Fungi and Oomycetes in the Irrigation Water of Forest Nurseries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sampling
2.2. Molecular Analysis
2.3. Bioinformatics
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Myking, T.; Rusanen, M.; Steffenrem, A.; Kjær, E.D.; Jansson, G. Historic transfer of forest reproductive material in the Nordic region: Drivers, scale and implications. Forestry 2016, 89, 325–337. [Google Scholar] [CrossRef] [Green Version]
- Jansen, S.; Konrad, H.; Geburek, T. Crossing borders–European forest reproductive material moving in trade. J. Environ. Manag. 2019, 233, 308–320. [Google Scholar] [CrossRef] [PubMed]
- Forest Europe, 2015. State of Europe’s Forests 2015. Available online: http://www.foresteurope.org/docs/fullsoef2015.pdf (accessed on 19 March 2020).
- Stenlid, J.; Oliva, J.; Boberg, J.B.; Hopkins, A.J.M. Emerging diseases in European forest ecosystems and responses in society. Forests 2011, 2, 486–504. [Google Scholar] [CrossRef]
- Lilja, A.; Poteri, M.; Petäistö, R.-L.; Rikala, R.; Kurkela, T.; Kasanen, R. Fungal diseases in forest nurseries in Finland. Silva Fenn. 2010, 44, 525–545. [Google Scholar] [CrossRef] [Green Version]
- Hong, C.X.; Moorman, G.W. Plant pathogens in irrigation water: Challenges and opportunities. Crit. Rev. Plant Sci. 2005, 24, 189–208. [Google Scholar] [CrossRef]
- Oron, G.; Gillermana, L.; Buriakovskya, N.; Bickd, A.; Gargir, M.; Dolan, Y.; Manor, Y.; Katze, L.; Haginc, J. Membrane technology for advanced wastewater reclamation for sustainable agriculture production. Desalination 2008, 218, 170–180. [Google Scholar] [CrossRef]
- Da Machado, P.S.; Alfenas, A.C.; Coutinho, M.M.; Silva, C.M.; Mounteer, A.H.; Maffia, L.A.; Freitas, R.G.; da Freitas, C.S. Eradication of plant pathogens in forest nursery irrigation water. Plant Dis. 2013, 97, 780–788. [Google Scholar] [CrossRef] [Green Version]
- Oszako, T.; Sikora, K.; Belbahri, L.; Nowakowska, J.A. Molecular detection of oomycetes species in water courses. Folia For. Pol. 2016, 58, 246–251. [Google Scholar] [CrossRef]
- Zappia, R.E.; Huberli, D.; Hardy, G.E.S.J.; Bayliss, K.L. Fungi and oomycetes in open irrigation systems: Knowledge gaps and biosecurity implications. Plant Pathol. 2014, 63, 961–972. [Google Scholar] [CrossRef] [Green Version]
- Pettitt, T.R. Irrigation water and the health of nursery crops. In Biology, Detection, and Management of Plant Pathogens in Irrigation Water; Hong, C., Moorman, G.W., Wohanka, W., Büttner, C., Eds.; The American Phytopathological Society: Saint Paul, MN, USA, 2017; pp. 13–22. [Google Scholar]
- Shearer, C.A.; Descals, E.; Kohlmeyer, B.; Kohlmeyer, J.; Marvanova, L.; Padgett, D.; Porter, D.; Raja, H.A.; Schmit, J.P.; Thorton, H.A.; et al. Fungal biodiversity in aquatic habitats. Biodivers. Conserv. 2007, 16, 49–67. [Google Scholar] [CrossRef]
- Friggens, N.L.; Taylor, J.E.; Koukol, O. Diversity and community composition of aquatic ascomycetes varies between freshwater, estuarine and marine habitats in western Scotland. Mycosphere 2017, 8, 1267–1287. [Google Scholar] [CrossRef]
- Grossart, H.; Van den Wyngaert, S.; Kagami, M. Fungi in aquatic ecosystems. Nat. Rev. Microbiol. 2019, 17, 339–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shokes, F.M.; McCarter, S.M. Occurrence, dissemination and survival of plant pathogens in surface irrigation ponds in Southern Georgia. Phytopathology 1979, 69, 510–516. [Google Scholar] [CrossRef]
- MacDonald, J.D.; Ali-Shtayeh, M.S.; Kabashima, J.; Stites, J. Occurrence of Phytophthora species in recirculated nursery irrigation. Plant Dis. 1994, 78, 607–611. [Google Scholar] [CrossRef]
- Kamoun, S. Molecular genetics of pathogenic oomycetes. Eukaryot. Cell 2003, 2, 191–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werres, S.; Wagner, S.; Brand, T.; Kaminski, K.; Seipp, D. Survival of Phytophtora ramorum in recirculating irrigation water and subsequent infection rhododendron and Viburnum. Plant Dis. 2007, 91, 1034–1044. [Google Scholar] [CrossRef] [Green Version]
- Moorman, G.W.; Gevens, A.J.; Granke, L.L.; Hausbeck, M.K.; Hendricks, K.; Roberts, P.D.; Pettitt, T.R. Sources and distribution systems of irrigation water and their potential risks for crop health. In Biology, Detection, and Management of Plant Pathogens in Irrigation Water; Hong, C., Moorman, G.W., Wohanka, W., Büttner, C., Eds.; The American Phytopathological Society: Saint Paul, MN, USA, 2017; pp. 3–11. [Google Scholar]
- Ivors, K.L.; Moorman, G.W. Oomycete plant pathogens in irrigation water. In Biology, Detection, and Management of Plant Pathogens in Irrigation Water; Hong, C., Moorman, G.W., Wohanka, W., Büttner, C., Eds.; The American Phytopathological Society: Saint Paul, MN, USA, 2017; pp. 57–64. [Google Scholar]
- Johnson, T.W.; Seymour, R.L. Aquatic fungi of Iceland: Comparative morphology of Achlya spiracaulis and Achlya papillosa. Nova Hedwig. 1974, 25, 433–449. [Google Scholar]
- Hughes, K.A.; Lawley, B.; Newsham, K.K. Solar UV-B radiation inhibits the growth of Antarctic terrestrial fungi. Appl. Environ. Microbiol. 2003, 69, 1488–1491. [Google Scholar] [CrossRef] [Green Version]
- Bridge, P.D.; Newsham, K.K.; Denton, G.J. Snow mould caused by a Pythium sp.: A potential vascular plant pathogen in the maritime Antarctic. Plant Pathol. 2008, 57, 1066–1072. [Google Scholar] [CrossRef]
- Tan, T.K.; Pek, C.L. Tropical mangrove leaf litter fungi in Singapore with an emphasis on Halophytophthora. Mycol. Res. 1997, 101, 165–168. [Google Scholar] [CrossRef]
- Nakagiri, A. Ecology and biodiversity of Halophytophthora species. Fungal Divers. 2000, 5, 153–164. [Google Scholar]
- Mirzaee, M.R.; Ploch, S.; Runge, F.; Telle, S.; Nigrelli, L.; Thines, M. A new presumably widespread species of Albugo parasitic to Strigosella spp. (Brassicaceae). Mycol. Prog. 2013, 12, 45–52. [Google Scholar] [CrossRef]
- Schubert, R.; Bahnweg, G.; Nechwatal, J.; Jung, T.; Cooke, D.E.; Duncan, J.M. Detection and quantification of Phytophthora species which are associated with root-rot diseases in European deciduous forests by species-specific polymerase chain reaction. For. Pathol. 1999, 29, 169–188. [Google Scholar]
- Bartnicki-Garcia, S. Cell wall chemistry, morphogenesis and taxonomy of fungi. Ann. Rev. Microbiol. 1968, 22, 87–108. [Google Scholar] [CrossRef]
- Nowakowska, J.A.; Oszako, T.; Borys, M.; Sikora, K.; Kubiak, K.; Olejarski, I. Genetic variability of Phytophthora community in natural water resources assessed with microsatellite DNA markers. Balt. For. 2012, 18, 56–64. [Google Scholar]
- Rytkönen, A.; Lilja, A.; Petäistö, R.L.; Hantula, J. Irrigation water and Phytophtora cactorum in a forest nursery. Scand. J. For. Res. 2008, 23, 404–411. [Google Scholar]
- Thines, M. Phylogeny and evolution of plant pathogenic oomycetes, a global overview. Eur. J. Plant Pathol. 2014, 138, 431–447. [Google Scholar] [CrossRef]
- Redekar, N.R.; Eberhart, J.L.; Parke, J.L. Diversity of Phytophtora, Pythium and Phytophythium species in recycled irrigation water in a container nursery. Phytobiomes J. 2019, 3, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Thines, M.; Kamoun, S. Oomycete–plant coevolution: Recent advances and future prospects. Curr. Opin. Plant Biol. 2010, 13, 427–433. [Google Scholar] [CrossRef]
- Porter, L.D.; Johnson, D.A. Survival of Phytophthora infestans in surface water. Phytopathology 2004, 94, 380–387. [Google Scholar] [CrossRef] [Green Version]
- Bewley, W.F.; Buddin, W. On the fungus flora of glasshouse water supplies in relation to plant disease. Ann. Appl. Biol. 1921, 8, 10–19. [Google Scholar] [CrossRef]
- Jung, T.; Hudler, G.W.; Jensen-Tracy, S.L.; Griffiths, H.M.; Fleischmann, F.; Oßwald, W. Involvement of Phytophthora spp. in the decline of European beech in Europe and the USA. Mycologist 2005, 19, 159–166. [Google Scholar] [CrossRef]
- Jung, T. Beech decline in Central Europe driven by the interaction between Phytophthora infections and climatic extremes. For. Pathol. 2009, 39, 73–94. [Google Scholar] [CrossRef]
- Jung, T.; Orlikowski, L.; Henricot, B.; Abad-Campos, P.; Aday, A.G.; Aguın Casal, O.; Bakonyi, J.; Cacciola, S.O.; Cech1, T.; Chavarriaga, D.; et al. Widespread Phytophthora infestations in European nurseries put forest, semi-naturaland horticultural ecosystems at high risk of Phytophthora diseases. For. Pathol. 2015, 46, 134–163. [Google Scholar] [CrossRef] [Green Version]
- Vitas, A.; Oszako, T.; Nowakowska, J.A.; Sikora, K.; Stankevičienė, A. First records of Phytophthora spp. based on DNA analysis in Lithuania. Folia For. Pol. Ser. A For. 2012, 54, 25–31. [Google Scholar]
- Jankowiak, R.; Stępniewska, H.; Bilański, P. Notes on some Phytopythium and Pythium species occurring in oak forests in southern Poland. Acta Mycol. 2015, 50, 1052. [Google Scholar] [CrossRef]
- Grünwald, N.J.; Goss, E.M.; Press, C.M. Phytophthora ramorum: A pathogen with a remarkably wide host range causing sudden oak death on oaks and ramorum blight on woody ornamentals. Mol. Plant Pathol. 2008, 9, 729–740. [Google Scholar] [CrossRef]
- Ristvey, A.G.; Belayneh, B.E.; Lea-Cox, J.D. A Comparison of irrigation-water containment methods and management strategies between two ornamental production systems to minimize water security threats. Water 2019, 11, 2558. [Google Scholar] [CrossRef] [Green Version]
- Cooke, D.E.L.; Drenth, A.; Duncan, J.M.; Wagels, G.; Brasier, C.M. A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genet. Biol. 2000, 30, 17–32. [Google Scholar] [CrossRef]
- Ihrmark, K.; Bodeker, I.T.M.; Cruz-Martinez, K.; Friberg, H.; Kubartova, A.; Schenck, J.; Strid, Y.; Stenlid, J.; Brandstrom-Durling, M.; Clemmensen, K.E.; et al. New primers to amplify the fungal ITS2 region-evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 2012, 82, 666–677. [Google Scholar] [CrossRef]
- Magurran, A.E. Ecological Diversity and Its Measurement; Princeton University Press: Princeton, NJ, USA, 1988. [Google Scholar]
- Sokal, R.R. and Rohlf, F.J. Biometry: The Principles and Practice of Statistics in Biological Research, 3rd ed.; W.H. Freeman and Co.: New York, NY, USA, 1995. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Calvo-Bado, L.A.; Pettitt, T.R.; Parsons, N.; Petch, G.M.; Morgan, J.A.W.; Whipps, J.M. Spatial and temporal analysis of the microbial community in slow sand filters used for treating horticultural irrigation water. Appl. Environ. Microbiol. 2003, 69, 2116–2125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehert, D.L.; Alsanius, B.; Wohanka, W.; Menzies, J.G.; Utkhede, R. Disinfestation of recirculating nutrient solutions in greenhouse horticulture. Agronomie 2001, 21, 323–339. [Google Scholar]
- Wurzbacher, C.M.; Bärlocher, F.; Grossart, H.P.P. Fungi in lake ecosystems. Aquat. Microb. Ecol. 2010, 59, 125–149. [Google Scholar] [CrossRef] [Green Version]
- Cayanan, F.D.; Zhang, P.; Liu, W.; Dixon, M.; Zheng, Y. Efficacy of chlorine in controlling five common plant pathogens. Hort Sci. 2009, 44, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Loyd, A.L.; Benson, D.M.; Ivors, K.L. Phytophtora populations in nursery irrigation water in relationship to pathogenicity and infection freguency of Rhododendron and Pieris. Plant Dis. 2014, 98, 1213–1220. [Google Scholar] [CrossRef] [Green Version]
- Parke, J.L.; Knaus, B.J.; Fieland, V.J.; Lewis, C.; Grunwald, N.J. Phytophtora community structure analyses in Oregon nurseries inform systems approaches to disease management. Phytopathology 2014, 104, 1052–1062. [Google Scholar] [CrossRef] [Green Version]
- Copes, W.E.; Yang, X.; Hong, C. Phytophtora species recovered from irrigation reservoirs in Mississipi and Alabama nurseries and pathogenicity of three new species. Plant Dis. 2015, 99, 1390–1395. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, C.E.; Burgos-Garay, M.L.; Moorman, G.W.; Hong, C. Pythium and Phytophytium species in two Pennsylvania greenhouse irrigation water tanks. Plant Dis. 2016, 100, 926–932. [Google Scholar] [CrossRef] [Green Version]
- Baldy, V.; Chauvet, E.; Charcosset, J.Y.; Gessner, M.O. Microbial dynamics associated with leaves decomposing in the main stem and flood plain pond of a large river. Aquat. Microb. Ecol. 2002, 28, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Mille-Lindblom, C.; Fischer, H.; Tranvik, L.J. Antagonism between bacteria and fungi: Substrate competition and a possible tradeoff between fungal growth and tolerance towards bacteria. OIKOS 2006, 113, 233–242. [Google Scholar] [CrossRef]
- Datnoff, L.E.; Lacy, G.H.; Fox, J.A. Occurrece and population of Plasmodiospora brasisicae in sediments of irrigation water sources. Plant Dis. 1984, 68, 200–203. [Google Scholar] [CrossRef]
- Grech, N.M.; Rijkenberg, F.H.J. Injection of electrolytically generated chlorine into citrus microirrigation systems for the control of certain waterborne root pathogens. Plant Dis. 1992, 76, 457–461. [Google Scholar] [CrossRef]
- James, R.L.; Gilligan, C.J.; Reedy, V. Evaluation of Root Diseases of Containerized Conifer Seedlings at the Champion Timberlands Nursery, Plains, Montana; Report No. 88-11; Department of Agriculture, Forest Service Timber, Cooperative Forestry and Pest Management: Missoula, MT, USA, 1988; p. 88-11. [Google Scholar]
- Asiegbu, F.O.; Kacprzak, M.; Daniel, G.; Johansson, M.; Stenlid, J.; Mañka, M. Biochemical interactions of conifer seedling roots with Fusarium spp. Can. J. Microbiol. 1999, 45, 923–935. [Google Scholar] [CrossRef]
- Marek, S.M.; Yaghmour, M.A.; Bostock, R.M. Fusarium spp., Cylindrocarpon spp., and environmental stress in the etiology of a canker disease of cold-stored fruit and nut tree seedlings in California. Plant Dis. 2013, 97, 259–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FSC Pesticides Policy. 2020. Available online: https://fsc.org/en/document-centre/documents/resource/208 (accessed on 19 March 2020).
- The List os Pesticides (in Lithuanian). 2020. Available online: http://www.vatzum.lt/uploads/documents/20200213_fungicidai.pdf (accessed on 19 March 2020).
- Sutherland, J.R. Management of pathogens in seed orchards and nurseries. For. Chron. 1991, 67, 481–485. [Google Scholar] [CrossRef] [Green Version]
- Domanski, S.; Kowalski, T. Untypical dieback of the current season’s shoots of Pinus sylvestris in Poland. Eur. J. For. Pathol. 1988, 18, 157–160. [Google Scholar] [CrossRef]
- Hansen, E.M.; Hamm, P.B. Phythium species from forest and muskeg areas of Southeern Alaska. Trans. Br. Mycol. Soc. 1988, 91, 379–384. [Google Scholar] [CrossRef]
- Petäistö, R.L. Botrytis cinerea and Norway Spruce Seedlings in Cold Storage. Balt. For. 2006, 11, 24–33. [Google Scholar]
- James, R.L.; Dumroese, R.K.; Wenny, D.L. Botrytis cinerea carried by Adult Fungus Gnats (Diptera: Sciaridae) in Container Nurseries. Tree Plant. Notes 1995, 46, 48–53. [Google Scholar]
- Jeger, M.; Bragard, C.; Caffier, D.; Candresse, T.; Chatzivassiliou, E.; Dehnen-Schmutz, K.; Gilioli, G.; Gregoire, J.C.; Miret, J.A.J.; MacLeod, A.; et al. Pest categorisation of Gremmeniella abietina. EFSA J. 2017, 15, 5030. [Google Scholar]
- Krol, E.; Machowicz-Stefaniak, Z.; Zimowska, B.; Abramczyk, B.; Zalewska, E. Fungi ihabiting seeds of selected forest tree species. Sylwan 2015, 159, 135–141. [Google Scholar]
- Fradin, E.F.; Thomma, B.P.H.J. Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol. Plant Pathol. 2006, 7, 71–86. [Google Scholar] [CrossRef] [PubMed]
- Beakes, G.W.; Glockling, S.L.; Sekimoto, S. The evolutionary phylogeny of the oomycete “fungi”. Protoplasma 2012, 249, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Thines, M.; Choi, Y.J. Evolution, diversity, and taxonomy of the Peronosporaceae, with focus on the genus Peronospora. Phytopathology 2016, 106, 6–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bush, E.A.; Hong, C.X.; Stromberg, E.L. Fluctuations of Phytophthora and Pythium spp. in components of a recycling irrigation system. Plant Dis. 2003, 87, 1500–1506. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.X.; Gallegly, M.E.; Richardson, P.A.; Kong, P.; Moorman, G.W. Phytophthora irrigata, a new species isolated from irrigation reservoirs and rivers in Eastern United States of America. FEMS Microbiol. Lett. 2008, 285, 203–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lithuanian Statistical Yearbook of Forestry; Ministry of Environment, State Forest Service: Kaunas, Lithuania, 2017; pp. 108–109.
- Mrázková, M.; Čern, K.; Tomšovský, M.; Strnadová, V.; Gregorová, B.; Holub, V.; Pánek, M.; Havrdová, L.; Hejná, M. Occurrence of Phytophthora multivora and Phytophthora plurivora in the Czech Republic. Plant Prot. Sci. 2013, 49, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Bates, M.L.; Stanghellini, M.E. Root rot of hydroponically grown spinach caused by Pythium aphanidermatum and P. dissotocum. Plant Dis. 1984, 68, 989–991. [Google Scholar] [CrossRef]
- Parkunan, V.; Ji, P. Isolation of Pythium litorale from irrigation ponds used for vegetable production and its pathogenicity on squash. Can. J. Plant Pathol. 2013, 35, 415–423. [Google Scholar] [CrossRef]
Forest Nursery | Position | Sampling Date | Mean Temperature, °C * | Mean Precipitation, mm * | Nursery Surface Area, ha | Area of the Water Pond, ha | Plants Produced, Millions |
---|---|---|---|---|---|---|---|
Anykščiai | 55°34′16″ N, 25°6′49″ E | Nov 2017 | 3.5 | 41 | 24.5 | 0.5 | 3.9 |
Dubrava | 54°50′12″ N, 24°2′6″ E | Oct 2017 | 7.6 | 111 | 50.7 | 0.2 | 4.9 |
Kretinga | 56°1′29″ N, 21°13′50″ E | Nov 2017 | 5.8 | 167 | 56.8 | 0.6 | 6.4 |
Trakai | 54°30′8″ N, 24°49′55″ E | Apr 2018 | 10.3 | 41 | 24.7 | 0.6 | 4.2 |
Forest Nursery | Samples | No. of Sequences | No. of Fungal Taxa | Shannon Diversity Index H |
---|---|---|---|---|
Anykščiai | A1 | 1183 | 137 | 3.58 |
A2 | 270 | 37 | 1.77 | |
A3 | 2023 | 172 | 3.68 | |
A4 | 707 | 97 | 3.00 | |
A5 | 106 | 24 | 1.72 | |
All Anykščiai | 4289 | 359 | ||
Dubrava | D1 | 1564 | 131 | 2.55 |
D2 | 2025 | 151 | 2.86 | |
D3 | 1809 | 106 | 3.25 | |
D4 | 1072 | 93 | 3.06 | |
D5 | 1208 | 107 | 3.24 | |
All Dubrava | 7678 | 353 | ||
Kretinga | K1 | 2165 | 192 | 3.96 |
K2 | 1887 | 236 | 4.27 | |
K3 | 413 | 97 | 3.66 | |
K4 | 68 | 14 | 2.55 | |
K5 | 2567 | 230 | 3.79 | |
All Kretinga | 7100 | 487 | ||
Trakai | T1 | 1416 | 71 | 2.71 |
T2 | 694 | 72 | 2.51 | |
T3 | 548 | 81 | 3.29 | |
T4 | 1708 | 73 | 2.04 | |
T5 | 573 | 68 | 2.44 | |
All Trakai | 4939 | 180 | ||
Total | 24,006 | 895 |
Taxon | Phylum | Similarity, % * | Anykščiai, % | Dubrava, % | Kretinga, % | Trakai, % | All, % |
---|---|---|---|---|---|---|---|
Malassezia restricta | Basidiomycota | 727/728 99 | 29.0 ab | 17.9 ab | 5.5 b | 36.9 a | 20.1 |
Pezizella discreta | Ascomycota | 546/551 99 | 0.3 ab | 25.8 a | 8.3 ab | 0.02 b | 10.8 |
Epicoccum nigrum | Ascomycota | 540/540 100 | 2.3 a | 4.0 a | 10.2 a | 1.0 a | 4.9 |
Ramularia vizellae | Ascomycota | 534/534 100 | 1.0 ab | 7.9 a | 0.3 ab | 3.7 b | 3.6 |
Cladosporium cladosporioides | Ascomycota | 547/547 100 | 2.4 a | 0.9 a | 4.1 a | 6.0 a | 3.2 |
Fusarium avenaceum | Ascomycota | 557/557 100 | 1.8 a | 0.9 a | 5.9 a | 0.1 a | 2.4 |
Helgardia anguioides | Ascomycota | 602/617 98 | 0.0 b | 2.6 a | 4.9 a | 0.1 ab | 2.3 |
Unidentified sp. 4248_13 | Chytridiomycota | 166/181 92 | - | - | 0.04 b | 11.1 a | 2.3 |
Unidentified sp. 4248_17 | Ascomycota | 325/325 100 | - | 0.01 b | - | 7.2 a | 1.5 |
Plectosphaerella populi | Ascomycota | 544/551 99 | 0.8 ab | 2.7 a | 0.7 ab | 0.1 b | 1.2 |
Microdochium nivale | Ascomycota | 550/552 99 | 4.8 a | 0.1 a | 0.3 a | 0.9 a | 1.1 |
Aureobasidium pullulans | Ascomycota | 577/577 100 | 0.1 a | 0.2 a | 0.3 a | 4.6 a | 1.1 |
Unidentified sp. 4248_28 | Ascomycota | 506/510 99 | 0.02 b | 3.1 a | 0.2 ab | 0.04 b | 1.1 |
Unidentified sp. 4248_15 | Basidiomycota | 629/629 100 | 1.1 a | 1.5 a | 0.2 a | 1.3 a | 1.0 |
Malassezia globosa | Basidiomycota | 801/802 99 | 1.3 a | 0.4 a | 0.4 a | 2.4 a | 0.9 |
Hypocreales sp. 4248_32 | Ascomycota | 535/535 100 | 0.1 ab | 1.0 a | 2.0 ab | 0.02 b | 0.9 |
Tetracladium marchalianum | Ascomycota | 548/550 99 | 0.5 a | 1.6 a | 0.8 a | 0.1 a | 0.9 |
Itersonilia sp. 4248_29 | Basidiomycota | 630/630 100 | 0.7 a | 0.7 a | 1.7 a | 0.1 a | 0.8 |
Unidentified sp. 4248_26 | Ascomycota | 728/885 82 | 4.6 a | 0.03 a | 0.1 a | - | 0.8 |
Paraphaeosphaeria michotii | Ascomycota | 578/578 100 | - | - | 2.8 | - | 0.8 |
Cadophora sp. 4248_34 | Ascomycota | 541/552 98 | 0.1 a | 2.2 a | 0.2 a | 0.1 a | 0.7 |
Sphaerulina rhododendricola | Ascomycota | 525/534 98 | 1.9 a | 0.2 ab | 0.03 b | 1.8 ab | 0.7 |
Cystofilobasidium capitatum | Basidiomycota | 606/607 99 | 0.2 a | 0.9 a | 1.5 a | 0.1 a | 0.7 |
Unidentified sp. 4248_40 | Basidiomycota | 549/655 84 | - | - | 0.03 b | 3.3 a | 0.7 |
Chalara sp. 4248_37 | Ascomycota | 562/563 99 | 0.1 a | 0.2 a | 1.8 a | 0.2 a | 0.6 |
Malassezia sympodialis | Basidiomycota | 638/638 100 | 1.0 a | 0.3 a | 0.2 a | 1.3 a | 0.6 |
Clitocybe robusta | Basidiomycota | 679/679 100 | 3.0 a | 0.1 a | 0.1 a | - | 0.5 |
Pilidium sp. 4248_51 | Ascomycota | 468/468 100 | 0.1 a | 0.03 a | 1.8 a | - | 0.5 |
Alternaria alternata | Ascomycota | 566/566 100 | 0.7 a | 0.5 a | 0.7 a | 0.2 a | 0.5 |
Ophiocordyceps sinensis | Ascomycota | 581/587 99 | 0.02 a | 0.01 a | 1.7 a | - | 0.5 |
Total of 30 taxa | 57.9 | 75.7 | 56.7 | 82.5 | 67.7 |
Taxon | Reference | Similarity, % * | Anykščiai, % | Dubrava, % | Kretinga, % | Trakai, % | All, % | |
---|---|---|---|---|---|---|---|---|
Phytopythium cf. citrinum | KC602485 | 885/892 | 99 | 1.8186 a | 0.0005 a | - | 0.0810 a | 0.358 |
Phytophthora gallica | KF286890 | 853/855 | 99 | - | 0.0013 a | 0.0282 a | - | 0.050 |
Peronospora sp. 4248_322 | KP271924 | 848/870 | 97 | - | - | - | 0.2227 | 0.046 |
Saprolegnia sp. 4248_442 | FJ794908 | 726/727 | 99 | - | 0.0003 a | 0.0704 a | - | 0.029 |
Saprolegnia hypogyna | AY647188 | 734/738 | 99 | - | 0.0007 | - | - | 0.021 |
Achlya oligacantha | JQ974990 | 707/709 | 99 | - | - | 0.0141 | - | 0.021 |
Pythium mamillatum | HQ643687 | 412/412 | 100 | 0.0466 a | - | - | 0.0607 a | 0.021 |
Saprolegnia sp. 4248_591 | KP189436 | 708/710 | 99 | - | 0.0004 a | 0.0141 a | - | 0.017 |
Phytopythium litorale | HQ643386 | 964/977 | 99 | - | 0.0004 | - | - | 0.012 |
Phytophthora cactorum | GU111587 | 875/877 | 99 | - | - | 0.0423 | - | 0.012 |
Phytopythium sp. 4248_776 | HQ643397 | 832/833 | 99 | 0.0699 | - | - | - | 0.012 |
Pythium sp. 4248_969 | AY598692 | 894/924 | 97 | 0.0699 | - | - | - | 0.012 |
Unidentified sp. 4248_999 | MK568464 | 106/116 | 91 | - | - | 0.0282 | - | 0.008 |
Saprolegnia australis | MK046073 | 722/723 | 99 | - | 0.0001 a | 0.0141 a | - | 0.008 |
Pythium dissotocum | AY598634 | 864/869 | 99 | - | - | 7.4 | - | 0.008 |
Pythium sp. 4248_1061 | JF431913 | 784/828 | 95 | - | 0.0003 | - | - | 0.008 |
Unidentified sp. 4248_1222 | KJ716869 | 780/862 | 90 | - | - | 0.0282 | - | 0.008 |
Pythium sp. 4248_1272 | AY598692 | 887/923 | 96 | - | - | 0.0282 | - | 0.008 |
Unidentified sp. 4248_1021 | AY210996 | 47/47 | 100 | - | - | 0.0282 | - | 0.008 |
Unidentified sp. 4248_1185 | EU240072 | 175/178 | 98 | 0.0466 | - | - | - | 0.008 |
Saprolegnia sp. 4248_1361 | FJ794906 | 728/728 | 100 | 0.0466 | - | - | - | 0.008 |
Phytophthora plurivora | KT383059 | 832/832 | 100 | - | 0.0001 | - | - | 0.004 |
Phytopythium sp. 4248_858 | KC602493 | 187/191 | 98 | - | 0.0001 | - | - | 0.004 |
All oomycetes | 2.0984 | 0.0042 | 0.3803 | 0.3645 | 0.696 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marčiulynas, A.; Marčiulynienė, D.; Lynikienė, J.; Gedminas, A.; Vaičiukynė, M.; Menkis, A. Fungi and Oomycetes in the Irrigation Water of Forest Nurseries. Forests 2020, 11, 459. https://doi.org/10.3390/f11040459
Marčiulynas A, Marčiulynienė D, Lynikienė J, Gedminas A, Vaičiukynė M, Menkis A. Fungi and Oomycetes in the Irrigation Water of Forest Nurseries. Forests. 2020; 11(4):459. https://doi.org/10.3390/f11040459
Chicago/Turabian StyleMarčiulynas, Adas, Diana Marčiulynienė, Jūratė Lynikienė, Artūras Gedminas, Miglė Vaičiukynė, and Audrius Menkis. 2020. "Fungi and Oomycetes in the Irrigation Water of Forest Nurseries" Forests 11, no. 4: 459. https://doi.org/10.3390/f11040459
APA StyleMarčiulynas, A., Marčiulynienė, D., Lynikienė, J., Gedminas, A., Vaičiukynė, M., & Menkis, A. (2020). Fungi and Oomycetes in the Irrigation Water of Forest Nurseries. Forests, 11(4), 459. https://doi.org/10.3390/f11040459