Impact of Roadside Drying on Delivered Costs for Eucalyptus globulus Logging Residue and Whole Trees Supplying a Hypothetical Energy Plant in Western Australia Using a Linear-Programming Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Description
2.2. Forest Biomass Supply Chains
2.3. Drying Curves
2.4. Optimisation Model
- harvesting and primary transport of logs and FB to roadside;
- drying of logs and FB at roadside;
- secondary transport of logs and FB chips.
- Collection and transport of logs and FB to roadside occur at the time of harvest; this cost varies by supply area and depends on the MC of logs and FB;
- Drying cost only depends on the length of storage of logs and FB at the roadside;
- Chipping cost depends on the MC of logs and FB. The assumption is that chipping of materials with a reduced MC increases blade tear-out, increasing their maintenance and replacement costs [25].
2.5. Sensitivity Analysis
3. Results
3.1. Storage Scenarios
3.2. Truck Capacity Utilisation
3.3. Transport Distance
3.4. Moisture Content
3.5. Storage Duration
3.6. Sensitivity Analysis
3.6.1. Harvest/Primary Transport Costs
3.6.2. Storage Losses
3.6.3. Moisture Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rothe, A.; Moroni, M.; Neyland, M.; Wilnhammer, M. Current and potential use of forest biomass for energy in Tasmania. Biomass Bioenergy 2015, 80, 162–172. [Google Scholar] [CrossRef]
- Repo, A.; Känkänen, R.; Tuovinen, J.-P.; Antikainen, R.; Tuomi, M.; Vanhala, P.; Liski, J. Forest bioenergy climate impact can be improved by allocating forest residue removal. GCB Bioenergy 2012, 4, 202–212. [Google Scholar] [CrossRef] [Green Version]
- Björheden, R. Drivers behind the development of forest energy in Sweden. Biomass Bioenergy 2006, 30, 289–295. [Google Scholar] [CrossRef]
- International Renewable Energy Agency. Biomass for Power Generation; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2012. [Google Scholar]
- Stucley, C.; Schuck, S.; Sims, R.; Bland, J.; Marino, B.; Borowitzka, M.; Abadi, A.; Bartle, J.; Giles, R.; Thomas, Q. Bioenergy in Australia: Status and Opportunities; Bioenergy Australia: St Leonards, NSW, Australia, 2012. [Google Scholar]
- Department of the Environment and Energy. Australian Energy Update 2017; Commonwealth of Australia: Canberra, Australia, 2017.
- Caputo, A.C.; Palumbo, M.; Pelagagge, P.M.; Scacchia, F. Economics of biomass energy utilization in combustion and gasification plants: Effects of logistic variables. Biomass Bioenergy 2005, 28, 35–51. [Google Scholar] [CrossRef]
- Kühmaier, M.; Erber, G. Research trends in European forest fuel supply chains: A review of the last ten years (2007–2016)–part two: Comminution, transport & logistics. Croat. J. For. Eng. 2018, 39, 139–152. [Google Scholar]
- Ralevic, P.; Ryans, M.; Cormier, D. Assessing forest biomass for bioenergy: Operational challenges and cost considerations. For. Chron. 2010, 86, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Richardson, J.; Björheden, R.; Hakkila, P.; Lowe, A.T.; Smith, C.T. (Eds.) Bioenergy from Sustainable Forestry: Guiding Principles and Practice; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Strandgard, M.; Mitchell, R. Comparison of cost, productivity and residue yield of cut-to-length and fuel-adapted harvesting in a Pinus radiata D.Don final harvest in Western Australia. N. Z. J. For. Sci. 2019, 49. [Google Scholar] [CrossRef] [Green Version]
- Adebayo, A.B.; Han, H.-S.; Johnson, L. Productivity and cost of cut-to-length and whole-tree harvesting in a mixed-conifer stand. For. Prod. J. 2007, 57, 59. [Google Scholar]
- Ackerman, P.; Talbot, B.; Dahlin, B. Biomass Harvesting and Logistics. In Bioenergy from Wood: Sustainable Production in the Tropics; Seifert, T., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 109–135. [Google Scholar] [CrossRef]
- Röser, D.; Mola-Yudego, B.; Sikanen, L.; Prinz, R.; Gritten, D.; Emer, B.; Väätäinen, K.; Erkkilä, A. Natural drying treatments during seasonal storage of wood for bioenergy in different European locations. Biomass Bioenergy 2011, 35, 4238–4247. [Google Scholar] [CrossRef]
- Erber, G.; Kanzian, C.; Stampfer, K. Modelling natural drying of European beech (Fagus sylvatica L.) logs for energy based on meteorological data. Scand. J. For. Res. 2016, 31, 294–301. [Google Scholar] [CrossRef]
- Strandgard, M.; Turner, P.; Mirowski, L.; Acuna, M. Potential application of overseas forest biomass supply chain experience to reduce costs in emerging Australian forest biomass supply chains—A literature review. Aust. For. 2019, 1–9. [Google Scholar] [CrossRef]
- Zamora-Cristales, R.; Sessions, J.; Marrs, G. Economic implications of grinding, transporting, and pretreating fresh versus aged forest residues for biofuel production. Can. J. For. Res. 2017, 47, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Lock, P.; Whittle, L. Future Opportunities for Using Forest and Sawmill Residues in Australia; ABARES: Canberra, Australia, 2018. [Google Scholar]
- Ghaffariyan, M.R.; Brown, M.; Acuna, M.; Sessions, J.; Kuehmaier, M.; Wiedemann, J. Biomass harvesting in Eucalyptus plantations in Western Australia. South. For. 2011, 73, 149–154. [Google Scholar] [CrossRef]
- Fung, P.Y.H.; Kirschbaum, M.U.F.; Raison, R.J.; Stucley, C. The potential for bioenergy production from Australian forests, its contribution to national greenhouse targets and recent developments in conversion processes. Biomass Bioenergy 2002, 22, 223–236. [Google Scholar] [CrossRef]
- Ximenes, F.; Stephens, M.; Brown, M.; Law, B.; Mylek, M.; Schirmer, J.; Sullivan, A.; McGuffog, T. Mechanical fuel load reduction in Australia: A potential tool for bushfire mitigation. Aust. For. 2017, 80, 88–98. [Google Scholar] [CrossRef]
- Taylor, J.; Warnken, M. Wood Recovery and Recycling: A Source Book for Australia; Project No: PNA017-0708; Forests and Wood Products Australia: Melbourne, Australia, 2008; p. 45. [Google Scholar]
- Taskhiri, M.S.; Jeswani, H.; Geldermann, J.; Azapagic, A. Optimising cascaded utilisation of wood resources considering economic and environmental aspects. Comput. Chem. Eng. 2019, 124, 302–316. [Google Scholar] [CrossRef]
- Acuna, M.; Anttila, P.; Sikanen, L.; Prinz, R.; Asikainen, A. Predicting and controlling moisture content to optimise forest biomass logistics. Croat. J. For. Eng. 2012, 33, 225–238. [Google Scholar]
- Asikainen, A.; Kuitto, P.-J. Cost factors in wood fuel procurement. N. Z. J. For. Sci. 2000, 30, 79–87. [Google Scholar]
- Nilsson, B.; Nilsson, D.; Thörnqvist, T. Distributions and losses of logging residues at clear-felled areas during extraction for bioenergy: Comparing dried- and fresh-stacked method. Forests 2015, 6, 4212–4227. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, C.; Macalpine, W.; Yates, N.E.; Shield, I. Dry matter losses and methane emissions during wood chip storage: The impact on full life cycle greenhouse gas savings of short rotation coppice willow for heat. BioEnergy Res. 2016, 9, 820–835. [Google Scholar] [CrossRef] [Green Version]
- Striūgas, N.; Vorotinskienė, L.; Paulauskas, R.; Navakas, R.; Džiugys, A.; Narbutas, L. Estimating the fuel moisture content to control the reciprocating grate furnace firing wet woody biomass. Energy Convers. Manag. 2017, 149, 937–949. [Google Scholar] [CrossRef]
- Downham, R.; Gavran, M. Australian Plantation Statistics 2020 Update; ABARES: Canberra, Australia, 2020. [Google Scholar]
- ACIL Allen Consulting. Peak Demand and Energy Forecasts; Australian Energy Market Operator: Melbourne, Australia, 2017; p. 111. [Google Scholar]
- Strandgard, M.; Béland, M. Economics of forest biomass for bioenergy: Potential site preparation savings from coarse woody harvesting residue removal in a short-rotation Eucalyptus globulus (Labill.) plantation. Silva Balc. 2021, 22, 45–55. [Google Scholar] [CrossRef]
- Acuna, M.; Mirowski, L.; Ghaffariyan, M.R.; Brown, M. Optimising transport efficiency and costs in Australian wood chipping operations. Biomass Bioenergy 2012, 46, 291–300. [Google Scholar] [CrossRef]
- Pottie, M.; Guimier, D. Harvesting and Transport of Logging Residuals and Residues; FERIC Special Report SR-33; Forest Engineering Research Institute of Canada: Pointe-Claire, QC, Canada, 1986; p. 100.
- Paul, K.; Polglase, P.; Snowdon, P.; Theiveyanathan, T.; Raison, J.; Grove, T.; Rance, S. Calibration and uncertainty analysis of a carbon accounting model to stem wood density and partitioning of biomass for Eucalyptus globulus and Pinus radiata. New For. 2006, 31, 513–533. [Google Scholar] [CrossRef]
- Núñez-Regueira, L.; Proupín-Castiñeiras, J.; Rodríguez-Añón, J.A. Energy evaluation of forest residues originated from Eucalyptus globulus Labill in Galicia. Bioresour. Technol. 2002, 82, 5–13. [Google Scholar] [CrossRef]
- Mateos, E.; Ormaetxea, L. Sustainable Renewable Energy by Means of Using Residual Forest Biomass. Energies 2019, 12, 13. [Google Scholar] [CrossRef] [Green Version]
- Strandgard, M.; Mitchell, R.; Wiedemann, J. Comparison of Productivity, Cost and Chip Quality of Four Balanced Harvest Systems Operating in a Eucalyptus globulus Plantation in Western Australia. Croat. J. For. Eng. 2019, 40, 39–48. [Google Scholar]
- Acuna, M.; Sessions, J.; Zamora, R.; Boston, K.; Brown, M.; Ghaffariyan, M.R. Methods to manage and optimize forest biomass supply chains: A review. Curr. For. Rep. 2019, 5, 124–141. [Google Scholar] [CrossRef]
- Ghaffariyan, M.R.; Acuna, M.; Brown, M. Analysing the effect of five operational factors on forest residue supply chain costs: A case study in Western Australia. Biomass Bioenergy 2013, 59, 486–493. [Google Scholar] [CrossRef]
- Strandgard, M.; Mitchell, R.; Acuna, M.; Ghaffariyan, M.; Brown, M. Control and Manage the Moisture Content of Logs and Biomass to Maximise Benefits along the Wood Supply Chain. Forest and Wood Products Australia (FWPA): Melbourne, Australia, 2020. [Google Scholar]
- Acuna, M. Timber and biomass transport optimization: A review of planning issues, solution techniques and Decision Support Tools. Croat. J. For. Eng. 2017, 38, 279–290. [Google Scholar]
- Strandgard, M.; Acuna, M.; Turner, P.; Mirowski, L. Use of modelling to compare the impact of roadside drying of Pinus radiata D.Don logs and logging residues on delivered costs using high capacity trucks in Australia. Biomass Bioenergy 2021, 147, 106000. [Google Scholar] [CrossRef]
- Thörnqvist, T. Drying and storage of forest residues for energy production. Biomass 1985, 7, 125–134. [Google Scholar] [CrossRef]
- Filbakk, T.; Høibø, O.; Dibdiakova, J.; Nurmi, J. Modelling moisture content and dry matter loss during storage of logging residues for energy. Scand. J. For. Res. 2011, 26, 267–277. [Google Scholar] [CrossRef]
- Pecenka, R.; Lenz, H.; Hering, T. Options for Optimizing the Drying Process and Reducing Dry Matter Losses in Whole-Tree Storage of Poplar from Short-Rotation Coppices in Germany. Forests 2020, 11, 374. [Google Scholar] [CrossRef] [Green Version]
- Belbo, H.; Talbot, B. System analysis of ten supply chains for whole tree chips. Forests 2014, 5, 2084–2105. [Google Scholar] [CrossRef] [Green Version]
- Hall, P.; Gigler, J.K.; Sims, R.E.H. Delivery systems of forest arisings for energy production in New Zealand. Biomass Bioenergy 2001, 21, 391–399. [Google Scholar] [CrossRef]
- Greene, W.D.; Cutshall, J.B.; Dukes, C.C.; Baker, S.A. Improving Woody Biomass Feedstock Logistics by Reducing Ash and Moisture Content. BioEnergy Res. 2014, 7, 816–823. [Google Scholar] [CrossRef]
- Sessions, J.; Tuers, K.; Boston, K.; Zamora, R.; Anderson, R. Pricing forest biomass for power generation. West. J. Appl. For. 2013, 28, 51–56. [Google Scholar] [CrossRef]
- Batidzirai, B.; van der Hilst, F.; Meerman, H.; Junginger, M.H.; Faaij, A.P. Optimization potential of biomass supply chains with torrefaction technology. Biofuels Bioprod. Biorefin. 2014, 8, 253–282. [Google Scholar] [CrossRef]
- Lehtikangas, P. Quality properties of pelletised sawdust, logging residues and bark. Biomass Bioenergy 2001, 20, 351–360. [Google Scholar] [CrossRef]
- Allen, J.; Browne, M.; Hunter, A.; Boyd, J.; Palmer, H. Logistics management and costs of biomass fuel supply. Int. J. Phys. Distrib. Logis. Manag. 1998, 28, 463–477. [Google Scholar] [CrossRef]
- Singh, J.; Panesar, B.S.; Sharma, S.K. A mathematical model for transporting the biomass to biomass based power plant. Biomass Bioenergy 2010, 34, 483–488. [Google Scholar] [CrossRef]
- Mol, R.; Jogems, M.; Van Beek, P.; Gigler, J. Simulation and optimization of the logistics of biomass fuel collection. NJAS Wagening. J. Life Sci. 1997, 45, 217–228. [Google Scholar] [CrossRef]
- Rodriguez, L.C.; May, B.; Herr, A.; O’Connell, D. Biomass assessment and small scale biomass fired electricity generation in the Green Triangle, Australia. Biomass Bioenergy 2011, 35, 2589–2599. [Google Scholar] [CrossRef]
- Ghaffariyan, M.R.; Spinelli, R.; Magagnotti, N.; Brown, M. Integrated harvesting for conventional log and energy wood assortments: A case study in a pine plantation in Western Australia. South. For. 2015, 77, 249–254. [Google Scholar] [CrossRef]
- Brooksbank, K.; Lever, M.; Paterson, H.; Weybury, M. Biomass Scoping Study: Opportunities for Agriculture in Western Australia; Department of Agriculture and Food: Perth, WA, Australian, 2014.
- Rentizelas, A.A.; Tolis, A.J.; Tatsiopoulos, I.P. Logistics issues of biomass: The storage problem and the multi-biomass supply chain. Renew. Sustain. Energy Rev. 2009, 13, 887–894. [Google Scholar] [CrossRef] [Green Version]
- Gan, J. Supply of biomass, bioenergy, and carbon mitigation: Method and application. Energy Policy 2007, 35, 6003–6009. [Google Scholar] [CrossRef]
- Berry, M.D.; Sessions, J. The economics of biomass logistics and conversion facility mobility: An Oregon case study. Appl. Eng. Agric. 2018, 34, 57–72. [Google Scholar] [CrossRef] [Green Version]
- O’Connell, A.; Grove, T.; Mendham, D.; Corbeels, M.; McMurtrie, R.; Shammas, K.; Rance, S. Impacts of inter-rotation site management on nutrient stores and fluxes and growth of eucalypt plantations in southwestern Australia. In Site Management and Productivity in Tropical Plantation Forests, Congo and China; Center for International Forestry Research: Bogor Barat, Indonesia, 2004; p. 77. [Google Scholar]
- Chen, C.R.; Xu, Z.H. Soil carbon and nitrogen pools and microbial properties in a 6-year-old slash pine plantation of subtropical Australia: Impacts of harvest residue management. For. Ecol. Manag. 2005, 206, 237–247. [Google Scholar] [CrossRef]
- Abbas, D.; Current, D.; Phillips, M.; Rossman, R.; Hoganson, H.; Brooks, K.N. Guidelines for harvesting forest biomass for energy: A synthesis of environmental considerations. Biomass Bioenergy 2011, 35, 4538–4546. [Google Scholar] [CrossRef]
- Anonymous. Code of Practice for Timber Production 2014; Department of Environment and Primary Industries: Melbourne, VIC, Australia, 2014.
- Achat, D.L.; Fortin, M.; Landmann, G.; Ringeval, B.; Augusto, L. Forest soil carbon is threatened by intensive biomass harvesting. Sci. Rep. 2015, 5, 15991. [Google Scholar] [CrossRef] [PubMed]
- Shammas, K.; O’Connell, A.M.; Grove, T.S.; McMurtrie, R.; Damon, P.; Rance, S.J. Contribution of decomposing harvest residues to nutrient cycling in a second rotation Eucalyptus globulus plantation in south-western Australia. Biol. Fertil. Soils 2003, 38, 228–235. [Google Scholar] [CrossRef]
- Nilsson, D.; Nilsson, B.; Thörnqvist, T.; Bergh, J. Amount of nutrients extracted and left behind at a clear-felled area using the fresh-stacked and dried-stacked methods of logging residue extraction. Scand. J. For. Res. 2018, 33, 437–445. [Google Scholar] [CrossRef] [Green Version]
- Nurmi, J. The storage of logging residue for fuel. Biomass Bioenergy 1999, 17. [Google Scholar] [CrossRef]
- Brunberg, T.; Eliasson, L. Productivity Standards for Forwarding of Logging Residues; Skogforsk: Uppsala, Sweden, 2011. [Google Scholar]
- Eliasson, L.; Nordén, B. A New Grapple with Potential to Increase Productivity; Skogforsk: Uppsala, Sweden, 2010. [Google Scholar]
- Visser, R.; Berkett, H.; Spinelli, R. Determining the effect of storage conditions on the natural drying of radiata pine logs for energy use. N. Z. J. For. Sci. 2014, 44, 3. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Pan, F. Effect of in-woods storage of unprocessed logging residue on biomass feedstock quality. For. Prod. J. 2013, 63, 119–124. [Google Scholar] [CrossRef]
- Kofman, P.D.; Kent, T. Harvesting and Processing Forest Biomass for Energy Production in Ireland: The Forest Energy 2006 Programme; Coford: Dublin, Ireland, 2007. [Google Scholar]
- Stanturf, J.A.; Kellison, R.C.; Broerman, F.; Jones, S.B. Innovation and forest industry: Domesticating the pine forests of the southern United States, 1920–1999. For. Policy Econ. 2003, 5, 407–419. [Google Scholar] [CrossRef]
- Hewitt, R.; Sowlati, T.; Paradi, J.C. Information Technology Adoption in US and Canadian Forest Products Industries. For. Prod. J. 2011, 61, 161–169. [Google Scholar] [CrossRef]
- Ghaffariyan, M.R.; Sessions, J.; Brown, M. Roadside chipping in a first thinning operation for radiata pine in South Australia. Croat. J. For. Eng. 2013, 34, 91–101. [Google Scholar]
- Calviño-Cancela, M.; van Etten, E.J.B. Invasive potential of Eucalyptus globulus and Pinus radiata into native eucalypt forests in Western Australia. For. Ecol. Manag. 2018, 424, 246–258. [Google Scholar] [CrossRef]
- Janze, P. Biomass Storage Pile Basics. Available online: http://www.advancedbiomass.com/2011/11/biomass-storage-pile-basics/ (accessed on 22 September 2020).
- Fernandez-Lacruz, R.; Eriksson, A.; Bergström, D. Simulation-Based Cost Analysis of Industrial Supply of Chips from Logging Residues and Small-Diameter Trees. Forests 2020, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- Roos, C.J. Biomass Drying and Dewatering for Clean Heat & Power; Northwest CHP Application Center Olympia: Washington, DC, USA, 2008. [Google Scholar]
- Malico, I.; Pereira, R.N.; Gonçalves, A.C.; Sousa, A.M. Current status and future perspectives for energy production from solid biomass in the European industry. Renew. Sustain. Energy Rev. 2019, 112, 960–977. [Google Scholar] [CrossRef]
- Shabani, N.; Akhtari, S.; Sowlati, T. Value chain optimization of forest biomass for bioenergy production: A review. Renew. Sustain. Energy Rev. 2013, 23, 299–311. [Google Scholar] [CrossRef]
Parameter | Units | Logging Residue | Whole Trees | |
---|---|---|---|---|
Basic density (0% Moisture Content (MC) weight/solid volume) 1 | kg/m3 | 450 | 500 | |
Bulk density (chips) (0% MC weight/bulk volume) 2 | kg/m3 | 189 | 210 | |
Bulk volume (m3) to solid volume (m3) ratio | 2.38 | 2.38 | ||
Solid content 2 | 0.42 | 0.42 | ||
Proportion of FB extracted 2 * | % | Conventional: 40 | 95 | |
Fuel-adapted: 70 | ||||
FB yield 2 | m3/ha | Conventional: 45 | 250 | |
Fuel-adapted: 84 | ||||
Delivered MC range | % | No storage | MC at harvest | MC at harvest |
Two months | ≤48 | ≤48 | ||
Optimum 3 | ≤35 | ≤35 | ||
Material loss rate 4 | %/month | 1.0 | 1.0 | |
Harvest age 5 | years | 10 | 10 | |
Energy content @ 0% MC | GJ/t | 19.0 6 | 19.0 7 | |
One-way distance | km | 25–150 5 | 25–150 5 | |
Interest rate 5 | %/month | 0.5 | 0.5 | |
Harvest and transport to roadside 8 | $/t | - | 6.00 | |
Transport to roadside 8 | $/t | Conventional | 13.00 | - |
Fuel-adapted | 9.40 | - | ||
Transport rate 9 | $/t-km | 25 km | 0.20 | 0.20 |
50 km | 0.15 | 0.15 | ||
75 km | 0.15 | 0.15 | ||
100 km | 0.14 | 0.14 | ||
125 km | 0.13 | 0.13 | ||
150 km | 0.12 | 0.12 | ||
Chipping cost 10 | $/t | MC > 50% | 9.5 | 9.5 |
MC 36–50% | 9.7 | 9.7 | ||
MC ≤ 35% | 10.0 | 10.0 | ||
Term | Definition |
---|---|
Sets | |
i, j | Periods, i I = {1, …, 24}, j J = {13, …, 24} |
s | Supply areas, s S |
Parameters | |
BFs | Biomass factor—ratio between solid volume of LR and solid volume of logs produced in each supply area s |
LVFLR | Loose volume factor—loose volume of chips produced from 1 m3 solid of LR |
LVFRW | Loose volume factor—loose volume of chips produced from 1 m3 solid of logs |
SCRWs | Solid volume of logs available in supply area s (m3 s) |
EDj | Energy demand of energy plant in period j (energy unit, MWh) |
ECLRij | Energy content of chips produced in period j from LR stacked at the roadside from period i (energy unit per loose volume of chips, e.g., MWh/m3 L) |
ECRWij | Energy content of chips produced at static chipmill in period j from logs stacked at the roadside from period i (energy unit per loose volume of chips, e.g., MWh/m3 L) |
MCRWij | Moisture content of logs stacked at the roadside from period i to period j (%) |
MCLRij | Moisture content of LR stacked at the roadside from period i to period j (%) |
MinMCRW, MinMCLR | Minimum moisture content of logs and LR delivered to energy plant, respectively (%) |
MaxMCRW, MaxMCLR | Maximum moisture content of logs and LR delivered to energy plant, respectively (%) |
CTRWijs, CTLRijs | Transport cost for logs and chips from LR stacked at the roadside in supply area s and period i and delivered to the energy plant in period j, respectively ($/m3 s for logs and $/m3 L for chips from LR) |
CHRWis, CHLRis | Harvest and primary transport cost for logs and LR produced in period i and supply area s ($/m3 s) |
CDRWij, CDLRij | Drying cost for logs and LR stacked at the roadside from period i to period j ($/m3 s) |
CCHRWij, CCHLRij | Chipping cost for logs and LR stacked at the roadside from period i to period j ($/m3 s for logs and $/m3 L for LR) |
Variables | |
Xijs | Decision variable. Solid volume of logs harvested in period i, and dried at the roadside until period j in supply area s (m3 s) |
Yijs | Decision variable. Solid volume of LR collected in period i, and dried at the roadside until period j in supply area s (m3 s) |
X’ijs | Xijs × LVFRW Loose volume of chips produced from logs harvested in period i, and dried at the roadside until period j in supply area s (m3 L) |
Y’ijs | Yijs × LVFLR Loose volume of chips produced from LR collected in period i, and dried at the roadside until period j in supply area s (m3 L) |
Delivered Cost ($/MWh) (% Change) | |||
---|---|---|---|
Scenario | FB Type | 5% MC Decrease | 5% MC Increase |
OS | LR conventional | 10.81 (−4.0) | 11.78 (4.7) |
LR fuel-adapted | 8.84 (−4.3) | 9.69 (5.0) | |
Whole trees | 7.43 (−5.8) | 8.39 (6.4) | |
TM | LR conventional | 12.52 (−3.3) | 13.46 (3.9) |
LR fuel-adapted | 10.38 (−3.5) | 11.21 (4.2) | |
Whole trees | 8.71 (−8.2) | 9.70 (2.2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strandgard, M.; Taskhiri, M.S.; Acuna, M.; Turner, P. Impact of Roadside Drying on Delivered Costs for Eucalyptus globulus Logging Residue and Whole Trees Supplying a Hypothetical Energy Plant in Western Australia Using a Linear-Programming Model. Forests 2021, 12, 455. https://doi.org/10.3390/f12040455
Strandgard M, Taskhiri MS, Acuna M, Turner P. Impact of Roadside Drying on Delivered Costs for Eucalyptus globulus Logging Residue and Whole Trees Supplying a Hypothetical Energy Plant in Western Australia Using a Linear-Programming Model. Forests. 2021; 12(4):455. https://doi.org/10.3390/f12040455
Chicago/Turabian StyleStrandgard, Martin, Mohammad Sadegh Taskhiri, Mauricio Acuna, and Paul Turner. 2021. "Impact of Roadside Drying on Delivered Costs for Eucalyptus globulus Logging Residue and Whole Trees Supplying a Hypothetical Energy Plant in Western Australia Using a Linear-Programming Model" Forests 12, no. 4: 455. https://doi.org/10.3390/f12040455
APA StyleStrandgard, M., Taskhiri, M. S., Acuna, M., & Turner, P. (2021). Impact of Roadside Drying on Delivered Costs for Eucalyptus globulus Logging Residue and Whole Trees Supplying a Hypothetical Energy Plant in Western Australia Using a Linear-Programming Model. Forests, 12(4), 455. https://doi.org/10.3390/f12040455