolf, R.; Bigler, C. Site-specific water-use strategies of mountain pine and larch to cope with recent climate change. Tree Physiol. 2016, 36, 942–953. Available online: https://academic.oup.com/treephys/article/36/8/942/2515599 (accessed on 8 August 2016). [CrossRef] [Green Version]
- Keller, K.M.; Lienert, S.; Bozbiyik, A.; Stocker, T.F.; Churakova Sidorova, O.V.; Frank, D.C.; Klesse, S.; Koven, C.D.; Leuenberger, M.; Riley, W.J.; et al. 20th-century changes in carbon isotopes and water-use efficiency: Tree-ring-based evaluation of the CLM4.5 and LPX-Bern models. Biogeosciences 2017, 14, 2641–2673. [Google Scholar] [CrossRef] [Green Version]
- Shestakova, T.A.; Voltas, J.; Saurer, M.; Berninger, F.; Esper, J.; Andreu-Hayles, L.; Daux, V.; Helle, G.; Leuenberger, M.; Loader, N.J.; et al. Spatio-temporal patterns of tree growth as related to carbon isotope fractionation in European forests under changing climate. Glob. Ecol. Biogeogr. 2019, 28, 1295–1309. [Google Scholar] [CrossRef]
- Churakova Sidorova, O.V.; Myglan, V.S.; Fonti, M.V.; Saurer, M. Isotopic responses to dry and wet episodes as captured in tree rings of southern Altai relict forests. Eur. J. For. Res. 2020. in revision. [Google Scholar]
- Zhou, S.; Williams, P.; Berg, A.M.; Cook, B.B.; Zhang, Y.; Hagemann, S.; Lorenz, R.; Seneviratne, S.I.; Gentine, P. Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proc. Natl. Acad. Sci. USA 2019, 116, 18848–18853. [Google Scholar] [CrossRef] [Green Version]
- Umair, M.; Kim, D.; Choi, M. Impact of climate, rising atmospheric carbon dioxide, and other environmental factors on water-use efficiency at multiple land cover types. Sci. Rep. 2020, 10, 11644. [Google Scholar] [CrossRef]
- Reich, P.B.; Sendall, K.M.; Stefanski, A.; Rich, R.L.; Hobbie, S.E.; Montgomery, R.A. Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature 2018, 562, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, G.D.; Ehleringer, J.R.; Hubick, K.T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1989, 40, 503–537. [Google Scholar] [CrossRef]
- Bhusal, N.; Lee, M.; Han, A.R.; Kim, H.S. Responses to drought stress in Prunus sargentii and Larix kaempferi seedlings using morphological and physiological parameters. For. Ecol. Manag. 2020, 465, 118099. [Google Scholar] [CrossRef]
- Liu, N.; Kala, J.; Liu, S.; Haverd, V.; Dell, B.; Smettem, K.R.J.; Harper, R.J. Drought can offset potential water use efficiency of forest ecosystems from rising atmospheric CO2. J. Environ. Sci. 2020, 90, 262–274. [Google Scholar] [CrossRef]
- Myglan, V.S.; Oidupaa, O.C.; Kirdyanov, A.V.; Vaganov, E.A. A 1929-year tree-ring chronology for the Altai-Sayan region (Western Tuva). Archaeol. Ethnol. Anthr. Eurasia 2008, 36, 25–31. [Google Scholar] [CrossRef]
- Sevastyanov, V.V. Climate of the High-Elevated Regions in Altai and Sayan; Tomsk University: Tomsk, Russia, 1998; 201p. [Google Scholar]
- Alisov, B.P. Climate USSR; Moscow State University: Moscow, Russia, 1956; 547p. [Google Scholar]
- Sidorova, O.V.; Saurer, M.; Myglan, V.S.; Eichler, A.; Schwikowski, M.; Kirdyanov, A.V.; Bryukhanova, M.V.; Gerasimova, O.V.; Kalugin, I.; Daryin, A.; et al. A multi-proxy approach for revealing recent climatic changes in the Russian Altai. Clim. Dyn. 2012, 38, 175–188. [Google Scholar] [CrossRef] [Green Version]
- Sidorova, O.V.; Siegwolf, R.; Myglan, V.S.; Loader, N.J.; Helle, G.; Saurer, M. The application of tree-rings and stable isotopes for reconstructions of climate conditions in the Altai-Sayan Mountain region. Clim. Chang. 2013, 120, 153–167. [Google Scholar] [CrossRef]
- Saurer, M.; Siegwolf, R.T.W. Human Impacts on Tree-Ring Growth Reconstructed from Stable Isotopes. Terr. Ecol. 2007, 1, 49–62. [Google Scholar]
- Blackman, R.; Tukey, J.W. The Measurement of Power Spectra from the Point of View of Communications Engineering—Part I. Bell Syst. Tech. J. 1958, 37, 185–282. [Google Scholar] [CrossRef]
- Giguère-Croteau, C.; Boucher, É.; Bergeron, Y.; Girardin, M.P.; Drobyshev, I.; Silva, L.C.R.; Hélie, J.-F.; Garneau, M. North America’s oldest boreal trees are more efficient water users due to increased [CO2], but do not grow faster. Proc. Natl. Acad. Sci. USA 2019, 116, 2749–2754. [Google Scholar] [CrossRef] [Green Version]
- Adams, M.A.; Buckley, T.N.; Turnbull, T.L. Diminishing CO2-driven gains in water-use efficiency of global forests. Nat. Clim. Chang. 2020, 10, 466–471. [Google Scholar] [CrossRef]
- Peters, W.; van der Velde, I.R.; van Schaik, E.; Miller, J.B.; Ciais, P.; Duarte, H.F.; van der Laan-Luijkx, I.T.; van der Molen, M.K.; Scholze, M.; Schaefer, K. Increased water-use efficiency and reduced CO2 uptake by plants during droughts at a continental scale. Nat. Geosci. 2018, 11, 744–748. [Google Scholar] [CrossRef]
- Yang, Y.; Guan, H.; Batlaan, O.; McVicar, T.R.; Long, D.; Piao, S.; Liang, W.; Liu, B.; Jin, Z.; Simmons, C.T. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Sci. Rep. 2016, 6, 23284. [Google Scholar] [CrossRef] [Green Version]
Site Code | Site Name | Coordinates | m a.s.l. | Weather Station (Instrumental Period) | Annual Air Temp., Station & °C Per 100 m a.s.l. | Annual Precipitation, mm/year |
---|---|---|---|---|---|---|
MOG | Mongun | 50° N, 89° E | 2300 | Mugur Aksy 50° N, 90° E, 1850 m. a.s.l. (1966–2015) | −2.5 (≈−5.7) | 143 |
KOK | Koksu | 49° N, 86° E | 2200 | Ak-kem, 49° N, 86° E 2056 m a.s.l. (1961–1995) | −1.4 (≈−2.2) | 443 |
HO | Ersin | 50° N, 93° E | 1502 | Ersin 50° N, 95° E, 1104 m a.s.l. (1919–2019) | −3.7 (≈−6.0) | 197 |
CH | Chadan | 51° N, 91° E | 832 | Chadan 51° N, 91° E, 820 m a.s.l. (1945–2019) | −2.1 (≈−2.2) | 235 |
Site | Period | Mean | SD | Conf. −95% | Conf. +95% | t-Value | df | Min iWUE | Max iWUE |
---|---|---|---|---|---|---|---|---|---|
KOK | 1919–2005 | 90.62 | 8.67 | 88.73 | 92.49 | 95.82 | 83 | 68.28 | 111.90 |
MOG | 1919–2016 | 100.10 | 10.34 | 98.02 | 102.18 | 95.79 | 97 | 86.24 | 141.25 |
HO | 1919–2019 | 103.37 | 8.92 | 101.60 | 105.14 | 115.84 | 99 | 90.89 | 137.32 |
CH | 1919–2019 | 99.44 | 6.39 | 98.17 | 100.71 | 155.91 | 99 | 89.09 | 117.63 |
Site | R | R2 | F | df | p-Value | Covari-Ance | Std. Error | Slope | ||
---|---|---|---|---|---|---|---|---|---|---|
(1919–1984) | (1985–2005) | (1919–2005) | ||||||||
KOK | 0.83 | 0.69 | 186 | 1.82 | 0.0001 | 0.03 | 0.06 | 0.21 | 0.87 | 0.29 |
MOG | 0.30 | 0.09 | 8.19 | 1.85 | 0.005 | 0.15 | 0.39 | 0.01 | 1.54 | 0.08 |
HO | 0.31 | 0.09 | 9.30 | 1.85 | 0.003 | 0.20 | 0.44 | −0.01 | 1.07 | 0.07 |
CH | 0.51 | 0.26 | 29.40 | 1.85 | 0.0001 | 0.30 | 0.54 | 0.09 | 0.65 | 0.09 |
Average ASMR | 0.67 | 0.45 | 70.54 | 1.85 | 0.0001 | 0.18 | 0.42 | 0.07 | 1.03 | 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Churakova, O.V.; Fonti, M.V.; Siegwolf, R.T.W.; Saurer, M.; Myglan, V.S. Impact of Recent Climate Change on Water-Use Efficiency Strategies of Larix sibirica in the Altai-Sayan Mountain Range. Forests 2020, 11, 1103. https://doi.org/10.3390/f11101103
Churakova OV, Fonti MV, Siegwolf RTW, Saurer M, Myglan VS. Impact of Recent Climate Change on Water-Use Efficiency Strategies of Larix sibirica in the Altai-Sayan Mountain Range. Forests. 2020; 11(10):1103. https://doi.org/10.3390/f11101103
Chicago/Turabian StyleChurakova (Sidorova), Olga V., Marina V. Fonti, Rolf T. W. Siegwolf, Matthias Saurer, and Vladimir S. Myglan. 2020. "Impact of Recent Climate Change on Water-Use Efficiency Strategies of Larix sibirica in the Altai-Sayan Mountain Range" Forests 11, no. 10: 1103. https://doi.org/10.3390/f11101103
APA StyleChurakova, O. V., Fonti, M. V., Siegwolf, R. T. W., Saurer, M., & Myglan, V. S. (2020). Impact of Recent Climate Change on Water-Use Efficiency Strategies of Larix sibirica in the Altai-Sayan Mountain Range. Forests, 11(10), 1103. https://doi.org/10.3390/f11101103