Effects of Moderate Nitrate and Low Sulphate Depositions on the Status of Soil Base Cation Pools and Recent Mineral Soil Acidification at Forest Conversion Sites with European Beech (“Green Eyes”) Embedded in Norway Spruce and Scots Pine Stands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Forest History and Stand Description
2.3. ICP Forests Monitoring between 2001–2018
2.4. Vegetation Survey
2.5. Litter Fall, Forest Floor, and Soil Sampling
2.6. Laboratory Methods
2.7. Data Analysis
2.7.1. Vegetation Data
2.7.2. Litter Fall, Soil Solution, Forest Floor, and Mineral Soil Data
2.7.3. Fractional Annual Losses and Macronutrient Residence Time in Forest Floor
3. Results
3.1. Macronutrient Fluxes at the Monitoring Sites in Bulk Precipitation, Throughfall, and Stemflow between 2001–2018
3.2. Solution Chemistry at the Monitoring Sites
3.2.1. pH and Electrical Conductivity
3.2.2. Macronutrient Concentrations in Forest Floor and Soil Solution between 2001–2018
3.3. Canopy Characteristics and Litter Fall at the Exploration Sites
3.4. Macronutrient Stocks in Tree and Herb Layer Biomass, Forest Floor and Mineral Soil at the Exploration Sites
3.5. Forest Floor Organic Matter Turnover and Related Macronutrient Residence Time at the Exploration Sites
3.6. Predicted Weathering Rate, Predicted Tree Uptake, and Input–Output Balances
4. Discussion
4.1. Moderate N Deposition at GE and CS
4.2. Forest Floor Organic Matter and Macronutrient Turnover
4.3. Soil Acidification and Its Modulation at GE and CS
4.3.1. The Role of Litter Fall, Forest Hydrology and Weathering Processes
4.3.2. The Role of Seepage Water and Nitrate
4.3.3. The Role of Seepage Water and Sulphate
4.3.4. The Role of the Tree Species: Base Pump Effect and Base Cation Depletion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Engardt, M.; Simpson, D.; Schwikowski, M.; Granat, L. Deposition of sulphur and nitrogen in Europe 1900–2050. Model calculations and comparison to historical observations. Tellus B Chem. Phys. Meteorol. 2017, 69. [Google Scholar] [CrossRef] [Green Version]
- Kopáček, J.; Veselý, J. Sulfur and nitrogen emissions in the Czech Republic and Slovakia from 1850 till 2000. Atmos. Environ. 2005, 39, 2179–2188. [Google Scholar] [CrossRef] [Green Version]
- Binkley, D.; Högberg, P. Tamm Review: Revisiting the influence of nitrogen deposition on Swedish forests. For. Ecol. Manag. 2016, 368, 222–239. [Google Scholar] [CrossRef]
- Puhe, J.; Ulrich, B. Global Climate Change and Human Impacts on Forest Ecosystems; Springer: Berlin/Heidelberg, Germany, 2001; Volume 143. [Google Scholar]
- Bonner, M.T.L.; Castro, D.; Schneider, A.N.; Sundström, G.; Hurry, V.; Street, N.R.; Näsholm, T. Why does nitrogen addition to forest soils inhibit decomposition? Soil Biol. Biochem. 2019, 137. [Google Scholar] [CrossRef]
- Dirnböck, T.; Grandin, U.; Bernhardt-Romermann, M.; Beudert, B.; Canullo, R.; Forsius, M.; Grabner, M.T.; Holmberg, M.; Kleemola, S.; Lundin, L.; et al. Forest floor vegetation response to nitrogen deposition in Europe. Glob Chang. Biol. 2014, 20, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Gilliam, F.S. The Ecological Significance of the Herbaceous Layer in Temperate Forest Ecosystems. BioScience 2007, 57, 845–858. [Google Scholar] [CrossRef]
- Knapp, S. The Link Between Diversity, Ecosystem Functions, and Ecosystem Services. In Atlas of Ecosystem Services Drivers, Risks, and Societal Responses; Schröter, M., Bonn, A., Klotz, S., Seppelt, R., Baessler, C., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 13–15. [Google Scholar] [CrossRef]
- De Vries, W.; Dobbertin, M.H.; Solberg, S.; van Dobben, H.F.; Schaub, M. Impacts of acid deposition, ozone exposure and weather conditions on forest ecosystems in Europe: An overview. Plant Soil 2014, 380, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Wellbrock, N.; Bolte, A. Status and Dynamics of Forests in Germany-Results of the National Forest Monitoring; Springer Open: Berlin/Heidelberg, Germany, 2019; Volume 237, p. 388. [Google Scholar]
- Binkley, D.; Fisher, R.F. Ecology and Management of Forest Soils, 5th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2019. [Google Scholar] [CrossRef]
- De Vries, W.; Schulte-Uebbing, L. Impacts of Nitrogen Deposition on Forest Ecosystem Services and Biodiversity. In Atlas of Ecosystem Services: Drivers, Risks, and Societal Responses; Schröter, M., Bonn, A., Klotz, S., Seppelt, R., Baessler, C., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 183–189. [Google Scholar] [CrossRef]
- Reuss, J.; Johnson, D. Effect of Soil Processes on the Acidification of Water by Acid Deposition. J. Environ. Qual. 1985, 14, 26–31. [Google Scholar] [CrossRef]
- Rothe, A.; Kreutzer, K.; Küchenhoff, H. Influence of tree species composition on soil and soil solution properties in two mixed spruce-beech stands with contrasting history in Southern Germany. Plant Soil 2002, 240, 47–56. [Google Scholar] [CrossRef]
- Fagerli, H.; Tsyro, S.; Jonson, J.E.; Nyíri, A.; Simpson, D.; Wind, P.; Benedictow, A.; Klein, H.; Mu, Q.; Rolstad Denby, B.; et al. EMEP-Status Report 1/2020-Transboundary Particulate Matter, Photo-Oxidants, Acidifying and Eutrophying Components; Norwegian Meteorological Institute: Oslo, Norway, 2020; p. 270. [Google Scholar]
- Köchy, M.; Bråkenhielm, S. Separation of effects of moderate N deposition from natural change in ground vegetation of forests and bogs. For. Ecol. Manag. 2008, 255, 1654–1663. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, J.; Grennfelt, P. Critical Loads for Sulphur and Nitrogen. Report from a Workshop Held at Skokloster, Sweden 19-24 March, 1988; Nordic Council of Ministers; Nordisk Ministerraad: Koebenhavn, DK, USA, 1988; p. 418. [Google Scholar]
- Lorenz, M.; Nagel, H.D.; Granke, O.; Kraft, P. Critical loads and their exceedances at intensive forest monitoring sites in Europe. Environ. Pollut. 2008, 155, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Walker, T.A.B.; McMahon, R.C.; Hepburn, A.; Ferrier, R. Sulphate dynamics of podzols from paired impacted and pristine catchments. Sci. Total Environ. 1990, 92, 235–247. [Google Scholar] [CrossRef]
- Berger, T.W.; Turtscher, S.; Berger, P.; Lindebner, L. A slight recovery of soils from Acid Rain over the last three decades is not reflected in the macro nutrition of beech (Fagus sylvatica) at 97 forest stands of the Vienna Woods. Environ. Pollut. 2016, 216, 624–635. [Google Scholar] [CrossRef] [Green Version]
- Růžek, M.; Myška, O.; Kučera, J.; Oulehle, F. Input-Output Budgets of Nutrients in Adjacent Norway Spruce and European Beech Monocultures Recovering from Acidification. Forests 2019, 10, 68. [Google Scholar] [CrossRef] [Green Version]
- Näthe, K.; Levia, D.F.; Tischer, A.; Potthast, K.; Michalzik, B. Spatiotemporal variation of aluminium and micro- and macronutrients in the soil solution of a coniferous forest after low-intensity prescribed surface fires. Int. J. Wildland Fire 2018, 27, 471–489. [Google Scholar] [CrossRef]
- Iwald, J. Acidification of Swedish Forest Soils-Evaluation of Data from the Swedish Forest Soil Inventory; Licentiate Swedish University of Agricultural Sciences: Uppsala, Sweden, 2016. [Google Scholar]
- De Schrijver, A.; Staelens, J.; Wuyts, K.; Van Hoydonck, G.; Janssen, N.; Mertens, J.; Gielis, L.; Geudens, G.; Augusto, L.; Verheyen, K. Effect of vegetation type on throughfall deposition and seepage flux. Environ. Pollut. 2008, 153, 295–303. [Google Scholar] [CrossRef]
- De Schrijver, A.; Geudens, G.; Augusto, L.; Staelens, J.; Mertens, J.; Wuyts, K.; Gielis, L.; Verheyen, K. The Effect of Forest Type on Throughfall Deposition and Seepage Flux: A Review. Oecologia 2007, 153, 663–674. [Google Scholar] [CrossRef]
- Lorenz, M.; Clarke, N.; Paoletti, E.; Bytnerowicz, A.; Grulke, N.; Lukina, N.; Sase, H.; Staelens, J. Air Pollution Impacts on Forests in Changing Climate. In Forest and Society–Responding to Global Drivers of Change; IUFRO World Series; Mery, G.E.A., Ed.; International Union of Forest Research Organizations: Vienna, Austria, 2010; pp. 55–74. [Google Scholar]
- Binkley, D.; Giardina, C. Why do tree species affect soils? The Warp and Woof of tree soil interactions. Biogeochemistry 1998, 42, 89–106. [Google Scholar] [CrossRef]
- Wittich, W. Die Heutigen Grundlagen der Holzartenwahl. Dargestellt am Beispiel des Nordwestdeutschen Waldgebietes, 2nd ed.; M. & H. Schaper: Hannover, Germany, 1948. [Google Scholar]
- Hallbäcken, L. Long Term Changes of Base Cation Pools in Soil and Biomass in a Beech and a Spruce Forest of Southern Sweden. Z. Pflanz. Bodenk. 1992, 155, 51–60. [Google Scholar] [CrossRef]
- Westman, C.J.; Jauhiainen, S. Soil acidity in 1970 and 1989 in a coniferous forest in southwest Finland. Can. J. Soil Sci. 1998, 78, 477–479. [Google Scholar] [CrossRef]
- Johnson, D.W.; Cresser, M.S.; Nilsson, S.I.; Turner, J.; Ulrich, B.; Binkley, D.; Cole, D.W. Soil changes in forest ecosystems: Evidence for and probable causes. Proc. R. Soc. Edinb. Sect. B. Biol. Sci. 1991, 97, 81–116. [Google Scholar] [CrossRef]
- Binkley, D. The influence of Tree Species on Forest Soils: Processes and Patterns. Agron. Soc. N. Z. Spec. Publ. 1995, 7, 1–33. [Google Scholar]
- Ammer, S.; Weber, K.; Abs, C.; Ammer, C.; Prietzel, J. Factors influencing the distribution and abundance of earthworm communities in pure and converted Scots pine stands. Appl. Soil Ecol. 2006, 33, 10–21. [Google Scholar] [CrossRef]
- Bens, O.; Buczko, U.; Sieber, S.; Hüttl, R.F. Spatial variability of O layer thickness and humus forms under different pine beech–forest transformation stages in NE Germany. J. Plant Nutr. Soil Sci. 2006, 169, 5–15. [Google Scholar] [CrossRef]
- Zederer, D.P.; Talkner, U.; Spohn, M.; Joergensen, R.G. Microbial biomass phosphorus and C/N/P stoichiometry in forest floor and A horizons as affected by tree species. Soil Biol. Biochem. 2017, 111, 166–175. [Google Scholar] [CrossRef]
- Achilles, F.; Tischer, A.; Bernhardt-Römermann, M.; Heinze, M.; Reinhardt, F.; Makeschin, F.; Michalzik, B. European beech leads to more bioactive humus forms but stronger mineral soil acidification as Norway spruce and Scots pine–Results of a repeated site assessment after 63 and 82 years of forest conversion in Central Germany. For. Ecol. Manag. 2021, 483, 118769. [Google Scholar] [CrossRef]
- Aherne, J.; Braun, S.; Tresch, S.; Augustin, S. Soil solution in Swiss forest stands: A 20 year’s time series. PLoS ONE 2020, 15. [Google Scholar] [CrossRef]
- Johnson, J.; Graf Pannatier, E.; Carnicelli, S.; Cecchini, G.; Clarke, N.; Cools, N.; Hansen, K.; Meesenburg, H.; Nieminen, T.M.; Pihl-Karlsson, G.; et al. The response of soil solution chemistry in European forests to decreasing acid deposition. Glob Chang. Biol. 2018, 24, 3603–3619. [Google Scholar] [CrossRef]
- Ammer, C.; Bickel, E.; Kölling, C. Converting Norway spruce stands with beech-A review of arguments and techniques. Austrian J. For. Sci. 2008, 125, 3–26. [Google Scholar]
- DWD. German Climate Atlas-Thuringia. Available online: https://www.dwd.de/EN/ourservices/germanclimateatlas/germanclimateatlas.html (accessed on 6 March 2020).
- Kirilenko, A.; Sedjo, R.A. Climate change impacts on forestry. Proc. Natl. Acad. Sci. USA 2007, 104, 19697–19702. [Google Scholar] [CrossRef] [Green Version]
- Augusto, L.; Ranger, J.; Binkley, D.; Rothe, A. Impact of several common tree species of European temperate forests on soil fertility. Ann. Sci. 2002, 59, 233–253. [Google Scholar] [CrossRef] [Green Version]
- Graser, H. Die Bewirtschaftung des Erzgebirgischen Fichtenwaldes. Erster Band; Hofbuchhandlung H.Burdach: Dresden, Germany, 1928; Volume 1, p. 98. [Google Scholar]
- Bärthel, E. Holzart und Betriebsart im Gebiete des Ehemaligen Herzogtums Sachsen-Altenburg-Eine Darstellung und Untersuchung der Ursachen der Mannigfachen Verschiebungen der Holzartenverteilung und des Wechsels der Betriebsart; Ludwigs-Universität Gießen: Gießen, Germany, 1926. [Google Scholar]
- Hoppe, W.; Seidel, G. Geologie von Thüringen: [Bezirke Erfurt, Gera, Suhl]; Haack: Gotha, Germany, 1974. [Google Scholar]
- Burse, K.; Neumann, T. Die Forstlichen Wuchsbezirke Thüringens. Mitt. 37/2019 ThüringenForst 2019, 37, 129–139. [Google Scholar]
- Veckenstedt, T. Vergleich von Buchenhorsten Mit Standortsgleichen Kiefern-Fichten-Mischbeständen Hinsichtlich der Wuchsleistungen, des Bodenzustandes und der Durchwurzelung im Forstamt Hummelshain; Thüringer Fachhochschule für Forstwirtschaft: Schwarzburg, Germany, 1999. [Google Scholar]
- Großherr, M. Auswirkungen des Waldumbaus auf Bodenchemische Eigenschaften (KAK und Acidität) in Bodenprofilen des Thüringer Forstreviers Leuchtenburg; Friedrich-Schiller-Universität Jena: Jena, Germany, 2011. [Google Scholar]
- Schober, R. Ertragstafeln Wichtiger Baumarten bei Verschiedener Durchforstung; J.D. Sauerländer’s Verlag: Frankfurt a. Main, Germany 1995. [Google Scholar]
- Glatthorn, J.; Beckschäfer, P. Standardizing the protocol for hemispherical photographs: Accuracy assessment of binarization algorithms. PLoS ONE 2014, 9, e111924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckschäfer, P. Hemispherical_2.0–Batch Processing Hemispherical and Canopy Photographs with Imagej–User Manual; Georg-August-Universität Göttingen: Göttingen, Germany, 2015; pp. 1–6. [Google Scholar]
- Bolte, A. Biomasse-und Elementvorräte der Bodenvegetation auf Flächen des Forstlichen Umweltmonitorings in Rheinland-Pfalz (BZE, Level II); Universität Göttingen: Göttingen: Göttingen, Germany, 2006; p. 81. [Google Scholar]
- Block, J.; Dieler, J.; Gauer, J.; Greve, M.; Moshammer, R.; Schuck, J.; Schwappacher, V.; Wunn, U. Gewährleistung der Nachhaltigkeit der Nährstoffversorgung bei der Holz- und Biomassenutzung im Rheinland-Pfälzischen Wald; Forschungsanstalt für Waldökologie und Forstwirtschaft Rheinland-Pflaz (FAWF): Trippstadt, Germany, 2016. [Google Scholar]
- ICP Forests. Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests; Thünen Institute of Forest Ecosystems: Eberswalde, Germany, 2016. [Google Scholar]
- Schlutow, A.; Ritter, A. Aktualisierung der Berechnung von Ökologischen Belastungsgrenzen (Critical Loads) und Ihren Überschreitungen für 14 Thüringer Wald-und Hauptmessstationen; FFK Gotha-Forstliches Forschungs-und Kompetenzzentrum Gotha: Gotha, Germany, 2018; pp. 1–54. [Google Scholar]
- CLRTAP. Latest Update of Guidance on Mapping Concentrations Levels and Deposition Levels-Manual on Methodologies and Criteria for Modelling and Mapping Critical Loads and Levels and Air Pollution Effects, Risks and Trends. 2017. Available online: https://www.umweltbundesamt.de/en/manual-for-modelling-mapping-critical-loads-levels (accessed on 10 March 2021).
- Braun-Blanquet, J. Pflanzensoziologie-Grundzüge der Vegetationskunde; Springer: Berlin/Heidelberg, Germany, 1928; p. 330. [Google Scholar]
- Bolte, A. Abschätzung von Trockensubstanz-, Kohlenstoff-und Nährelementvorräten der Waldbodenflora-Verfahren, Anwendung und Schätztafeln (Assessment of Dry Weight and Storage of Carbon and Nutrients in Forest Ground Vegetation in the North-Eastern German Lowlands–Method, Application and Classification Tables); Tharandt: Saxony, Germany, 1999; Volume 7, p. 320. [Google Scholar]
- Zanella, A.; Ponge, J.-F.; Jabiol, B.; Sartori, G.; Kolb, E.; Le Bayon, R.-C.; Gobat, J.-M.; Aubert, M.; De Waal, R.; Van Delft, B.; et al. Humusica 1, article 5: Terrestrial humus systems and forms-Keys of classification of humus systems and forms. Appl. Soil Ecol. 2018, 122, 75–86. [Google Scholar] [CrossRef]
- AK-Standortskartierung. Forstliche Standortsaufnahme: Begriffe, Definitionen, Einteilung, Kennzeichnungen, Erläuterungen; IHW: Eiching, Germany, 2016; p. 400. [Google Scholar]
- Ad-Hoc-AG-Boden. Bodenkundliche Kartieranleitung (KA5); Schweizerbart: Hannover/Stuttgart, Germany, 2005; p. 438. [Google Scholar]
- WRB, I.W.G. World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015. [Google Scholar]
- Kunze, A. Bodenkundlicher Vergleich von Buchen-Laubholzinseln (sog. "Grünen Augen") mit gleichaltrigen Nadelholzreinbeständen im Wuchsbezirk „Ostthüringer Buntsandstein“; Technische Universität Dresden: Dresden, Germany, 2000. [Google Scholar]
- Hågvar, S. From Litter to Humus in a Norwegian Spruce Forest: Long-Term Studies on the Decomposition of Needles and Cones. Forests 2016, 7, 186. [Google Scholar] [CrossRef] [Green Version]
- Lim, M.T.; Cousens, J.E. The Internal Transfer of Nutrients in a Scots Pine Stand 2. The Patterns of Transfer and the Effects of Nitrogen Availability. Forestry 1986, 59, 17–27. [Google Scholar]
- Lyr, H.; Fiedler, H.J.; Tranquillini, W. Physiologie und Ökologie der Gehölze; Gustav Fischer Verlag Jena: Stuttgart, Germany, 1992; p. 620. [Google Scholar]
- Ellenberg, H.; Weber, H.; Düll, R.; Wirth, V.; Werner, W.; Paulißen, D. Zeigerwerte von Pflanzen in Mitteleuropa; Goltze: Göttingen, Germany, 2001; Volume 18, p. 262. [Google Scholar]
- Mölder, A.; Bernhardt-Römermann, M.; Schmidt, W. Herb-layer diversity in deciduous forests: Raised by tree richness or beaten by beech? For. Ecol. Manag. 2008, 256, 272–281. [Google Scholar] [CrossRef]
- Schulze, I.M.; Bolte, A.; Schmidt, W.; Eichhorn, J. Phytomass, Litter and Net Primary Production of Herbaceous Layer. In Functioning and Management of European Beech Ecosystems. vol. 208 ed.; Brumme, R., Khanna, P.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Heinrichs, S.; Bernhardt-Römermann, M.; Schmidt, W. The estimation of aboveground biomass and nutrient pools of understorey plants in closed Norway spruce forests and on clearcuts. Eur. J. For. Res. 2010, 129, 613–624. [Google Scholar] [CrossRef] [Green Version]
- De Vries, W.; Hol, A.; Tjalma, S.; Voogd, J.C. Literatuurstudie Naar Voorraden en Verblijftijden van Elementen in Bosecosystemen (Amounts and Turnover Rates of Elements in Forest Ecosystems: A Literature Study); Winand Staring Center: Wageningen, The Netherlands, 1990. [Google Scholar]
- Jacobsen, C.; Rademacher, P.; Meesenburg, H.; Meiwes, K.-J. Gehalte Chemischer Elemente in Baumkronenkompartimenten. Literaturstudie und Datensammlung; Forschungszentrum Waldökosysteme der Universität Göttingen: Göttingen, Germany, 2003. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Emerson, J.W.; Green, W.A.; Schloerke, B.; Crowley, J.; Cook, D.; Hofmann, H.; Wickham, H. The Generalized Pairs Plot. J. Comput. Graph. Stat. 2012, 22, 79–91. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D.M. Mixed-Effects Models in Sand S-PLUS; Springer: New York, NY, USA, 2000. [Google Scholar]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D. Nlme: Linear and Nonlinear Mixed Effects Models. R package Version 3.1-142; R Core Team. 2019. Available online: https://svn.r-project.org/R-packages/trunk/nlme/ (accessed on 10 March 2021).
- Lenth, R.V. Least-Squares Means: The R Package lsmeans. J. Stat. Softw. 2016, 69, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Hlavac, M. Stargazer: Well-Formatted Regression and Summary Statistics Tables. R package version 5.2.2.; R Core Team. 2018. Available online: https://cran.r-project.org/web/packages/stargazer/stargazer.pdf (accessed on 10 March 2021).
- Zuur, A.F.; Ieno, E.N.; Walker, N.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R.; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef] [Green Version]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Bartoń, K. MuMIn: Multi-Model Inference, R Package Version 0.12.0; R Core Team. 2009. Available online: https://cran.r-project.org/web/packages/MuMIn/index.html (accessed on 10 March 2021).
- Sverdrup, H. The Kinetics of base Cation Release due to Chemical Weathering; Lund University Press: Lund, Sweden, 1990. [Google Scholar]
- Olson, J.S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 1963, 44, 322–331. [Google Scholar] [CrossRef] [Green Version]
- Hobbie, S.E.; Reich, P.B.; Oleksyn, J.; Ogdahl, M.; Zytkowiak, R.; Hale, C.; Karolewski, P. Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 2006, 87, 2288–2297. [Google Scholar] [CrossRef]
- Vesterdal, L.; Schmidt, I.K.; Callesen, I.; Nilsson, L.O.; Gundersen, P. Carbon and nitrogen in forest floor and mineral soil under six common European tree species. For. Ecol. Manag. 2008, 255, 35–48. [Google Scholar] [CrossRef]
- Huhn, J.; Reinhardt, F. Vegetationsaufnahmen im Forstamt Hummelshain. 2000; unpublished. [Google Scholar]
- Cole, D.W.; Rapp, M. Elemental cycling in forest ecosystems. In Dynamic Properties of Forest Ecosystems; Reiche, D.E., Ed.; Cambridge University Press: Cambidge, UK, 1981; pp. 341–409. [Google Scholar]
- Likens, G.E.; Drsicoll, C.T.; Buso, D.C.; Mitchell, M.J.; Lovett, G.M.; Bailey, S.W.; Siccama, T.G.; Reiners, W.A.; Alewell, C. The biogeochemistry of sulfur at Hubbard Brook. Biogeochemistry 2002, 60, 235–316. [Google Scholar] [CrossRef]
- Hansen, K.; Vesterdal, L.; Schmidt, I.K.; Gundersen, P.; Sevel, L.; Bastrup-Birk, A.; Pedersen, L.B.; Bille-Hansen, J. Litterfall and nutrient return in five tree species in a common garden experiment. For. Ecol. Manag. 2009, 257, 2133–2144. [Google Scholar] [CrossRef]
- Soil Science Division Staff. Soil Survey Manual; Government Printing Office: Washington, DC, USA, 2017; Volume 18. [Google Scholar]
- Sutton, M.A.; Howard, C.M.; Erisman, J.W.; Billen, G.; Bleeker, A.; Grennfelt, P.; van Grinsven, H.; Grizzetti, B. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives; Sutton, M.A., Howard, C.M., Erisman, J.W., Billen, G., Bleeker, A., Grennfelt, P., van Grinsven, H., Grizzetti, B., Eds.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar] [CrossRef]
- Berger, T.W.; Untersteiner, H.; Schume, H.; Jost, G. Throughfall fluxes in a secondary spruce (Picea abies), a beech (Fagus sylvatica) and a mixed spruce–beech stand. For. Ecol. Manag. 2008, 255, 605–618. [Google Scholar] [CrossRef]
- Levia, D.F.; Carlyle-Moses, D.; Iida, S.; Michalzik, B.; Nanko, K.; Tischer, A. Forest-Water Interactions; Springer: Berlin/Heidelberg, Germany, 2020; Volume 240, p. 624. [Google Scholar]
- Schmitz, A.; Sanders, T.G.M.; Bolte, A.; Bussotti, F.; Dirnbock, T.; Johnson, J.; Penuelas, J.; Pollastrini, M.; Prescher, A.K.; Sardans, J.; et al. Responses of forest ecosystems in Europe to decreasing nitrogen deposition. Env. Pollut. 2019, 244, 980–994. [Google Scholar] [CrossRef]
- Forsmark, B.; Nordin, A.; Maaroufi, N.I.; Lundmark, T.; Gundale, M.J. Low and High Nitrogen Deposition Rates in Northern Coniferous Forests Have Different Impacts on Aboveground Litter Production, Soil Respiration, and Soil Carbon Stocks. Ecosystems 2020, 23, 1423–1436. [Google Scholar] [CrossRef] [Green Version]
- Bobbink, R.; Hicks, K.; Galloway, J.; Spranger, T.; Alkemade, R.; Ashmore, M.; Bustamante, M.; Cinderby, S.; Davidson, E.; Dentener, F.; et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecol. Appl. 2010, 20, 30–59. [Google Scholar] [CrossRef] [Green Version]
- Elliott, K.J.; Vose, J.M.; Knoepp, J.D.; Clinton, B.D.; Kloeppel, B.D. Functional Role of the Herbaceous Layer in Eastern Deciduous Forest Ecosystems. Ecosystems 2014, 18, 221–236. [Google Scholar] [CrossRef]
- Welch, N.T.; Belmont, J.M.; Randolph, J.C. Summer Ground Layer Biomass and Nutrient Contribution to Above-ground Litter in an Indiana Temperate Deciduous Forest. Am. Midl. Nat. 2007, 157, 11–26. [Google Scholar] [CrossRef]
- Bolte, A.; Lambertz, B.; Steinmeyer, A.; Kallweit, R.; Meesenburg, H. Zur Funktion der Bodenvegetation im Nährstoffhaushalt von Wäldern-Studien auf Dauerbeobachtungsflächen des EU Level II-Programms in Norddeutschland. Forstarchiv 2004, 75, 207–220. [Google Scholar]
- Muys, B.; Granval, P. Earthworms as bio-indicators of forest site quality. Soil Biol. Biochem. 1997, 29, 323–328. [Google Scholar] [CrossRef]
- Heinze, M.; Tomczyk, S.; Nicke, A. Vergleich von Rot-Buche (Fagus sylvatica L.) in sogennanten Grünen Augen mit benachbarten standortsgleichen Fichtenbeständen (Picea abies [L.] KARST.) des Thüringer Vogtlandes bezüglich Eigenschaften und Durchwurzelung des Bodens sowie Baumwachstum. Forstw. Cbl. 2001, 120, 139–153. [Google Scholar] [CrossRef]
- Berg, B.; McClaugherty, C. Plant Litter. Decomposition, Humus Formation, Carbon Sequestration; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Wang, L.; D’Odorico, P. Decomposition and Mineralization. In Encyclopedia of Ecology, 2nd ed.; Fath, B., Ed. Elsevier: Oxford, UK, 2013; pp. 280–285. [Google Scholar] [CrossRef]
- Nihlgård, B. Pedological Influence of Spruce Planted on Former Beech Forest Soils in Scania, South Sweden. Oikos 1971, 22, 302–314. [Google Scholar] [CrossRef]
- Albers, D.; Migge, S.; Schaefer, M.; Scheu, S. Decomposition of beech leaves (Fagus sylvatica) and spruce needles (Picea abies) in pure and mixed stands of beech and spruce. Soil Biol. Biochem. 2004, 36, 155–164. [Google Scholar] [CrossRef]
- Prescott, C.E. Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 2010, 101, 133–149. [Google Scholar] [CrossRef]
- Knorr, M.; Frey, S.D.; Curtis, P.S. Nitrogen Additions and Litter Decomposition: A Meta-Analysis. Ecology 2005, 86, 3252–3257. [Google Scholar] [CrossRef]
- Carreiro, M.M.; Sinsabaugh, R.L.; Repert, D.A.; Parkhurst, D.F. Microbial Enzyme Shifts Explain Litter Decay Responses to Simulated Nitrogen Deposition. Ecology 2000, 81, 2359–2365. [Google Scholar] [CrossRef]
- Janssens, I.A.; Dieleman, W.; Luyssaert, S.; Subke, J.A.; Reichstein, M.; Ceulemans, R.; Ciais, P.; Dolman, A.J.; Grace, J.; Matteucci, G.; et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 2010, 3, 315–322. [Google Scholar] [CrossRef]
- Salehi, M.; Zahedi Amiri, G.; Attarod, P.; Salehi, A.; Brunner, I.; Schleppi, P.; Thimonier, A. Seasonal variations of throughfall chemistry in pure and mixed stands of Oriental beech (Fagus orientalis Lipsky) in Hyrcanian forests (Iran). Ann. For. Sci. 2015, 73, 371–380. [Google Scholar] [CrossRef] [Green Version]
- Marschner, H. Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: San Diego, CA, USA, 2012; p. 672. [Google Scholar]
- Schulze, E.D. Carbon and Nitrogen Cycling in European Forest Ecosystems; Springer: Berlin/Heidelberg, Germany, 2000; Volume 142, p. 506. [Google Scholar]
- Gundersen, P.; Callesen, I.; De Vries, W. Nitrate leaching in forest ecosystems is related to forest floor C/N ratios. Environ. Pollut. 1998, 102, 403–407. [Google Scholar] [CrossRef]
- MacDonald, J.A.; Dise, N.B.; Matzner, E.; Armbruster, M.; Gundersen, P.; Forsius, M. Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests. Glob. Chang. Biol. 2002, 8, 1028–1033. [Google Scholar] [CrossRef]
- Van der Salm, C.; De Vries, W.; Reinds, G.J.; Dise, N.B. N leaching across European forests: Derivation and validation of empirical relationships using data from intensive monitoring plots. For. Ecol. Manag. 2007, 238, 81–91. [Google Scholar] [CrossRef]
- Brumme, R.; Khanna, P.K. Functioning and Management of European Beech Ecosystems; Springer: Berlin/Heidelberg, Germany, 2009; Volume 208, p. 501. [Google Scholar]
- Gundersen, P.; Emmet, B.A.; Kjonaas, O.J.; Koopmans, C.J.; Tietema, A. Impact of nitrogen deposition on nitrogen cycling in forests: A synthesis of NITREX data. For. Ecol. Manag. 1998, 101, 37–55. [Google Scholar] [CrossRef]
- Watmough, S.A.; Aherne, J.; Alewell, C.; Arp, P.; Bailey, S.; Clair, T.; Dillon, P.; Duchesne, L.; Eimers, C.; Fernandez, I.; et al. Sulphate, nitrogen and base cation budgets at 21 forested catchments in Canada, the United States and Europe. Env. Monit Assess 2005, 109, 1–36. [Google Scholar] [CrossRef]
- Gmach, M.R.; Cherubin, M.; Kaiser, K.; Cerri, C.E. Processes that influence dissolved organic matter in the soil: A review. Sci. Agric. 2020, 77, e20180164. [Google Scholar] [CrossRef]
- Vance, G.F.; David, M.B. Dissolved organic carbon and sulfate sorption by spodosol mineral horizons. Soil Sci. 1992, 154, 136–144. [Google Scholar] [CrossRef]
- Berger, T.W.; Swoboda, S.; Prohaska, T.; Glatzel, G. The role of calcium uptake from deep soils for spruce (Picea abies) and beech (Fagus sylvatica). For. Ecol. Manag. 2006, 229, 234–246. [Google Scholar] [CrossRef]
Plot | Coordinates 1 | Elevation | Soil Type | Sand | Silt | Clay | |
---|---|---|---|---|---|---|---|
E | N | (m a.s.l.) | (WRB, 2015) | (%) | (%) | (%) | |
GE 1 | 686,527 | 5,626,891 | 366 | Dystric Planosol | 4.0 | 83.1 | 12.9 |
CS 1 | 686,527 | 5,626,928 | 376 | Dystric Planosol | 9.1 | 79.6 | 11.3 |
GE 2 | 686,024 | 5,628,393 | 354 | Dystric Planosol | 18.1 | 69.3 | 12.3 |
CS 2 | 686,065 | 5,628,396 | 373 | Dystric Planosol | 15.4 | 72.3 | 12.4 |
GE 3 | 685,802 | 5,630,469 | 314 | Stagnic Luvisol | 7.9 | 80.3 | 11.8 |
CS 3 | 685,786 | 5,630,500 | 317 | Stagnic Luvisol | 8.1 | 79.3 | 12.6 |
GE 4 | 689,106 | 5,633,858 | 292 | Stagnic Luvisol | 15.3 | 74.0 | 10.7 |
CS 4 | 689,148 | 5,633,868 | 290 | Stagnic Luvisol | 8.8 | 79.0 | 12.2 |
GE 5 | 690,496 | 5,627,993 | 352 | Haplic Podzol | 48.3 | 42.2 | 9.5 |
CS 5 | 690,478 | 5,627,970 | 360 | Haplic Podzol | 50.7 | 39.7 | 9.6 |
GE 6 | 681,550 | 5,626,745 | 300 | Podzol | 55.1 | 37.2 | 7.6 |
CS 6 | 681,543 | 5,626,727 | 291 | Haplic Podzol | 48.4 | 42.4 | 9.2 |
GE ICP 2 | 687,590 | 5,630,348 | 376 | Dystric Planosol | 64.9 | 23.4 | 11.7 |
CS ICP 2 | 687,622 | 5,630,199 | 371 | Dystric Planosol | 77.3 | 16.7 | 6.0 |
Plot | Age of Stand in 2018 (yr) | Basal Area of Stand (m2 ha−1) | LAI | DirRad 1 (MJ m−2 yr−1) | DifRad 2 (MJ m−2 yr−1) | Herb Layer Biomass 3 (Mg ha−1) | Tree Species | Proportion of Basal Area (%) | Tree Biomass 4 (Mg ha−1) | Mean Diameter DBH (cm) | Yield Class |
---|---|---|---|---|---|---|---|---|---|---|---|
GE 1 | 85 | 38.4 | 2.3 | 704 | 142 | 0.09 | Fagus sylvatica | 80 | 233 | 24.1 | II |
Betula pendula | 17 | NA | 36.7 | II | |||||||
Picea abies | 3 | NA | 20.1 | III | |||||||
CS 1 | 73 | 31.2 | 2.2 | 832 | 340 | 0.74 | Picea abies | 26 | 44 | 25.0 | II |
Pinus sylvestris | 74 | 106 | 35.5 | I | |||||||
GE 2 | 80 | 44.1 | 2.6 | 538 | 126 | herb layer absent | Fagus sylvatica | 100 | 286 | 17.0 | III |
CS 2 | 79 | 53.7 | 2.1 | 1196 | 286 | 0.04 | Picea abies | 44 | 127 | 26.9 | II |
Pinus sylvestris | 56 | 138 | 34.0 | I | |||||||
GE 3 | 80 | 73.6 | 2.7 | 343 | 94 | 0.001 | Fagus sylvatica | 100 | 558 | 21.5 | II |
CS 3 | 95 | 49.9 | 2.6 | 520 | 272 | 0.15 | Picea abies | 100 | 334 | 33.8 | I |
GE 4 | 82 | 78.4 | 1.7 | 406 | 241 | 0.004 | Fagus sylvatica | 100 | 674 | 25.2 | I |
CS 4 | 71 | 52.9 | 2.8 | 437 | 241 | 0.67 | Picea abies | 100 | 322 | 26.1 | I |
GE 5 | 80 | 54.2 | 2.5 | 438 | 93 | 0.001 | Fagus sylvatica | 82 | 288 | 17.8 | III |
Picea abies | 9 | NA | 26.9 | II | |||||||
Pinus sylvestris | 8 | NA | 40.5 | I | |||||||
Larix decidua | 1 | NA | 17.6 | worse than III | |||||||
CS 5 | 78 | 38.6 | 1.9 | 968 | 304 | 0.05 | Picea abies | 51 | 87 | 21.4 | III |
Pinus sylvestris | 49 | 77 | 27.0 | II | |||||||
GE 6 | 86 | 46.4 | 2.9 | 426 | 100 | herb layer absent | Fagus sylvatica | 100 | 247 | 14.5 | IV |
CS 6 | 63 | 35.9 | 1.7 | 1598 | 255 | 0.05 | Pinus sylvestris | 100 | 146 | 21.5 | II |
GE ICP | 86 | 37.6 | NA | NA | NA | NA | Fagus sylvatica | 100 | 244 | 20.8 | III |
CS ICP | 67 | 40.7 | NA | NA | NA | NA | Picea abies | 41 | 112 | 23.6 | I |
Pinus sylvestris | 59 | 110 | 28.3 | I |
Plot | Solution Amount | pH | Electrical Conductivity |
---|---|---|---|
(mm) | (µS cm−1) | ||
Bulk precipitation | |||
680 (141) | 5.8 (0.4) | 19.1 (2.4) | |
Stemflow (SF) | |||
GE 1 | 61 (38) | 5.6 (0.4) | 54.4 (10.4) |
Throughfall (TF) | |||
GE 1 | 514 (112) | 6.1 (0.3) | 45.8 (7.4) |
CS 1 | 440 (122) | 5.2 (0.2) | 67.0 (12.2) |
Forest floor solution | |||
GE 1 | NA | 4.4 (0.4) | 77.9 (24.8) |
CS 1 | NA | 4.3 (0.3) | 84.2 (21.6) |
Soil solution 20 cm | |||
GE 1 | NA | 5.1 (0.6) | 63.7 (12.0) |
CS 1 | NA | 3.8 (0.1) | 182.1 (81.1) |
Soil solution 50 cm | |||
GE 1 | NA | 4.8 (0.2) | 59.4 (13.2) |
CS 1 | NA | 4.1 (0.1) | 177.1 (69.5) |
Soil solution 100 cm | |||
GE 1 | NA | 4.7 (0.2) | 88.9 (30.8) |
CS 1 | NA | 4.1 (0.4) | 431.6 (245.8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Achilles, F.; Tischer, A.; Bernhardt-Römermann, M.; Chmara, I.; Achilles, M.; Michalzik, B. Effects of Moderate Nitrate and Low Sulphate Depositions on the Status of Soil Base Cation Pools and Recent Mineral Soil Acidification at Forest Conversion Sites with European Beech (“Green Eyes”) Embedded in Norway Spruce and Scots Pine Stands. Forests 2021, 12, 573. https://doi.org/10.3390/f12050573
Achilles F, Tischer A, Bernhardt-Römermann M, Chmara I, Achilles M, Michalzik B. Effects of Moderate Nitrate and Low Sulphate Depositions on the Status of Soil Base Cation Pools and Recent Mineral Soil Acidification at Forest Conversion Sites with European Beech (“Green Eyes”) Embedded in Norway Spruce and Scots Pine Stands. Forests. 2021; 12(5):573. https://doi.org/10.3390/f12050573
Chicago/Turabian StyleAchilles, Florian, Alexander Tischer, Markus Bernhardt-Römermann, Ines Chmara, Mareike Achilles, and Beate Michalzik. 2021. "Effects of Moderate Nitrate and Low Sulphate Depositions on the Status of Soil Base Cation Pools and Recent Mineral Soil Acidification at Forest Conversion Sites with European Beech (“Green Eyes”) Embedded in Norway Spruce and Scots Pine Stands" Forests 12, no. 5: 573. https://doi.org/10.3390/f12050573
APA StyleAchilles, F., Tischer, A., Bernhardt-Römermann, M., Chmara, I., Achilles, M., & Michalzik, B. (2021). Effects of Moderate Nitrate and Low Sulphate Depositions on the Status of Soil Base Cation Pools and Recent Mineral Soil Acidification at Forest Conversion Sites with European Beech (“Green Eyes”) Embedded in Norway Spruce and Scots Pine Stands. Forests, 12(5), 573. https://doi.org/10.3390/f12050573