Conservation Genetics of the Rare and Endangered Tree Species, Camellia nitidissima (Theaceae), Inferred from Microsatellite DNA Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. DNA Extraction and Microsatellite Analysis
2.3. Data Analysis
3. Results
3.1. Test of Neutrality
3.2. Genetic Diversity
3.3. Test for Bottleneck Effects
3.4. Genetic Structure
4. Discussion
4.1. Genetic Variation of C. nitidissima
4.2. Genetic Differentiation and Population Genetic Structure
4.3. Conservation Implications for C. nitidissima
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ellstrand, N.C. Gene Flow by Pollen: Implications for Plant Conservation Genetics. Oikos 1992, 63, 77. [Google Scholar] [CrossRef]
- Raijmann, L.E.; Van Leeuwen, N.C.; Kersten, R.; Oostermeijer, J.G.B.; Nijs, H.C.D.; Menken, S.B. Genetic Variation and Outcrossing Rate in Relation to Population Size in Gentiana pneumonanthe L. Conserv. Biol. 1994, 8, 1014–1026. [Google Scholar] [CrossRef]
- Heschel, M.S.; Paige, K.N. Inbreeding depression, environmental stress, and population size variation in Scarlet Gilia (Ip-omopsis aggregate). Conserv. Biol. 1995, 9, 126–133. [Google Scholar] [CrossRef]
- Sun, M. Effects of Population Size, Mating System, and Evolutionary Origin on Genetic Diversity in Spiranthes sinensis and S. hongkongensis. Conserv. Biol. 1996, 10, 785–795. [Google Scholar] [CrossRef]
- Buza, L.; Young, A.; Thrall, P. Genetic erosion, inbreeding and reduced fitness in fragmented populations of the endangered tetraploid pea Swainsona recta. Biol. Conserv. 2000, 93, 177–186. [Google Scholar] [CrossRef]
- Kery, M.; Matthies, D.; Spillmann, H.-H. Reduced fecundity and offspring performance in small populations of the declining grassland plants Primula veris and Gentiana lutea. J. Ecol. 2000, 88, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Oostermeijer, J.G.B. Population viability analysis of the rare Gentiana pneumonanthe: Importance of genetics, demography, and reproductive biology. In Genetics, Demography and Viability of Fragmented Populations; Young, A.G., Clarke, G.M., Eds.; Cambridge University Press: Cambridge, UK, 2000; pp. 313–334. [Google Scholar]
- Cascante, A.; Quesada, M.; Lobo, J.J.; Fuchs, E.A. Effects of Dry Tropical Forest Fragmentation on the Reproductive Success and Genetic Structure of the Tree Samanea saman. Conserv. Biol. 2002, 16, 137–147. [Google Scholar] [CrossRef]
- Ellstrand, N.C.; Elam, D.R. Population genetic consequences of small population size: Implications for plant conservation. Annu. Rev. Ecol. Syst. 1993, 24, 217–242. [Google Scholar] [CrossRef]
- Lennon, J.; Kunin, W.E.; Gaston, K.J. The Biology of Rarity: Causes and Consequences of Rare-Common Differences. J. Anim. Ecol. 1997, 66, 916. [Google Scholar] [CrossRef]
- Lande, R. Extinction risks from anthropogenic, ecological, and genetic factors. In Genetics and the Extinction of Species: DNA and the Conservation of Biodiversity; Landweber, L.F., Dobson, A.P., Eds.; Princeton University Press: Princeton, NJ, USA, 1999; pp. 1–22. [Google Scholar]
- Barrett, S.C.H.; Kohn, J. Genetic and evolutionary consequences of small population size in plants: Implications for conservation. In Genetics and Conservation of Rare Plants; Falk, D.A., Holsinger, K.E., Eds.; Oxford University Press: Oxford, UK, 1991; pp. 3–30. [Google Scholar]
- Young, A.; Boyle, T.; Brown, T. The population genetic consequences of habitat fragmentation for plants. Trends Ecol. Evol. 1996, 11, 413–418. [Google Scholar] [CrossRef]
- White, G.M.; Boshier, D.H.; Powell, W. Increased pollen flow counteracts fragmentation in a tropical dry forest: An example from Swietenia humilis Zuccarini. Proc. Natl. Acad. Sci. USA 2002, 99, 2038–2042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamrick, J.L.; Godt, M.J.W. Conservation genetics of endemic plant species. In Conservation Genetics: Case Histories from Nature; Avise, J.C., Hamrick, J.L., Eds.; Chapman & Hall: London, UK, 1996; pp. 281–304. [Google Scholar]
- Charlesworth, B.; Charlesworth, D.; Barton, N.H. The Effects of Genetic and Geographic Structure on Neutral Variation. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 99–125. [Google Scholar] [CrossRef]
- Godt, M.; Hamrick, J. Allozyme diversity in the endangered pitcher plant Sarracenia rubra ssp. Alabamensis (Sarraceniaceae) and its close relative S. rubra ssp. rubra. Am. J. Bot. 1998, 85, 802–810. [Google Scholar] [PubMed]
- Su, Z.M.; Mo, X.L. Geographic distribution of Camellia section Chrysantha from China. Guihaia 1988, 8, 75–81, (In Chinese with English Abstract). [Google Scholar]
- Huang, P.J.; Zhou, Q.L. Karyotype study on Camellia nitidissima. Guihaia 1982, 2, 15–16, (In Chinese with English abstract). [Google Scholar]
- Wei, X.; Jiang, S.Y.; Jiang, Y.S.; Tang, H.; Cao, H.L. Research progress of Camellia nitidissima, a rare and endangered plant. J. Fujian For. Sci. Technol. 2006, 33, 169–174, (In Chinese with English abstract). [Google Scholar]
- Wei, X.; Cao, H.L.; Jiang, Y.S.; Ye, H.W.; Ge, X.J.; Li, F. Population genetic structure of Camellia nitidissima (Theaceae) and conservation implications. Bot. Stud. 2008, 49, 147–153. [Google Scholar]
- Cheng, J.H.; Chen, J.Y.; Zhao, S.W. Interspecific cross breeding for new yellow camellias. J. Beijing Forest Univ. 1994, 16, 55–59, (In Chinese with English abstract). [Google Scholar]
- Yang, H.Q.; Wei, X.; Zeng, X.L.; Ye, H.W.; Yin, X.J.; Wang, Z.M.; Jiang, Y.S. Seed biology and germination ecophysiology of Camellia nitidissima. Forest Ecol. Manag. 2008, 255, 113–118. [Google Scholar] [CrossRef]
- Deng, G.Y.; Yang, Z.D.; Lu, T.L. A brief review of research on yellow camellia in China. J. Guangxi Agr. Biol. Sci. 2000, 19, 126–130, (In Chinese with English abstract). [Google Scholar]
- Liang, S.Y. Golden Camellia; China Forest Press: Beijing, China, 1993. [Google Scholar]
- Parks, C.R. Breeding Progress with Yellow Camellias; American Camellia Yearbook: Ft. Valley, GA, USA, 2000; pp. 9–10. [Google Scholar]
- Nishimoto, S.I.; Hashimoto, F.; Shimizu, K.; Sakata, Y. Petal coloration of interspecific hydrids between Camellia chysantha × C. japonica. J. Jpn Soc. Hortic. Sci. 2004, 73, 189–191. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.; Bin, X.; Wang, L.; Zhong, Y. Genetic Diversity and Population Structure of Yellow Camellia (Camellia nitidissima) in China as Revealed by RAPD and AFLP Markers. Biochem. Genet. 2006, 44, 444–456. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.M. A preliminary study on the population ecology of Camellia sect. nitidissima. Guangxi Sci. 1994, 1, 31–36, (In Chinese with English abstract). [Google Scholar]
- Tan, W.F.; Li, D.Q. Analysis on protection gap of sect. Chrysantha Chang. Guangxi Forest Sci. 2010, 39, 53–54. (In Chinese) [Google Scholar]
- Fu, L.G. China Plant Red Data Book; Science Press: Beijing, China, 1992. [Google Scholar]
- Selkoe, K.A.; Toonen, R.J. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecol. Lett. 2006, 9, 615–629. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Wang, J.; Huang, H. Demographic bottlenecks and low gene flow in remnant populations of the critically endangered Berchemiella wilsonii var. pubipetiolata (Rhamnaceae) inferred from microsatellite markers. Conserv. Genet. 2008, 9, 191–199. [Google Scholar] [CrossRef]
- Powell, W.; Machray, G.C.; Provan, J. Polymorphism revealed by simple sequence repeats. Trends Plant Sci. 1996, 1, 215–222. [Google Scholar] [CrossRef]
- Wei, J.Q.; Chen, Z.Y.; Wang, Z.F.; Tang, H.; Jiang, Y.S.; Wei, X.; Li, X.Y.; Qi, X.X. Isolation and characterization of polymorphic microsatellite loci in Camellia nitidissima Chi (Theaceae). Am. J. Bot. 2010, 97, e89–e90. [Google Scholar] [CrossRef]
- Doyle, J. DNA protocols for plants—CTAB total DNA isolation. In Molecular Techniques in Taxonomy; Hewitt, G.M., Johnston, A., Eds.; Springer: Berlin, Germany, 1991; pp. 283–293. [Google Scholar]
- Glaubitz, J.C. CONVERT: A user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol. Ecol. Notes 2004, 4, 309–310. [Google Scholar] [CrossRef]
- Peakall, R.O.D.; Smouse, P.E. genalex 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Manly, B.F.J. The Statistics of Natural Selection; Chapman and Hall: London, UK, 1985. [Google Scholar]
- Yeh, F.C.; Yang, R.C.; Boyle, T. POPGENE Version 1.31. Microsoft Window-based Freeware for Population Genetic Analysis Quick User Guide; University of Alberta and Centre for International Forestry Research: Edmonton, AB, Canada; Bogor, Indonesia, 1999. [Google Scholar]
- Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 1978, 89, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Wright, S. Evolution and the Genetics of Populations. Vol 4: Variability within and among Natural Populations; University of Chicago Press: Chicago, IL, USA, 1978. [Google Scholar]
- Goudet, J. FSTAT, a Program to Estimate and Test Gene Diversities and Fixation Indices (Version 2.9.3); ScienceOpen, Inc.: Burlington, MA, USA, 2001. [Google Scholar]
- Chybicki, I.J. INEST 2.0: The User Manual. Poland: Department of Genetics; Kazimierz Wielki University: Bydgoszcz, Poland, 2015. [Google Scholar]
- Chapuis, M.P.; Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 2007, 24, 621–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weir, B.S. Genetic Data Analysis; Sinauer Associates: Sunderland, MA, USA, 1996. [Google Scholar]
- Piry, S.; Luikart, G.; Cornuet, J.M. BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data. J. Heredity 1999, 90, 502–503. [Google Scholar] [CrossRef]
- Lawler, R.R. Testing for a historical population bottleneck in wild Verreaux’s sifaka (Propithecus verreauxi verreauxi) using microsatellite data. Am. J. Primatol. 2008, 70, 990–994. [Google Scholar] [CrossRef] [PubMed]
- Di Rienzo, A.; Peterson, A.C.; Garza, J.C.; Valdes, A.M.; Slatkin, M.; Freimer, N.B. Mutational processes of simple sequence repeat loci in human populations. Proc. Natl. Acad. Sci. USA 1994, 91, 3166–3170. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, J.K.; Wen, X.; Falush, D. STRUCTURE Version 2.3.; University of Chicago: Chicago, IL, USA, 2009. [Google Scholar]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
- Jakobsson, M.; Rosenberg, N.A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23, 1801–1806. [Google Scholar] [CrossRef] [Green Version]
- Excoffier, L.; Laval, G.; Schneider, S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinform. 2005, 1, 47–50. [Google Scholar] [CrossRef]
- Rousset, F. Genetic Differentiation and Estimation of Gene Flow from F-Statistics Under Isolation by Distance. Genetics 1997, 145, 1219–1228. [Google Scholar] [CrossRef]
- Ge, S.; Hong, D.-Y.; Wang, H.-Q.; Liu, Z.-Y.; Zhang, C.-M. Population Genetic Structure and Conservation of an Endangered Conifer, Cathaya argyrophylla (Pinaceae). Bot. Gaz. 1998, 159, 351–357. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.-Y.; Zhang, X.; Wu, T.-Y.; Lu, H.-P.; Cai, Y.-W. Genetic Differences between Wild and Artificial Populations of Metasequoia glyptostroboides: Implications for Species Recovery. Conserv. Biol. 2005, 19, 224–231. [Google Scholar] [CrossRef]
- Kaneko, S.; Isagi, Y.; Nobushima, F. Genetic differentiation among populations of an oceanic island: The case of Metrosideros boninensis, an endangered endemic tree species in the Bonin Islands. Plant Spec. Biol. 2008, 23, 119–128. [Google Scholar] [CrossRef]
- Moreira, R.G.; McCauley, R.A.; Cortés-Palomec, A.C.; Fernandes, G.W.; Oyama, K. Spatial genetic structure of Coccoloba cereifera (Polygonaceae), a critically endangered microendemic species of Brazilian rupestrian fields. Conserv. Genet. 2009, 11, 1247–1255. [Google Scholar] [CrossRef]
- Gitzendanner, M.A.; Soltis, P.S. Patterns of genetic variation in rare and widespread plant congeners. Am. J. Bot. 2000, 87, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Chen, X.-Y.; Zhang, X.; Li, Y.-Y.; Fu, C.-X.; Qiu, Y.-X. Genetic variation of Ginkgo biloba L. (Ginkgoaceae) based on cpDNA PCR-RFLPs: Inference of glacial refugia. Heredity 2005, 94, 396–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Straub, S.C.K.; Doyle, J.J. Conservation genetics of Amorpha georgiana (Fabaceae), an endangered legume of the Southeastern United States. Mol. Ecol. 2009, 18, 4349–4365. [Google Scholar] [CrossRef]
- Yao, X.; Ye, Q.; Kang, M.; Huang, H. Microsatellite analysis reveals interpopulation differentiation and gene flow in the endangered tree Changiostyrax dolichocarpa (Styracaceae) with fragmented distribution in central China. New Phytol. 2007, 176, 472–480. [Google Scholar] [CrossRef]
- Cao, P.-J.; Yao, Q.-F.; Ding, B.-Y.; Zeng, H.-Y.; Zhong, Y.-X.; Fu, C.-X.; Jin, X.-F. Genetic diversity of Sinojackia dolichocarpa (Styracaceae), a species endangered and endemic to China, detected by inter-simple sequence repeat (ISSR). Biochem. Syst. Ecol. 2006, 34, 231–239. [Google Scholar] [CrossRef]
- Nybom, H. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol. Ecol. 2004, 13, 1143–1155. [Google Scholar] [CrossRef]
- Wang, X.; Dong, L.-J.; Duan, J.-H.; Li, S.-J.; Zhang, S.-G. Genetic diversity and relationship of 84 tea cultivars (Camellia sinensis (L.) O. Kuntze) by SSR markers. J. HUNAN Agric. Univ. 2011, 37, 260–266. [Google Scholar] [CrossRef]
- Collevatti, R.G.; Grattapaglia, D.; Hay, J.D. High resolution microsatellite based analysis of the mating system allows the detection of significant biparental inbreeding in Caryocar brasiliense, an endangered tropical tree species. Heredity 2001, 86, 60–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, G.M.; Boshier, D.H.; Powell, W. Genetic variation within a fragmented population of Swietenia humilis Zucc. Mol. Ecol. 1999, 8, 1899–1909. [Google Scholar] [CrossRef] [PubMed]
- Young, A.G.; Merriam, H.G.; Warwick, S.I. The effects of forest fragmentation on genetic variation in Acer saccharum Marsh. (sugar maple) populations. Heredity 1993, 71, 277–289. [Google Scholar] [CrossRef] [Green Version]
- Hamrick, J. Response of forest trees to global environmental changes. For. Ecol. Manag. 2004, 197, 323–335. [Google Scholar] [CrossRef]
- Kusza, S.; Priskin, K.; Ivankovic, A.; Jedrzejewska, B.; Podgorski, T.; Jávor, A.; Mihók, S. Genetic characterization and population bottleneck in the Hucul horse based on microsatellite and mitochondrial data. Biol. J. Linn. Soc. 2013, 109, 54–65. [Google Scholar] [CrossRef] [Green Version]
- Kataria, R.S.; Kathiravan, P.; Bulandi, S.S.; Pandey, D.; Mishra, B.P. Microsatellite-based genetic monitoring to detect cryptic demographic bottleneck in Indian riverine buffaloes (Bubalus bubalis). Trop Anim Health Prod. 2010, 42, 849–855. [Google Scholar] [CrossRef]
- Rajora, O.P.; Rahman, M.H.; Buchert, G.P.; Dancik, B.P. Microsatellite DNA analysis of genetic effects of harvesting in old-growth eastern white pine (Pinus strobus) in Ontario, Canada. Mol. Ecol. 2000, 9, 339–348. [Google Scholar] [CrossRef]
- Caballero, A.; Rodríguez-Ramilo, S.T.; Ávila, V.; Fernández, J. Management of genetic diversity of subdivided populations in conservation programmes. Conserv. Genet. 2010, 11, 409–419. [Google Scholar] [CrossRef]
- Wahlund, S. Zusammensetzung von Populationen und Korrelationserscheinungen vom Standpunkt der Vererbungslehre aus Betrachtet. Hereditas 1928, 11, 65–106. [Google Scholar] [CrossRef]
- Paxton, R.J.; Thorén, P.A.; Gyllenstrand, N.; Tengö, J. Microsatellite DNA analysis reveals low diploid male production in a communal bee with inbreeding. Biol. J. Linn. Soc. 2000, 69, 483–502. [Google Scholar] [CrossRef]
- Wang, Z.F.; Hamrick, J.L.; Godt, M.J.W. High genetic diversity in Sarracenia leucophylla (Sarraceniaceae), a carnivorous wet-land herb. J. Hered. 2004, 95, 234–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jump, A.S.; Peñuelas, J. Genetic effects of chronic habitat fragmentation in a wind-pollinated tree. Proc. Natl. Acad. Sci. USA 2006, 103, 8096–8100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araújo, E.D.; Costa, M.; Chaud-Netto, J.; Fowler, H.G. Body size and flight distance in stingless bees (Hymenoptera: Meliponini): Inference of flight range and possible ecological implications. Braz. J. Biol. 2004, 64, 563–568. [Google Scholar] [CrossRef]
- Hamrick, J.L.; Allard, R.W. Microgeographical Variation in Allozyme Frequencies in Avena barbata. Proc. Natl. Acad. Sci. USA 1972, 69, 2100–2104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lack, A.J.; Kay, Q.O.N. Allele frequencies, genetic relationships and heterozygosity in Polygala vulgaris populations from contrasting habitats in southern Britain. Biol. J. Linn. Soc. 1988, 34, 119–147. [Google Scholar] [CrossRef]
- Van Rossum, F.; Vekemans, X.; Meerts, P.; Gratia, E.; Lefebvre, C. Allozyme variation in relation to ecotypic differentiation and population size in marginal populations of Silene nutans. Heredity 1997, 78, 552–560. [Google Scholar] [CrossRef]
- Li, Y.C.; Fahima, T.; Beiles, A.; Korol, A.B.; Nevo, E. Microclimatic stress and adaptive DNA differentiation in wild emmer wheat, Triticum dicoccoides. Theor. Appl. Genet. 1999, 98, 873–883. [Google Scholar] [CrossRef]
- Owuor, E.D.; Fahima, T.; Beharav, A.; Korol, A.; Nevo, E. RAPD divergence caused by microsite natural selection. Genetica 1999, 105, 177–192. [Google Scholar] [CrossRef]
- Qiu, Y.; Liu, Y.; Kang, M.; Yi, G.; Huang, H. Spatial and temporal population genetic variation and structure of Nothotsuga longibracteata (Pinaceae), a relic conifer species endemic to subtropical China. Genet. Mol. Biol. 2013, 36, 598–607. [Google Scholar] [CrossRef] [Green Version]
- Schaal, B.A. Population Structure and Local Differentiation in Liatris cylindracea. Am. Nat. 1975, 109, 511–528. [Google Scholar] [CrossRef]
- Waser, N.M. Spatial genetic heterogeneity in a population of the montane perennial herb Delphinium nelsonii. Heredity 1987, 58, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Turner, M.E.; Stephens, J.C.; Anderson, W.W. Homozygosity and patch structure in plant populations as a result of near-est-neighbor pollination. Proc. Natl. Acad. Sci. USA 1982, 79, 2903–2907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sokal, R.R.; Wartenburg, D.E. A test of spatial autocorrelation analysis using an isolation-by-distance model. Genetics 1983, 105, 219–237. [Google Scholar] [CrossRef] [PubMed]
- Barnaud, A.; Houliston, G.J. Population genetics of the threatened tree daisy Olearia gardneri (Asteraceae), conservation of a critically endangered species. Conserv. Genet. 2009, 11, 1515–1522. [Google Scholar] [CrossRef]
- Booy, G.; Hendriks, R.J.J.; Smulders, M.J.M.; Groenendael, J.M.; Vosman, B. Genetic Diversity and the Survival of Populations. Plant Biol. 2000, 2, 379–395. [Google Scholar] [CrossRef]
Region and Population | Location | Altitude (m) | Sample Size (Count as Individual) | Estimated Population Size (Count as Individual) | |
---|---|---|---|---|---|
Nanning | |||||
ZZC | Zhongzhencun, Gutan, Longan | 230 | 36 | 170 | |
BLS | Boluoshan, Fushu, Xixiangtang | 240 | 33 | 190 | |
GMS | Gengmaoshan, Fushu, Xixiangtang | 380 | 30 | 160 | |
ZD | Zhongdong, Fusui | 280 | 11 | 140 | |
Fangcheng | |||||
FL | Fulong | 170 | 31 | 39 | |
BLC | Bailicun, Dalu | 20 | 31 | 180 | |
NLP * | Niulanping, Nasuo | 178 | 20 | 63 | |
PTC * | Paotaicun, Nasuo | 165 | 17 | 120 | |
NZS * | NZS-1 | Mount Nazi, Nasuo | 120 | 30 | 70 |
NZS-2 | Mount Nazi, Nasuo | 250 | 29 | 100 | |
NZS-3 | Mount Nazi, Nasuo | 306 | 30 | 40 | |
total | 89 | 210 | |||
DWJ | Dawangjiang, fucheng | 70 | 30 | 150 | |
DYC | Diaoyingcun, Malu, Dongxing | 410 | 30 | 32 | |
JDC | Jiaodongcun, Jiangping, Dongxing | 130 | 27 | 37 |
Population | NA | NE | NP | P(%) | AR | HO | UHE | FIS-GenALEx | p-Value of HWE Test | FIS-INest | FIS-INest 95% HDPI | FST | FST (ENA) | BOTTLENECK Test (p Value) | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IAM | SMM | TPM | |||||||||||||||
ZZC | 5.857 | 2.888 | 3 | 100.00 | 2.871 | 0.606 | 0.603 | −0.031 | 0.4673 | 0.121 | 0.083–0.162 | 0.05469 | 0.03906 *a | 0.68750 | |||
BLS | 4.857 | 2.335 | 0 | 100.00 | 2.478 | 0.353 | 0.482 | 0.307 | 0.0005 * | 0.289 | 0.224–0.352 | 1.00000 | 0.03906 *a | 0.10938 | |||
GMS | 7.000 | 4.065 | 5 | 85.714 | 3.235 | 0.589 | 0.649 | 0.069 | 0.0071 * | 0.087 | 0.063–0.127 | 0.04688 *a | 1.00000 | 0.43750 | |||
ZD | 6.857 | 4.783 | 2 | 100.00 | 3.679 | 0.494 | 0.757 | 0.324 | 0.0005 * | 0.188 | 0.049–0.414 | 0.37500 | 0.57813 | 1.00000 | |||
FL | 6.429 | 3.638 | 1 | 85.714 | 2.932 | 0.498 | 0.603 | 0.148 | 0.0005 * | 0.066 | 0.004–0.137 | 0.01563 *a | 0.07813 | 0.43750 | |||
BLC | 8.429 | 4.137 | 2 | 100.00 | 3.409 | 0.608 | 0.684 | 0.077 | 0.0026 * | 0.064 | 0.002–0.144 | 0.81250 | 0.01563 *a | 0.10938 | |||
NLP | 5.000 | 2.813 | 0 | 85.714 | 2.749 | 0.513 | 0.560 | 0.054 | 0.0658 | 0.115 | 0.038–0.192 | 0.68750 | 0.15625 | 0.56250 | |||
PTC | 4.286 | 2.779 | 2 | 85.714 | 2.662 | 0.485 | 0.533 | 0.098 | 0.0709 | 0.135 | 0.051–0.221 | 0.01563 *a | 1.00000 | 0.01563 *a | |||
NZS | NZS-1 | 7.143 | 3.929 | 100.00 | 3.194 | 0.604 | 0.667 | 0.108 | 0.0077 * | 0.00781 *a | 0.07813 | 0.93750 | |||||
NZS-2 | 8.571 | 4.486 | 100.00 | 3.492 | 0.608 | 0.691 | 0.130 | 0.0005 * | 0.37500 | 0.03906 *a | 0.68750 | ||||||
NZS-3 | 8.429 | 4.983 | 100.00 | 3.415 | 0.560 | 0.645 | 0.192 | 0.0005 * | 0.10938 | 0.29688 | 0.93750 | ||||||
Population level | 11.857 | 6.056 | 5 | 100.00 | 3.588 | 0.590 | 0.694 | 0.169 | 0.0006 * | 0.129 | 0.102–0.157 | 0.29688 | 0.07813 | 0.93750 | |||
DWJ | 6.571 | 3.922 | 3 | 100.00 | 3.081 | 0.656 | 0.657 | −0.028 | 0.5046 | 0.073 | 0.032–0.111 | 0.02344 *a | 0.10938 | 0.29688 | |||
DYC | 6.143 | 2.736 | 1 | 100.00 | 2.797 | 0.545 | 0.614 | 0.110 | 0.0087 * | 0.128 | 0.068–0.205 | 0.93750 | 0.05469 | 0.68750 | |||
JDC | 5.714 | 3.145 | 3 | 100.00 | 2.920 | 0.490 | 0.609 | 0.200 | 0.0005 * | 0.143 | 0.083–0.206 | 0.29688 | 0.46875 | 0.93750 | |||
Mean b | Mean c | 6.583 | 3.608 | 95.238 | 3.033 | 0.536 | 0.620 | 0.126 | |||||||||
Mean d | 6.558 | 3.501 | 94.805 | 2.975 | 0.539 | 0.608 | 0.107 | ||||||||||
Species c | 0.199 | 0.190 | |||||||||||||||
Species d | 0.203 | 0.194 |
Nanning Group Population | Mean | Fangcheng Group Population | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ZZC | BLS | GMS | ZD | FL | BLC | NLP | PTC | NZS | DWJ | DYC | JDC | |||||||
NZS-1 | NZS-2 | NZS-3 | Population level | |||||||||||||||
Nanning group population | ZZC | — | 0.2002 B | |||||||||||||||
BLS | 0.2332 * | — | ||||||||||||||||
GMS | 0.1598 * | 0.2076 * | — | |||||||||||||||
ZD | 0.2360 * | 0.2822 * | 0.2046 * | — | ||||||||||||||
Mean | 0.2206 a | |||||||||||||||||
Fangcheng group population | FL | 0.2598 * | 0.3129 * | 0.2583 * | 0.0793 * | 0.2304 a | — | |||||||||||
BLC | 0.2124 * | 0.2546 * | 0.2024 * | 0.0760 * | 0.0886 * | — | ||||||||||||
NLP | 0.3463 * | 0.3919 * | 0.3000 * | 0.0781 * | 0.2099 * | 0.2012 * | — | |||||||||||
PTC | 0.3290 * | 0.3845 * | 0.3002 * | 0.1066 * | 0.2034 * | 0.1852 * | 0.0745 * | — | ||||||||||
NZS | NZS-1 | 0.2163 * | 0.2946 * | 0.1895 * | 0.0670 * | 0.1510 * | 0.1248 * | 0.1043 * | 0.0901 * | — | ||||||||
NZS-2 | 0.2071 * | 0.2581 * | 0.1965 * | 0.0534 * | 0.1153 * | 0.1083 * | 0.0888 * | 0.0878 * | 0.0656 * | — | ||||||||
NZS-3 | 0.2298 * | 0.2878 * | 0.2139 * | 0.0779 * | 0.1336 * | 0.1353 * | 0.0999 * | 0.0646 * | 0.0539 * | 0.0282 * | — | |||||||
Popu-lation level | 0.2000 * | 0.2509 * | 0.1844 * | 0.0507 * | 0.1163 * | 0.1114 * | 0.0769 * | 0.0597 * | — | — | — | — | ||||||
DWJ | 0.2795 * | 0.2886 * | 0.2694 * | 0.0489 * | 0.1514 * | 0.1523 * | 0.1412 * | 0.1428 * | 0.1258 * | 0.1126 * | 0.1199 * | 0.1034 * | — | |||||
DYC | 0.2733 * | 0.3087 * | 0.2579 * | 0.0944 * | 0.1761 * | 0.1972 * | 0.1345 * | 0.1608 * | 0.1508 * | 0.1097 * | 0.1433 * | 0.1153 * | 0.1580 * | — | ||||
JDC | 0.2901 * | 0.3224 * | 0.2740 * | 0.0860 * | 0.1686 * | 0.1605 * | 0.1243 * | 0.1064 * | 0.1237 * | 0.1022 * | 0.0996 * | 0.0904 * | 0.1103 * | 0.1511 * | — | |||
Mean | 0.2813 A | 0.1383 bC |
Source of Variation | d.f. | Sum of Squares | Variance Components | Percentage of Variation | |
---|---|---|---|---|---|
with ZD population | Between regional groups | 1 | 105.083 | 0.27423 | 16.14 ** |
Among populations within regional groups | 10 | 163.984 | 0. 24829 | 14.61 ** | |
Within populations | 758 | 891.677 | 1.17636 | 69.24 ** | |
Total | 769 | 1160.744 | 1.69887 | ||
after excluding ZD population | Between regional groups | 1 | 129.538 | 0.36877 | 16.73 ** |
Among populations within regional groups | 9 | 177.470 | 0.27863 | 12.64 ** | |
Within populations | 737 | 1147.375 | 1.55682 | 70.63 ** | |
Total | 747 | 1454.383 | 2.20422 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Wang, J.; Tang, J.; Wang, Z.; Chai, S.; He, X.; Wei, X. Conservation Genetics of the Rare and Endangered Tree Species, Camellia nitidissima (Theaceae), Inferred from Microsatellite DNA Data. Forests 2022, 13, 1662. https://doi.org/10.3390/f13101662
Chen Z, Wang J, Tang J, Wang Z, Chai S, He X, Wei X. Conservation Genetics of the Rare and Endangered Tree Species, Camellia nitidissima (Theaceae), Inferred from Microsatellite DNA Data. Forests. 2022; 13(10):1662. https://doi.org/10.3390/f13101662
Chicago/Turabian StyleChen, Zongyou, Junfang Wang, Jianmin Tang, Zhengfeng Wang, Shengfeng Chai, Xingjin He, and Xiao Wei. 2022. "Conservation Genetics of the Rare and Endangered Tree Species, Camellia nitidissima (Theaceae), Inferred from Microsatellite DNA Data" Forests 13, no. 10: 1662. https://doi.org/10.3390/f13101662
APA StyleChen, Z., Wang, J., Tang, J., Wang, Z., Chai, S., He, X., & Wei, X. (2022). Conservation Genetics of the Rare and Endangered Tree Species, Camellia nitidissima (Theaceae), Inferred from Microsatellite DNA Data. Forests, 13(10), 1662. https://doi.org/10.3390/f13101662